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ABSTRACT 

 
Wireless Sensor Networks (WSNs) have become a key technology for the IoT and despite obvious benefits, 

challenges still exist regarding security. As more devices are connected to the internet, new cyber attacks 

are emerging which join well-known attacks posing significant threats to the confidentiality, integrity and 

availability of data in WSNs. In this work, we investigated two computational intelligence techniques for 

WSN intrusion detection. A back propagation neural network was compared with a support vector machine 

classifier. Using the NSL-KDD dataset, detection rates achieved by the two techniques for six cyber attacks 

were recorded. The results showed that both techniques offer a high true positive rate and a low false 

positive rate, making both of them good options for intrusion detection. In addition, we further show the 

support vector machine classifiers suitability for anomaly detection, by demonstrating its ability to handle 

low sample sizes, while maintaining an acceptable FPR rate under the required threshold. 
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1. INTRODUCTION 
 

The Internet of Things (IoT) is expected to usher in an era of increased connectivity, with an 

estimated 50 billion devices expected to be connected to the Internet by 2020 [1]. At its core, the 

aim of the IoT is to connect previously unconnected devices to the Internet [2], thus creating 

smart devices capable of collecting, storing and sharing data, without human interaction [3]. 

These newly connected smart devices join previously connected traditional computing devices, to 

form a hybrid network known as the IoT.   

 

With the rapid growth of the IoT, and the technological development of sensors, Wireless Sensor 

Networks (WSNs) have become a key technology for the IoT [4]. These networks consist of self-

organized sensor nodes, communicating using a wireless medium and are used to perform 

distributed sensing tasks. The low cost nature and easy implementation has seen them deployed in 

a wide range of fields such as surveillance, climate change detection, environment monitoring, 

and numerous healthcare applications [5].  
 

Despite the obvious benefits, challenges still exist with respect to security in WSNs. This is 

largely due to the inherent nature of being deployed in harsh unattended environments, broadcast 

in nature, and having limited resources [6] [7]. To address these concerns, extensive research has 

been conducted into the use of cryptography, authentication, key management and secure routing 

in WSNs. Whilst the proposed security solutions have been found to reduce cyber attacks, they 
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have not eliminated them completely [8]. Well-known and new cyber attacks therefore remain a 

concern in WSNs, and are the rationale for this study. 

 

Computational intelligence provides comparatively low-cost technologies for developing IDSs 

while taking care of limited resource consumption. In this study, we applied two major 

computational intelligence techniques: feed-forward backpropagation multi-layer perception, and 

support vector machine (SVM) in WSN intrusion detection and accuracy recording. More 

specifically, our study compared the detection rates of Denial of Service (DoS) intrusions 

achieved by the two techniques. A public dataset is preprocessed, normalised and used as input to 

each network before detection rates and accuracy are compared. Based on our experimental 

comparison, we found that both techniques performed well, returning good true positive detection 

rates, while the SVM offered the better false positive rate. This demonstrates that both techniques 

could be used for establishing anIDS to reduce cyber attacks in WSNs.  

 

The remainder of this paper is organised as follows. Section 2 presents related work in this field. 

Section 3 discusses well-known cyber attacks faced by WSNs found in the IoT. Section 4 

describes common methods and approaches to detecting cyber attacks. Section 5 discusses 

artificial neural networks as a method for detecting cyber attacks. Section 6 discusses the use of 

Support Vector Machines as a method for detecting cyber attacks. Section 7 details the 

experimental setup used to provide a comparison between the detection rates of the feed-forward 

neural network and support vector classifier. The achieved results are presented in Section 8. 

Finally, Section 9 provides some concluding remarks with suggestions for future work. 
 

2. RELATED WORK 
 

Wireless sensor networks (WSNs) are by nature distributed, fault tolerant, scalable, and function 

without  a predefined infrastructure [5]. These attributes make it very difficult to design and 

maintain a WSN which is completely secure and resistant to threats from cyber attacks. Focus has 

therefore shifted to detecting threats in a timely manner to minimize their impact on the network. 

Various approaches to intrusion detection in WSN have been proposed including the use of 

Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). In [9] a hybrid IDS 

using support vector machine and is proposed and designed to operate in cluster based WSNs. 

