
International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

DOI: 10.5121/ijcnc.2017.9401 1

DECISION-MAKING SYSTEM SUPPORTED BY

ADAPTIVE COLOURED PETRI NETS

Haroldo Issao Guibu
1,2

and João José Neto
2

1
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil

2
Escola Politécnica da Universidade de São Paulo, Brazil

ABSTRACT

This work presents a decision-making system supported by Adaptive Coloured Petri Net (ACPN). Experts

in a given field can establish a set of rules for the proper functioning of a manufacturing process or even

acompany, facilitating the decision-making process. However, whenever the scenario changes and new

rules need to be incorporated into the rule set, or old rules need to be deleted or modified, the manager

may find it difficult to reformulate this set of rules. An adaptive mechanism that facilitates the modification

of the set of rules is fundamental to assist the manager in making decisions. The Adaptive Color Petri Net

is a tool that enables the modification of the set of rules, transforming the IF-THEN rule format used by

anauxiliary Extended Adaptive Decision Table in an equivalent ACPN subnet.

KEYWORDS

Adaptive Petri Nets, Coloured Petri Nets, Adaptive Decision Tables

1. INTRODUCTION

In the area of decision-making systems, the tools most used by the specialists are the decision

tables, which gave rise to several methods to help managers in their choices.

Among the methods developed for decision making are the so-called multi criteria methods,

which involve the adoption of multiple hierarchically linked decision tables. In the process of

improving the decision tables, new features are incorporated and they provide the specialists the

ability to describe their model in a more realistic way.

On the other hand, Petri nets were created by Carl Petri in the 1960s to study discrete events

dynamic systems with the aim of communication between automata. Several extensions were

made in the original Petri nets, with the introduction of timed transition, the expansion of the

token concept and the possibility of dynamic network modification. Coloured Petri nets are an

enhancement of the original Petri net in which tokens can be variables of various types, including

integer, real, and string types, simplifying the network and enabling the concise description of

complex problems, rendering them appropriate in modeling engineering and business problems.

Another enhancement of Petri Net is Adaptive Coloured Petri Net (ACPN)[5].Adaptive Coloured

Petri Net introduces an adaptive layer which involves Coloured Petri Net, and are composed of

several functions that are capable to change the subjacent network topology, including or

excluding places, transitions and arcs. This paper describes how the adaptive layer operates and

the way of transcribing the rules of the tables for extended functions of Petri nets. By embedding

a decision table in a Petri net, the simulation and analysis tools available in the Petri net

development environments can be used, which leads to an increase in confidence in the decision

criteria adopted.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

2

2. PETRI NETS

2.1. Ordinary Petri Nets

Petri nets (PN) were created by Carl Petri in the 1960s to model communication between

automata, which at that time also encompassed Discrete Event Systems (DES). Formally, a Petri

net is a quadruple PN= [P, T, I, O] where

P is a finite set of places;

T is a finite set of transitions;

I: (P x T) → N is the input application, where N is the set of natural numbers;

O: (T x P) → N is the output application, where N is the set of natural numbers

A marked network is a double MPN = [PN, M], where PN is a Petri net and M is a set with the

same dimension of P such that M (p) contains the number of marks or tokens of place p.

At the initial moment, M represents the initial marking of the MPN and it varies over time as the

transitions succeed. In addition to the matrix form indicated in the formal definition of the Petri

nets, it is possible to interpret the Petri nets as a graph with two types of nodes interconnected by

arcs that presents a dynamic behaviour, and also as a system of rules of the type "condition →

action" which represent a knowledge base.

Figure 1 shows a Petri net in the form of a graph, in which the circles are the "Places", the

rectangles are the "Transitions". The "Places" and the "Transitions" constitute the nodes of the

graph and they are interconnected through the oriented arcs

Figure 1. Example of a Petri Net

2.2. Reconfigurable Petri Nets

Several extensions of the Petri Nets were developed with the objective of simplifying the

modelling of Discrete Events Systems, even for distributed environments. However, m Several

extensions of the Petri Nets were developed with the objective of simplifying the modelling of

Systems to Discrete Events, even for distributed environments. However, most extensions are not

designed to model systems that change during their operation.

