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ABSTRACT 

 
"Kurtosis" has long been considered an appropriate measure to quantify the extent of fat-tailedness of the 

degree distribution of a complex real-world network. However, the Kurtosis values for more than one real-

world network have not been studied in conjunction with other statistical measures that also capture the 

extent of variation in node degree. Also, the Kurtosis values of the distributions of other commonly 

centrality metrics for real-world networks have not been analyzed. In this paper, we determine the Kurtosis 

values for a suite of 48 real-world networks along with measures such as SPR(K), Max(K)-Min(K), 

Max(K)-Avg(K), SD(K)/Avg(K), wherein SPR(K), Max(K), Min(K), Avg(K) and SD(K) represent the 

spectral radius ratio for node degree, maximum node degree, minimum node degree, average and standard 

deviation of node degree respectively. Contrary to the conceived notion in the literature, we observe that 

real-world networks whose degree distribution is Poisson in nature (characterized by lower values of 

SPR(K), Max(K)-Min(K), Max(K)-Avg(K), SD(K)/Avg(K)) could have Kurtosis values that are larger than 

that of real-world networks whose degree distribution is scale-free in nature (characterized by larger 

values of SPR(K), Max(K)-Min(K), Max(K)-Avg(K), SD(K)/Avg(K)). We also observe the Kurtosis values of 

the betweenness centrality distributions of the real-world networks to be more likely the largest among the 

Kurtosis values with respect to the commonly studied centrality metrics. 

 

KEYWORDS 

 
Fat-tailedness, Degree Distribution, Kurtosis, Real-World Networks, Centrality Metrics, Concordance  

 

1. INTRODUCTION 

 

Complex network analysis is about analyzing complex real-world networks from a graph 

theoretic perspective [1]. Several measures from Statistics are also used to infer the distribution of 

the node-level metrics [2]. One such metric and distribution that is of interest in this paper is the 

degree centrality metric and the fat-tailedness of its distribution. The degree of a vertex is the 

number of neighbours for the vertex. A degree distribution is considered to be fat-tailed if the 

maximum degree of a vertex is much different from the minimum or the average degree of the 

vertex (correspondingly, the standard deviation of node degree is also comparable or even larger 

than that of the average node degree) [3]. Poisson degree distributions (characteristic of random 

networks [4]) are not fat-tailed; whereas, power-law degree distributions (characteristic of scale-

free networks [5]) are fat-tailed. Real-world networks typically exhibit power-law degree 

distribution [3]; however, the extent of fat-tailedness of the distribution differs among the 

networks. 

 

Until now, the Kurtosis measure has been perceived to be the most appropriate measure that 

could be used to quantify the extent of fat-tailedness of the degree distribution of the vertices in a 

real-world network [2]. But, there is no formal work that determined the Kurtosis of a suite of 

real-world networks of diverse degree distributions and analyzed whether the Kurtosis of a 
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network with smaller variation in node degree (i.e., less fat-tailed) is more likely to be larger than 

the Kurtosis of a network with a relatively larger variation in node degree (i.e., more fat-tailed).  

In this paper, we measure the Kurtosis of the degree distributions for a suite of 48 real-world 

networks in conjunction with several other relevant metrics that also capture the extent of 

variation in node degree. Let SPR(K), Max(K), Min(K), Avg(K) and SD(K) represent the spectral 

radius ratio for node degree, maximum node degree, minimum node degree, average and standard 

deviation of node degree respectively. The metrics that are explored in this research along with 

Kurtosis for node degree are SPR(K), Max(K)-Min(K), Max(K)-Avg(K) and SD(K)/Avg(K). The 

spectral radius ratio for node degree (SPR(K)) [6] is defined as the ratio of the principal 

eigenvalue of the adjacency matrix of the network graph to that of the average node degree. 