The SVM is trained using a distributed learning algorithm and returns high detection rates, with a 

low number of false positives recorded. In [10] the authors use a SVM for intrusion detection and 

use the Dynamically Growing Self-Organising Tree (DGSOT) clustering algorithm to enhance 

performance. They demonstrate the approach provides a significant improvement during the 

training process, outperforms the Rocchio Bundling technique, and offers good detection rates. In 

[11] new data preprocessing techniques are proposed and tested using various data mining 

algorithms, including SVM. In their results, the authors found the SVM classifier to offer the best 

performance (high accuracy) with minimum computational time required, when using datasets 

with sparse representation.  

 

Research has also been conducted into the use of artificial neural networks for intrusion detection. 

In [12] the authors propose an artificial neural network based intrusion detection system and test 

the system with 22 attack types found in the KDD99 data set. Their results show a 75% success 

rate for most attacks, although attacks with fewer samples return substantially lower rates. In [13] 

Genetic Algorithm-Levenberg-Marquardt Algorithm (GA-LMBP) is used for the first time in an 

WSN intrusion detection model. When compared with traditional models based on BP, it offers 

multilayer cooperative detection and a model of self-leaning with associative memory and fuzzy 

computing abilities, and offers higher true positive detection rates and lower power consumption. 

In [14] the authors use an enhanced Fuzzy Adaptive Resonance Theory (ART) neural network to 

detect threats in WSNs. The original model proposed in [15] was enhanced by training the 
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network to learn a time-series and detect time-related changes, resulting in higher accuracy rates 

when compared with the original. 
 

3. CYBER ATTACKS IN WSN 
 

Although cyber attacks facing WSNs are diverse, they can generally be classified as either active 

or passive attacks. Passive attacks do not characteristically impair a network or change data, but 

rather monitor targets for vulnerabilities or extract information from the network. Active attacks 

by contrast attempt to change data on or en route to a target, or deprive access to the network 

using various forms of denial of service (DoS) attacks. This section will discuss known active 

cyber attacks facing WSNs, used to change data or perform DoS attacks. 

 

• Hello Flood Attack: An attacker floods the network with Hello packets so nodes select 

the compromised node as a forwarder for their packets [16]. 

• Sybil Attack: A compromised node adopts the identity of several other nodes, or creates 

fake identifies with the intent of disrupting routing paths or data aggregation [17]. 

• Wormhole Attack: A malicious node advertises itself as having the shortest routing path 

to the base node.  All other nodes therefore select it as a forwarder for their packets, 

resulting in all traffic now passing through the malicious node and being tunneled 

through a private link to another location. 

• Sink Hole / Black Hole Attack: A compromised node advertises itself as having the 

shortest routing path to the base node [17].  All other nodes therefore select it as a 

forwarder for their packets, resulting in the creation of a sinkhole, and all traffic now 

passing through the compromised node. 

• Selective Forwarding Attack: A compromised node exploits inherent trust, whereby a 

compromised node refuses to forward certain packets and simply drops them. 

• Misdirection Attack: A compromised node forwards messages along incorrect paths, in 

an attempt to divert traffic away from its intended destination. 

• Desynchronisation Attack: Messages carrying sequence numbers are disrupted, 

misleading end nodes into thinking some frames have been missed and therefore 

requesting retransmission [16]. 

• SYN Flood Attack: A network is flooded with malicious SYN request packets creating 

copious half-open state connections between nodes. In the absence of required ACK reply 

packets, the nodes resources are exhausted and denial of service is achieved [18]. 

• Collision Attack: A compromised node transmits short noise packets when other nodes 

are already transmitting, causing a collision with a neighbouring node. 

• Exhaustion Attack: A compromised node repeatedly sends a RTS message, eliciting a 

CTS response, which if done continuously would eventually exhaust the resources of 

both nodes. 

• Unfairness Attack: Compromised nodes monopolise access to the channel, reducing 

window time for genuine data transmission. As a result, service although not entirely 

denied, is significantly degraded. 

• Tampering Attack: Malicious beacons are continuously sent to sensor nodes, keeping 

them active and preventing them from switching to sleep mode. 

• Battery Exhaustion Attack: Node resources are depleted due to prevention of sleep mode. 

 

4. INTRUSION DETECTION METHODS 
 
A single method of defense against cyber attacks is neither feasible nor possible. It is therefore 

advisable to compliment first line security mechanisms such as encryption, authentication and 

authorization with a second line of defense such as intrusion detection.  Here an intrusion can be 

classified as any set of activities that attempt to compromise the integrity, confidentiality or 
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availability of a resource. An intrusion detection system (IDS) addresses these directly by 

providing confidentiality; ensuring data is not disclosed to unauthorised individuals or systems, 

integrity; ensuring data is preserved in regard to its meaning, completeness and intended use, 

availability; ensuring the data and system are accessible to authorised individuals. 