One group of Petri Nets extensions that attempts to tackle the problem of modelling systems that

change during their operation is composed by the Self-Modifying Petri Nets [12], by the

Reconfigurable Petri Nets via graph rewriting [8], by the Adaptive Petri Nets [1] and the

Adaptive Fuzzy Petri Nets [6].Each of these extensions has its own characteristics, but they share

the fact that they can modify, during execution, the firing rules of the transitions or the topology

of the network.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

3

With the same name, the same acronym, but of different origins, we find in the literature

Reconfigurable Petri Nets (RPN) introduced in [3] and in [8].The work of Llorens and Oliver is

an evolution of the work of Badouel and Oliver [1] and combines the techniques of graph

grammars with the idea of Valk's Self-Modifying Petri Net, creating a system of rewriting of the

network. In their work, Llorens and Oliver demonstrated the equivalence between the RPN and

the PN in terms of properties and also that the RPN are equivalent to the Turing machines

regarding the power of expression.

In Figure 2 we have schematized a Reconfigurable Petri Net according to Guan [3]. There are two

interdependent layers, the control layer and the presentation layer. The places of the control layer

are different in their nature from the places of the presentation layer.

Each place of the control layer has associated a set of functions that is capable to change the

topology of the presentation layer, that is, they reconfigure the presentation layer. The tokens of

the places are actually functions designed to modify the topology of the presentation layer.

Figure 2. Reconfigurable Petri Net, version of Guan

2.3. Adaptive Petri Nets

An adaptive Petri net was defined by Camolesi [2] from the underlying device scheme plus

adaptive layer as follows:

��� = (��, �	�,Σ,
�, �, ��, ��, ��) in initial configuration
�.
Input stimuli move the APN to the next configuration if, and only if, a non-empty adaptive action

is performed.In the k-th step we have:

���
 = (�
 , �	
, Σ,

, �, ��, ��, ��), where

��� = (���, ��) is formed by an underlying initial device (���) and an adaptive mechanism

AM;

PN is the Petri Net device in step k. ��� is the initial underlying device and the set �	�

represents the initial non-adaptive behaviour;

�
 is the set of all possible behaviours of PN in step k and

��
is its initial behavior in step k;

ε ("empty string") denotes absence of valid element;

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

4

Σ is the set of all possible events that make up the input chain;

A⊆C is the subset of PN acceptance configurations;

F = C-A is the set of PN rejection configurations;

BA and AA are sets of adaptive actions, which include empty action;

� =	����…	�� is the input string;

NA is a finite set of all symbols that can be generated as output by APN in response to the

application of adaptive rules;

�	
 is the set of adaptive rules that define the adaptive behaviour of APN in step k and is given

by a relation �	
 ⊆ ��	 × 	Σ × 	�	 × 		�	 × 	��.

�	� defines the initial behaviour of APN and the adaptive actions of insertion or elimination of

places and transitions are transforming the set of rules.

The rules ��� ∈ �	
 are of the form

(<ba>, (P, T, I, O), <aa>) and operate as follows:

A symbol ��Σ causes reg to execute the action �����. If the action of ����� deletes reg from

�	
, the execution of reg is aborted, otherwise, the underlying rule of reg = (P, T, I, O) applies.

Finally, the adaptive action ����� is performed .

2.4. Adaptive Coloured Petri Nets

The Adaptive Coloured Petri Net uses the same scheme of wrapping the underlying device (CPN)

with an adaptive layer (AL)[5].

ACPN = (CPN, AL) where

CPN is the conventional coloured Petri net,

LA = (AF, AR) is the adaptive layer.

In turn, the adaptive layer is composed by the set of adaptive functions (AF) and by the set of

rules type IF - THEN (AR).

AF is the set of adaptive functions and is embedded in the Adaptive Coloured Petri net.

AR is the set of rules that must be inserted in the Adaptive Coloured Petri net through the

execution of the adaptive functions.

The basic adaptive functions are inspection, insertion or incorporation and exclusion of a rule.