According to literature [7], Min(K) ≤ Avg(K) ≤ Principal Eigenvalue(K) ≤ Max(K). The smaller 

the difference between Max(K) and Min(K) for a network, the lower the value for SPR(K) = 

Principal Eigenvalue(K) / Avg(K). SPR(K) values start from 1.0 and this is the value expected for 

a truly random network. 

 

We seek to explore whether or not a real-world network A with larger Kurtosis for node degree 

than a real-world network B also incurs larger values for one of these above metrics that also 

capture the extent of variation in node degree. We measure the Kendall's concordance-based 

correlation coefficient [8] for Kurtosis with each of the above four metrics for the suite of 48 real-

world networks. We say two networks A and B are concordant with respect to any two metrics 

(say, X and Y) if X(A) < X(B) and Y(A) < Y(B) or X(A) > X(B) and Y(A) > Y(B) or X(A) = 

X(B) and Y(A) = Y(B). Surprisingly, we observe Kendall's concordance-based correlation 

coefficient for Kurtosis with each of SPR(K), Max(K)-Min(K), Max(K)-Avg(K) and 

SD(K)/Avg(K) to be low: 0.40, 0.26, 0.34 and 0.50 respectively; thus, seriously raising the 

question of using Kurtosis to compare the extent of fat-tailedness of the degree distribution of 

real-world networks when it has lower correlation with metrics that also capture the extent of 

variation in node degree. 

 

There has been no analysis done on the Kurtosis of the distributions of the other commonly 

studied centrality metrics (such as eigenvector centrality, EVC; closeness centrality, CLC; 

betweenness centrality, BWC and the recently proposed local clustering coefficient complement-

based degree centrality, LCC'DC). It is not clear which of these centrality metrics typically have 

the largest Kurtosis values. In the second half of the paper, we compute the Kurtosis values for 

the distributions of the other four commonly studied centrality metrics (as listed earlier: EVC, 

CLC, BWC and LCC'DC). We observe the Kurtosis for the BWC metric to be typically the 

largest among the centrality metrics, including degree centrality (DEG), for more than 75% of the 

real-world networks; on the other hand, the Kurtosis for the CLC metrics typically appears to be 

the smallest among the centrality metrics for slightly larger than 50% of the networks. 

 

The rest of the paper is organized as follows: Section 2 illustrates the computation of Kurtosis for 

a real-world network with an example graph. Section 3 illustrates the computation of Kendall's 

concordance-based correlation coefficient (Kurtosis vs. Spectral radius ratio for node degree) for 

a subset of 8 real-world networks from the suite of 48 real-world networks studied in this 

research. Section 4 first provides a brief overview of the 48 real-world networks and then presents 

the values for Kurtosis and the other metrics (stated above) that capture the extent of variation in 

node degree. Section 4 also discusses the correlation for Kurtosis with each of these metrics. 

Section 5 presents an analysis of the Kurtosis values obtained for the commonly studied centrality 

metrics and identifies the centrality metric whose distribution is the fat-tailed for most of the real-

world networks. Section 6 discusses related work and Section 7 concludes the paper. Throughout 

the paper, the terms 'node' and 'vertex', 'link' and 'edge', 'network' and 'graph' are used 

interchangeably. They mean the same. 
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2. KURTOSIS: FORMULATION AND ILLUSTRATION 

 

Kurtosis has been traditionally used to quantify the extent of fat-tailedness of the distribution of a 

random variable. In the context of complex network analysis, Kurtosis has been used to quantify 

the extent of fat-tailedness of the degree distribution of the vertices in a real-world network. 

However, there is no formal work that has evaluated its appropriateness for comparing two real-

world networks on the basis of the fat-tailedness of the degree distribution of the vertices in 

conjunction with other statistical and spectral metrics that also capture the extent of variation in 

node degree. In this section, we first present the formulation to compute the Kurtosis of the 

degree distribution of the vertices and then illustrate the computation with an example graph. 