Intrusion detection systems can be classified by two distinct methods, with a third hybrid 

approach also available which will be discussed below. 

 

Signature-based Detection. Also known as misuse or rule-based intrusion detection relies on 

known rules (signatures) of previous attacks and attempts to identify possible intrusions by 

comparing collected data against these predefined rules [19].   Data streams which match these 

predefined rules would be detected and identified as potential attacks invoking an alert. High true 

positive and low false positive rates are possible for known attacks, but conversely signature-

based detection offers low detection rates for zero day (new) attacks.  

 
Anomaly-based detection. Anomaly-based detection involves comparing current network traffic 

with a baseline of previously learnt normal network behavior [19]. The baseline is determined by 

monitoring the network and hosts during an extended period of activity, and building profiles of 

normal behaviour for each host or protocol. Any significant deviation from this baseline is 

detected and classified as an anomaly, raising an alert. In contrast to signature-based methods it 

offers good detection for new or unknown attacks, although it is often considered to produce a 

high false positive rate. 

 

Specification-based Detection.  Is a hybrid of signature and anomaly-based detection where 

specifications are developed to describe normal network behavior [20]. Two detection 

mechanisms are usually combined, one to detect known attacks using signatures, the other to 

monitor traffic and detect deviations from learnt normal network behaviour. Since specifications 

of normal behaviour are developed manually Low false positive rates can be achieved compared 

with anomaly-based detection methods.    

 

5. ARTIFICIAL NEURAL NETWORKS 
 

Artificial Neural Networks (ANNs) are a method of machine learning commonly used for 

anomaly-based detection [21]. Interconnected neurons exchange information to estimate or 

predict outputs from supplied patterns of inputs. They are typically organized into layers, each 

consisting of a specified number of interconnected neurons. Patterns of data are supplied at the 

input layer, processed at the hidden layer using a system of weighted connections, before 

supplying an answer at the output layer as shown in Figure 1.  

 
Figure 1. Neuron connections and information flow. 

 
The arrows represent connections between neurons and also indicate the direction or flow of 

information. Each connection has a weight (integer number) that controls the signal between the 

two neurons. If the output from the network does not meet the desired output, performance can be 

improved by iteratively updating the weights until it reaches an acceptable accuracy or until no 
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further improvement to the learning can be made. Figure 2 shows two ANN architectures which 

exist Feed-forward and Feedback networks. 

 

 
 

Figure 2. Feed-forward and Feed-back network architectures [22]. 

 
In feed-forward networks information flow is unidirectional from input to output as shown in 

Figure 3.  Since feedback loops do not exist the output of any layer does not affect that same 

layer. Feed-forward networks are commonly used in pattern generation, recognition and 

classification. 

 
Figure 3. Feed-forward Neural Network Architecture. 

 
Feedback networks differ since feedback paths now exist allowing information to travel in both 

directions. Inputs to each neuron can now be modified meaning the state of the network is 

continuously changing and evolving, as shown in Figure 4. Feedback networks are commonly 

used for image captioning, speech recognition and motion detection. 

 
Figure 4. Feedback Neural Network Architecture 
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Both types of NN architectures share an ability to learn, but do so differently. Feed-forward 

networks require supervised learning, where the network is provided with the desired answer 

(output) to each given input and used to train the network to provide accurate future outputs. 

Feedback network instead utilise unsupervised learning where the desired output is not provided 

and instead the data is clustered based on relationships among the variables in the data. 

 

6. SUPPORT VECTOR MACHINE 
 
Support Vector Machine (SVM) is another a method of supervised machine learning which can 

be used an alternative approach to anomaly-based detection [10]. The SVM supervised machine 

learning algorithm is commonly used to solve complex classification problems, but supports both 

regression and classification tasks and can handle multiple continuous and categorical variables. 

In this method of machine learning the algorithm performs classification tasks by constructing 

hyperplanes in a n-dimensional space (where n is number of features you have) that separate 

cases of different class labels [23]. Classification is then performed by finding the hyper-plane 

that best differentiates the two classes. 

 
Figure 5. Feedback Neural Network Architecture 

 

In Figure 5, three hyper-planes exist (A, B and C). We see that hyper-plane A misclassifies the 

two classes, hyper-plane C offers a better accuracy of classification, and hyper-plane B offers the 

best classification of the two classes. 