The ACPN uses the same strategy of RPN devised by Guan, but the control layer is a kind of

interpreter of Decision Tables previously defined in order to produce the decision layer.

3. DECISION TABLES

The Decision Table is an auxiliary tool in describing procedures for solving complex problems

[11].A Conventional Decision Table, presented in Table 1, can be considered as a problem

composed of conditions, actions and rules where conditions are variables that must be evaluated

for decision making, actions are the set of operations to be performed depending on the

conditions at this moment, and the rules are the set of situations that are verified in response to

the conditions.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

5

.Table 1. Conventional Decision Tables.

 Rules column

Conditions rows Condition values
Actions rows Actions to be taken

A rule is constituted by the association of conditions and actions in a given column. The set of

rule columns should cover all possibilities that may occur depending on the observed conditions

and the actions to be taken. Depending on the current conditions of a problem, we look for which

table rules satisfy these conditions:

• If no rule satisfies the conditions imposed, no action is taken;

• If only one rule applies, then the actions corresponding to the rule are executed;

• If more than one rule satisfies the conditions, then the actions corresponding to the rules are

applied in parallel.

• Once the rules are applied, the table can be used again.

• The rules of a decision table are pre-defined and new rules can only be added or deleted by

reviewing the table.

3.1. Adaptive Decision Tables

In 2001 Neto introduces the Adaptive Decision Table (ADT) [9]from a rule-driven adaptive

device. In addition to rule lookup, an ADT allows you to include or exclude a rule from the rule

set during device operation. As an example of its potential, Neto simulates an adaptive automaton

to recognize sentences from context-dependent languages. In the ADT a conventional decision

table is the underlying device to which a set of lines will be added to define the adaptive

functions.

Adaptive functions constitute the adaptive layer of the adaptive device governed by rules.

Modifying the rule set implies increasing the number of columns in the case of rule insertion, or

decreasing the number of columns in the case of rule deletion. In both cases the amount of lines

remains fixed. The Adaptive Decision Table (ADT) is capable to change its set of rules as a

response to an external stimulus through the action of adaptive functions [11]. However, the

implementation of more complex actions is not a simple task due to the limitation of the three

elementary operations supported by ADT [11].

When a typical adaptive device is in operation and does not find applicable rules, it stops

executing, indicating that this situation was not foreseen. For continuous operation devices, which

do not have accepting or rejecting terminal states, stopping their execution would recognize an

unforeseen situation and constitutes an error.

3.2. Extended Adaptive Decision Tables

To overcome this problem faced by continuous operation devices, Tchemra[11]created a variant

of ADT and called it Extended Adaptive Decision Table (EADT), shown in Table 2

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

6

.Table 2. Extended Adaptive Decision Table.

 Adaptive Actions Rules

Conventional Criteria Criteria values

Decision Alternative Actions to be

Table Set of elementary applied
Set of Auxiliary

auxiliary Auxiliary Adaptive actions Functions to be
functions functions called

Adaptive Adaptive Adaptive actions to be

layer functions performed

In EADT, adaptability does not apply only during the application of a rule, but also in the absence

of applicable rules. A modifier helper device is queried and the solution produced by the modifier

device is incorporated into the table in the form of a new rule, that is, in the repetition of the

conditions that called the modifier device, the new rule will be executed and the modifier device

will not need to be called.

4. EXAMPLES OF RULE INSERTION AND EADT TRANSFORMATION

In this section two examples will be presented, the first showing the insertion of a rule into a

manufacturing process[4] and the second example showing the transformation of an Adaptive

Decision Table into an Adaptive Coloured Petri Net[5].

4.1 Rule insertion in manufacturing environment

In Table 3 we have schematized an example of set of rules to be inserted in a ACPN.

Table 3. Set of rules to be transformed in ACPN functions.

The rule R1 has three conditions (A <4, B = ON, C = X) and two actions (D = A + 2, E = ON).

To transform this rule into a part of a Petri net, a model (Place, Transition, Place) sketched in

Figure 3 is used.