 

 
 

Figure 1. Example Illustration to Compute the Average, Standard Deviation and Kurtosis of the Degree 

Distribution of the Vertices in a Graph 

 

Let K be the set of all degree values for the vertices in a graph. Let P(k) indicate the probability of 

finding a vertex with degree k, where k ∈K. The average, standard deviation and kurtosis for 

node degree are computed as follows: 
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Figure 1 presents an illustration of the computation of the Avg(K), SD(K) and Kurtosis(K) for 

node degree for an example undirected graph of 10 vertices (whose list of edges is given). We 

first compute the node degree (the number of neighbours for a vertex) and determine the number 

of vertices that are of a particular degree. The probability of finding a vertex with a certain degree 

is simply the fraction of the total number of vertices with the particular degree. Once we have the 

k vs. P(k) values for a graph, we can compute the above three statistical metrics using 

formulations (1), (2) and (3). 

 

3. KENDALL'S CONCORDANCE-BASED CORRELATION 

 

The Kendall's concordance-based correlation measure could be used to evaluate the relative 

ranking of two networks with respect to any two network-level metrics; in our case, Kurtosis vs. 

any statistical or spectral metric. In this section, we illustrate the computation of Kendall's 

concordance-based correlation coefficient for a set of 8 real-world networks (taken from the suite 

of 48 real-world networks analyzed in Section 4) with respect to Kurtosis and Spectral radius 

ratio for node degree. Figure 2 illustrates the calculations. We count the number of concordat 

pairs of networks and the number of discordant pairs of networks and calculate  Kendall's 

correlation coefficient as the ratio of the sum of the number of concordant pairs and discordant 

pairs to that of the difference of the number of concordant pairs and discordant pairs. 

 

 
Figure 2. Example Illustration to Compute Kendall's Concordance-based Correlation Coefficient between 

Kurtosis and Spectral Radius Ratio for Node Degree for a Subset of the Real-World Networks 

 

A pair of networks X and Y are said to be concordant with respect to Kurtosis(K) and SPR(K) if 

either one of the following is true:  
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(i) KurtosisX(K) < KurtosisY(K) and SPRX(K) < SPRY(K) or  

(ii) KurtosisX(K) > KurtosisY(K) and SPRX(K) > SPRY(K) or 

(iii) KurtosisX(K) = KurtosisY(K) and SPRX(K) = SPRY(K) 

A pair of networks X and Y are said to be discordant with respect to Kurtosis(K) and SPR(K) if 

either one of the following are true: 

 

(i) KurtosisX(K) > KurtosisY(K) and SPRX(K) ≤ SPRY(K) or 

(ii) KurtosisX(K) < KurtosisY(K) and SPRX(K) ≤ SPRY(K) 

 

For the set of 8 real-world networks considered in Figure 2 and their Kurtosis(K) and SPR(K) 

values, we observe 21 concordant pairs of networks and 7 discordant pairs of networks; this leads 

to Kendall's concordance-based correlation coefficient of (21-7) / (21+7) = 0.50. 

 

4. REAL-WORLD NETWORKS AND THEIR CORRELATION ANALYSIS 
 

In this section, we first introduce the 48 real-world networks analyzed in this paper. Table 1 lists 

the three character code acronym, name and the network type as well as the number of nodes and 

edges. The networks considered cover a broad range of categories (as listed below along with the 

number of networks in each category): Acquaintance network (12), Friendship network (9), Co-

appearance network (6), Employment network (4), Citation network (3), Literature network (3), 

Collaboration network (2), Political network (2), Biological network (2), Game network (2), 

Geographical Network, Transportation network and Trade network (1 each). A brief description 

of each category of networks is as follows: An acquaintance network is a kind of social network 

in which the participant nodes slightly (not closely) know each other, as observed typically during 

an observation period. A friendship network is a kind of social network in which the participant 

nodes closely know each other and the relationship is not captured over an observation period. A 

co-appearance network is a network typically extracted from novels/books in such a way that two 

characters or words (modelled as nodes) are connected if they appear alongside each other. An 

employment network is a network in which the interaction/relationship between people is 

primarily due to their employment requirements and not due to any personal liking. A citation 

network is a network in which two papers (nodes) are connected if one paper cites the other paper 

as a reference. A collaboration network is a network of researchers/authors who are listed as co-

authors in at least one publication. A biological network is a network that models the interactions 

between genes, proteins, animals of a species, etc. A political network is a network of entities 