 
Figure 6. Feedback Neural Network Architecture 
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In Figure 6, two hyper-planes exist (A and B). When both hyper-planes appear to offer good 

classification, SVM will consider the distance (margin) between the nearest data point (for both 

classes) and the hyper-plane to decided which plane offers the best classification [23]. SVM 

selects the hyper-plane which classifies the classes accurately prior to maximizing margin. The 

hyper-plane with the highest margin will then be selected. In Figure 6, hyper-plane B has the 

highest margin, however it has a classification error, therefore hyper-plane A will be selected. 

 

7. IMPLEMENTATION AND CONFIGURATION OF NETWORKS 
 
In this paper anomaly-based detection was chosen as a method of intrusion detection in wireless 

sensor networks. To test and compare detection rates, a Multi-Layer Perceptron Backpropagation 

Neural Network (BPN) was chosen from the architectures shown in Figure 2 and will be 

compared against a Support Vector Machine (SVM) Classifier. 

 

7.1. DATASET PRE-PROCESSING AND NORMALISATION 

 
In the absence of many credible public datasets with which to study network based anomaly 

intrusion detection many in the research community revert back to the popular KDDCUP’99 

dataset. The dataset however suffers from a number of problems highlighted by McHugh  [24] 

and was therefore discredited for use in this paper. An amended version (NSL-KDD) [25] was 

suggested to address some of these inherent problems and was subsequently chosen instead.  

Before the dataset could be offered to either network, data preprocessing and normalization was 

required to convert the raw input data into an appropriate format which the machine learning 

algorithms could use for subsequent analysis.  The creators of the NSL-KDD dataset had 

preprocessed the data in part by filling in missing values and removing redundant or duplicate 

records, therefore the final preprocessing step was to select the most relevant features.  The 

workflow proposed by Can et al. [12] was followed and 41 features reduced to 22 as follows:  

` 

(1,2,34,5,6,10,12,14,17,22,23,24,27,29,30,32,33,35,36,37,41) 

 

Three of the chosen features contained strings: Protocol (2) Service (3) and Flag (4) and therefore 

required to be converted from non-numeric qualitative data to numeric quantitative data to bring 

all variables into proportion with one another [26]. 

 

Finally, normalisation was required to scale all attributes into range [0,1] to achieve unity- based 

normalisation. This could be achieved with equation [13]: 

 

 
 

Using this method of min-max normalisation a value of zero can cause problems for some models 

since the highest and lowest values could remain the same [0,1] therefore Can et al used an 

arbitrary range between 0.1 to 0.9 and amended the equation as follows [12]: 

 

 
 

where  is each data point, is the minimum data point value, is the maximum data 

point value, and is the data normalized between 0 and 1.  It is also possible to use the 

following equation to achieve a more centralised set of normalised data, with zero being the 

central point.  

 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.4, July 2017 

52 

 
 

7.2. NETWORK CONFIGURATION AND SIMULATIONS 
 
In this paper, NSL-KDDTrain+_20Percent dataset is selected to train and test the BPN. The 

MATLAB nprtool was used with the parameters shown in Table 1. The dataset contains four 

attack types (DOS, R2L, Probe, U2R) but for the purpose of this study, this was reduced to focus 

on only DOS attacks, of which six attack types were found (Smurf, Neptune, Back, Teardrop, 

Pod, Land). 

 

The NSL-KDDTrain+_20Percent dataset was also offered to the SVM classifier using MATLAB 

with the parameters shown in Table 2. The same six attack types used in the previous setup were 

again used to test intrusion detection rates (Smurf, Neptune, Back, Teardrop, Pod, Land). 

 
Table 1. Feed-forward Backpropagation Neural Network Configuration Parameters. 

 

Feed-forward Back Propagation Neural Network 

Network Simulator for Dataset MATLab nprtool 

Implemented Attacks Smurf, Neptune, Back, Teardrop, 

Pod, Land 

Dataset Samples 25192 

Number of Input and Output 

Layers 

22/1 

Network Type Feed-Forward Backpropagation 

Training Function TRAINLM 

Adaption Learning Function LEARNGDM 

Performance Function MSE 

Number of Layers 2 

Number of Neurons 20 

Transfer Function LOGSIG 

Epochs 100 

Min_Grad 1e-010 

 
Table 2. Support Vector Machine Configuration Parameters. 