Figure 3.Basic model for transcribing a rule from Table 3

 Rules

R1 R2 R3 R4 R5

Conditions

A A = 4 A > 4 A=4 A=6 A=1

B B= TRUE B=FALSE B B B

C C >6 C ≠6 C=6 C C

Actions/

Decisions

D A+2 5 4 A-3 2

E TRUE FALSE TRUE TRUE FALSE

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

7

As the rules are inserted, they are grouped hierarchically, that is, the execution of the rules will

depend on the sequence of decisions that occur in the Petri net.In Figure 4 the result of the

insertion of three rules that compose a certain subset that make up the total of rules.

Figure 4.Subset of rules in a hierarchy

By inserting these rules in the Petri net, the knowledge generated by the expert is incorporated

into the routine of monitoring the enterprise, alerting the manager in case of any decision

implying non-compliance with the rules. Figure 5 shows the manufacturing process of a product

from 4 raw materials, using three machines.

Figure 5.Petri net illustrating the manufacturing of a product from 4 raw materials.

Machine 1 converts the raw materials MP1 and MP2 into part 1, machine 2 transforms the raw

materials MP3 and MP4 into part 2, and machine 3 uses the two parts Pc1 and Pc2 to generate the

Product.

In Figure 6 the sub-network corresponding to the operation of the machine 1 and which is the

same for the machines 2 and 3 is schematized.

Figure 6.Petri net illustrating the operation of machine 1 (maq1).

The operation of the machines specified by the Petri net of Figure 5 was defined by the

manufacturing sector (ocupada=busy, livre=free, acabou=finished in portuguese).Subsequently,

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

8

the quality control sector detected that the final product was not adequate, presenting a simple

rule to improve product quality. If x1 of Pc1greater or equal x2 of Pc2, then complete the product,

otherwise Pc1 and Pc2 should be directed for recycling, where x1 is the actual value of a

parameter x for Part 1 and x2 is the actual value of the same parameter x for Part 2.

Figure 7.Petri sub-network corresponding to the quality control rule to be inserted.

Figure 7 details the transformation of the rule inserted in the manufacturing Petri Net from a new

IF-THEN rule, producing the new Petri Net schematized in Figure 8.

Figure 8.Modified Petri net after insertion of new control rule.

Transforming the rule format is useful when the target format is more suitable for an application

than the original format. In the example given, Petri nets are more used in manufacturing

processes than Decision Tables. In addition, several methodologies developed for the Petri Nets

make it possible to detect the existence of deadlocks and also the application of schemes that

prevent their appearance in manufacturing networks.

4.2.EADT transformation into ACPN

The transformation of EADT into ACPN is based on an algorithm composed of four main phases:

Phase I: definition of the underlying decision table, with the inclusion of the criteria, alternatives

and rules of the decision problem;

Phase II: generation of the decision matrix, whose values represent the relative weights and

preferences of criteria and alternatives of the decision maker;

Phase III: transformation of the decision matrix in a XML format, in order to incorporate as a set

of rules.

Phase IV: appending the XML file to the basic ACPN, resulting in the second layer, the decision

layer.

The following example was adapted from [11] to illustrate the sequence of phases mentioned

above, based in a decision procedure proposed in [10]. This is a decision problem in which the

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

9

decision maker needs to certify and select suppliers of a particular product for his company. Two

suppliers A and B are analysed, according to the judgments of the decision-maker in accordance

with selected for comparison:

C1 - Quality of services;

C2 - Flexibility for product delivery;

C3 - Distance from supplier and company location.

In phase I, criteria and alternatives to the problem are introduced in a conventional decision table,

and the decision maker can create an initial set of rule, as showed in Table 4.

Table 4. Initial Decision Table.

 Rule1 Rule2 Rule3 Rule4

Criteria
C1 - Quality Y N N Y
C2 - Flexibility Y Y Y Y
C3 - Distance Y N Y N

Alternatives
A1 – Supplier A X X X

A2 – Supplier B X

In this example, the comparisons between the criteria are shown in Table 5, in which the

decision-maker judges the criteria pairs, obtaining the matrix of reciprocal judgments[11].

Table 5. Judgement Matrix.

 C1 C2 C3

C1 - Quality 1 4 3
C2 - Flexibility 1/4 1 2
C3 - Distance 1/3 1/2 1

After checking the consistency of the values of judgment and normalization of values, the

weights of each criterion are calculated, generating the vector of weights:

W = (0.62, 0.22, 0.16).

According to the judgment of the decision maker, the vector with the weight of each criterion

represents the relative importance of each one. In this example, the resulting weights indicate that

the criterion is more important in relative to others:

Quality: 0.62 - Flexibility: 0.22 -Distance: 0.16.

At this point, it is necessary to check the consistency of the criteria judgments.The matrix of

comparison between the criteria of Table 4 is evaluated for the verification of the degree of

consistency of the judgments, which is given by the consistency ratio (CR), as a function of the

order of the matrix:

a) vector of weights pe = (1.98, 0.69, 0.47)T

b) consistency vector cs = (3.20, 3.08, 3.04)
T

c) eigenvalue λ �! = 3.11

d) consistency index CI = 0.05

e) consistency ratio CR = 0.09

According to [10], the value of CR = 0.09 indicates that the judgments are consistent and

acceptable since CR <10%, otherwise it would be necessary to review Table 5. The next

operation is to obtain the performance matrix. For this, the alternatives are compared to the pairs,

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

10

with each of the criteria. The comparisons made by the decision maker in the example are shown

in Table 5.

Table 6. Pairwise comparison matrix.

 C1 C2 C3

 A1 A2 A1 A2 A1 A2

A1 – Supplier A 1 8 1 6 1 4

A2 – Supplier B 1/8 1 1/6 1 1/4 1

Normalizing the matrices, we obtain the following values:

"1,1 = 0.89 "1,2 = 0.86 "1,3 = 0.80

"1,2 = 0.11 "2,2 = 0.14 "2,3 = 0.20

which are performance matrix cells.

Table 7. Performance matrix Z.

 C1 C2 C3

A1 – Supplier A 0.89 0.86 0.80
A2 – Supplier B 0.11 0.14 0.20

From the performance matrix Z we obtain vector ax containing the figures indicating the relative

importance of the alternatives.

�!1 = 0.85 and �!2 = 0.15 indicating that in this example the alternative A1 is much

better than the alternative A2 and supplier A must be chosen. Figure 9 shows the Petri Net

version of the initial decision table.

Figure 9. Petri Net equivalent of initial Decision Table

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

11

Figure 10. Petri Net Petri net of the decision-making process

Figure 10 summarizes the decision process in a graphical way.

5. CONCLUSIONS

In this paper we show how to incorporate new rules into Adaptive Coloured Petri Nets in a

manufacturing environment and how to incorporate decision tables into Adaptive Coloured Petri

Nets in a business environment. Good management practices are often overlooked in a company's

day-to-day business due to the unawareness of the consequences of certain decisions, which are

not always apparent because the business expert does not share his knowledge with the plant

manager. Sharing two knowledges that are generally isolated provides a synergy for the company.

These incorporations of rules and tables were facilitated by the reconfigurable nature of the

Adaptive ColouredPetri Nets. Reconfigurable networks can be understood as a particular case of

adaptive networks, where adaptation is achieved through reconfiguration of the network. The

adaptive network is more general than the reconfigurable network because it can change its

behavior by maintaining the same configuration by modifying the trigger rules of the transitions.

In an adaptive network, rules that handle failures can be incorporated into the standard network,

allowing greater agility in the operation without the need to stop the process until fault experts

take over. The recommendations of the experts would already be incorporated into the standard

Petri net used in the monitoring of the operation [14][15].Reconfigurable systems during

operation are a trend in the design of control systems and the ability to incorporate procedures

from related areas is a feature that cannot be underestimated.

REFERENCES

[1] Badouel E. ; Oliver, J. Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic

Changes in Workflow Systems. (S.l.),1998.

[2] Camolesi, A. R. Proposta de um Gerador de Ambientes para a Modelagem de Aplicações usando

Tecnologia Adaptativa. Tese (Doutorado) —Escola Politécnica da Universidade de São Paulo,

2007.(in portuguese).

[3] Guan S. U. ; Lim, S. S. Modeling adaptable multimedia and self-modifying protocol execution.