 

Support Vector Machine Classifier 

Network Simulator for Dataset MATLab Classification 

Implemented Attacks Smurf, Neptune, Back, Teardrop, 

Pod, Land 

Dataset Samples 25192 

Network Type Support Vector Machine 

Preset Fine Gaussian SVM 

Kernel Function Gaussian 

Kernel Scale 1.2 

Box Constraint Level 1 

Multiclass Method Ove-vs-Ove 

Standardise Data True 
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8. RESULTS AND DISCUSSION 
 

To evaluate the two techniques compared in this study, we collected statistics on the True 

Positive (TPR) and False Positive rates (FPR) for all included attacks. The TPR can be calculated 

using   where True Positive (TP) denotes the number of attacks identified and 

False Negative (FN) denotes the number of attacks which were not detected.  

 

The FPR can be calculated using where False Positive (FP) denotes the number 

of attacks detected that were actually normal traffic and True Negative (TN) denotes when attacks 

do not exist and are therefore not detected.  

 

Test results for the BPN are shown in Table 3 and the confusion matrix in Figure 7. It can be 

clearly seen that the network returned good TPR for most attacks, all of which were above the 

desired 90% TPR (highlighted green). Neptune attacks for example had a TPR of 99.3%, since 

8240 samples were correctly detected, whilst 55 samples were incorrectly classified. Interestingly 

as the number of attacks samples decreased, it resulted in not only a decrease in the TPR but also 

an increase in the FPR. This is evident for the back and teardrop attacks which both had relatively 

small samples and returned FPRs of 7.8% and 2.8% respectively. Attacks with very few samples 

(pod and land) proved difficult to detect, with this method of anomaly-based intrusion detection. 

The results obtained were found to be comparable with those found in related research as 

described in [12] which found similar detection rates and relationship between low sample attacks 

and detection rates. 

 
Table 3. Back Propagation Neural Network Results. 

 

 
 

 
Figure 7. Feedback Neural Network confusion matrix. 
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Test results for the support vector machine are shown in Table 4 and the confusion matrix in 

Figure 8. It can be clearly seen that overall the network performed comparatively with the BPN 

with good TPR for most attacks (highlighted green). Neptune attacks by comparison had a TPR 

of 99.2%, since 8223 samples were correctly detected, whilst 38 samples were incorrectly 

classified. Once again, though the data showed that the impact of having fewer attack samples 

was to decrease the TPR, it was however able to detect very low samples such as pod and land 

with TPR of 44.7% and 100% respectively. Interestingly it was also noted that overall the FPR 

was much lower than that of BPN and all remained below the desired 1% for attacks, suggesting 

less samples were misclassified. The results obtained were found to be comparable with those 

found in related research as described in [11] which found an SVM classifier to offer the best 

performance (high accuracy) in comparison to other data mining algorithms, when using the same 

NSL-KDD dataset.  

 
Table 4. Support Vector Machine results. 

 

 Support Vector Machine (SVM) Results 

Attack Sample True Positive Rate 

Detection Rate 

False Positive Rate 

  TP FN TPR FP TN FPR 

Normal 13449 13376 73 99.4% 104 13376 0.99% 

Neptune 8282 8223 59 99.2% 38 45 0.84% 

Smurf 529 519 10 98.1% 2  5 0.4% 

Back 196 165 31 84.2% 0 31 0% 

Teardrop 188 181 7 96.3% 0 7 0% 

Pod 38 17 21 44.7% 3 16 0.19% 

Land 1 1 0 100% 29 0 0% 

 

 

 
 

Figure 8. Support Vector Machine confusion matrix. 
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9. CONCLUSIONS 
 

In this study, we analysed computational intelligence techniques for intrusion detection in WSNs. 

We reviewed major DoS attacks faced by WSNs and methods of intrusion detection. Finally, we 

carried out MatLab simulations to observe and evaluate the performance of an artificial neural 

network and support vector machine in detecting WSN intrusions. Our experimental studies 

demonstrated the promise of both computational intelligence techniques in effectively detecting 

intrusions. Both techniques returned good and comparable FPR results, however the support 

vector machine also further demonstrated its suitability for anomaly detection by handling low 

sample sizes better, while still maintaining an FPR rate under the 1% threshold. This would 

suggest for the dataset used (NSL-KDD) that the support vector machine proved to be the better 

technique for anomaly detection. 

 

The next step in our research will be to investigate threats faced by IP-based WSNs and develop a 

novel computational intelligence technique capable of detecting and predicting botnet DDOS 

activity in a physical WSN deployment. 
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