Future Generation Computing Systems, vol.20, no 1, pp. 123-143, 2004.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017

12

[4] Guibu H.I.; Neto, J.J. Incorporação de novas regras em uma Rede de Petri Colorida Adaptativa. In

Memórias do XI Workshop de Tecnologia Adaptativa - WTA 2017. EPUSP, São Paulo. ISBN: 978-

85-86686-90-0, pp. 128-132. 26 e 27 de Janeiro, 2017. (in portuguese)

[5] Guibu H.I.; Neto, J.J. Use of Adaptive Coloured Petri Network in Support of Decision-Making. In

DhinaharanNagalamai et al.(Eds) CoSIT2017 pp 17-27,2017.

[6] Kheldoun, A., Barkaoui, K., Zhang, J., &Ioualalen, M. (2015, May). A High Level Net for Modeling

and Analysis Reconfigurable Discrete Event Control Systems. In IFIP International Conference on

Computer Science and its Applications_x000D_ (pp. 551-562). Springer International Publishing.

[7] Little T. D. C.; Ghafoor, A. Synchronization and storage model for multimedia objects. IEEE J.

Selected Areas Comm., pp. 413-427, Apr.1990., 1990.

[8] Llorens, M. ; Oliver, J. Structural and dynamic changes in concurrent systems: Reconfigurable petri

nets. IEEE Trans. Comput., vol. 53, no.9, pp. 11471158, 2004.

[9] Neto, J. J. Adaptive rule-driven devices - general formulation and case study. Proc. 2001 Lecture

Notes in Computer Science. Watson, B.W.and Wood, D. (Eds.): Implementation and Proc. 2001

Lecture Notes in Computer Science. Watson, B.W. and Wood, D. (Eds.): Implementation and

Application of Automata 6th International Conf., Springer-Verlag,Vol.2494, pp. 234-250., 2001.

[10] Saaty, T.L., “How to make a decision: the Analytic Hierarchy Process”, Interfaces, Vol. 24, No. 6,

pp19–43, 1994

[11] Tchemra, A. H. Tabela de decisão adaptativa na tomada de decisões multicritério. Tese (Doutorado),

Escola Politécnica da USP, São Paulo, 2009(in portuguese).

[12] Valk, R. Self-modifying nets, a natural extension of petri nets. Lecture Notes Lecture Notes in Com,

vol. 62, pp. 464-476, 1978.

[13] Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., & Al-Ahmari, A. M. (2013). R-TNCES: A novel

formalism for reconfigurable discrete event control systems. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 43(4), 757-772.

[14] Zhang, J., Khalgui, M., Li, Z., Frey, G., Mosbahi, O., & Salah, H. B. (2015). Reconfigurable

coordination of distributed discrete event control systems. IEEE Transactions on Control Systems

Technology, 23(1), 323-330.

[15] Zhang, J. (2015). Modeling and verification of reconfigurable discrete event control systems

(Doctoral dissertation, XIDIAN UNIVERSITY).

AUTHORS

Haroldo IssaoGuibu graduated in Electrical Engineering and MSc in Electrical

Engineering in Polytechnic School of São Paulo (EPUSP) University,Brazil. Lecturer at

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo(IFSP) with main interest

in Automation, PLC programming and Automation related adaptive technologies.

João José Neto graduated in Electrical Engineering (1971), MSc in Electrical Engineering

(1975) and doctor in Electrical Engineering (1980), and "livre docente" associate professor

(1993) in the Polytechnic School of São Paulo (EPUSP) University,Brazil. Nowadays he is

the head of LTA - Adaptive Technology Laboratory at the Department of Computer

Engineering and Digital Systems at the EPUSP. His main experience is in the Computer

Science area, with emphasis on the foundation of computer engineering and adaptivity. His main activities

include adaptive devices, adaptive technology, adaptive automata and their applications to computer

engineering and other areas, especially in adaptive decision making systems, natural language processing,

compiler construction, robotics, computer education, intelligent system modeling, computer learning,

pattern matching, inference and other applications founded on adaptivity and adaptive devices.