(typically politicians) involved in politics. A game network is a network of teams or players 

playing for different teams and their associations. A literature network is a network of 

books/papers/terminologies/authors (other than collaboration, citation or co-authorship) involved 

in a particular area of literature. A transportation network is a network of entities (like airports 

and their flight connections) involved in public transportation. A trade network is a network of 

countries/people involved in a certain trade. The reader is referred to [9] for a more detailed 

description of the individual real-world networks. 

 
Table 1. Real-World Networks used in the Correlation Analysis 

 

# Net.  Net. Description Ref. Network Type #nodes #edges 

1 

ADJ 

Word Adjacency Network [10] Co-appearance 

Net. 112 425 

2 

AKN 

Anna Karnenina Network  [11] Co-appearance 

Net. 138 493 

3 JBN Jazz Band Network [12] Employment Net. 198 2742 

4 CEN C. Elegans Neural [13] Biological Net. 297 2148 
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Network 

5 CLN Centrality Literature Net. [14] Citation Net. 129 613 

6 

CGD 

Citation Graph Drawing 

Net 

[15] Citation Net. 

311 640 

7 

CFN 

Copperfield Network [11] Co-appearance 

Net. 87 406 

8 

DON 

Dolphin Network [16] Acquaintance 

Net. 62 159 

9 

DRN 

Drug Network [17] Acquaintance 

Net. 298 337 

10 

DLN 

Dutch Literature 1976 

Net. 

[18] Literature Net. 

35 80 

11 

ERD 

Erdos Collaboration Net. [19] Collaboration 

Net. 472 1314 

12 EUR Euro Road Network [51] Geographical Net. 1174 1417 

13 

FMH 

Faux Mesa High School 

Net 

[20] Friendship Net. 

205 404 

14 

FHT 

Friendship in Hi-Tech 

Firm 

[21] Friendship Net. 

36 147 

15 FTC Flying Teams Cade Net. [22] Employment Net. 48 170 

16 FON US Football Network [23] Game Net. 115 613 

17 

CDF 

College Dorm Fraternity 

Net 

[24] Acquaintance 

Net. 58 967 

18 GD96 Graph Drawing 1996 Net [19] Citation Net. 180 229 

19 

MUN 

Marvel Universe Network [25] Co-appearance 

Net. 165 300 

20 GLN Graph Glossary Network [19] Literature Net. 72 236 

21 

HTN 

Hypertext 2009 Network [26] Acquaintance 

Net. 113 2163 

22 

HCN 

Huckleberry Coappear. 

Net. 

[11] Co-appearance 

Net. 74 301 

23 

ISP 

Infectious Socio-Patterns 

Net 

[26] Acquaintance 

Net. 309 1924 

24 

KCN 

Karate Club Network [27] Acquaintance 

Net. 34 78 

25 

KFP 

Korea Family Planning 

Net. 

[28] Acquaintance 

Net. 39 84 

26 

LMN 

Les Miserables Network [11] Co-appearance 

Net. 77 254 

27 MDN Macaque Dominance Net. [29] Biological Net. 62 1167 

28 

MTB 

Madrid Train Bombing 

Net. 

[30] Acquaintance 

Net. 70 486 

29 

MCE 

Manufact. Comp. Empl. 

Net. 

[31] Employment Net. 

77 2326 

30 

MSJ 

Soc. Net. Journal Co-

authors 

[32] Co-author Net. 

475 625 

31 AFB Author Facebook Network - Friendship Net. 187 939 

32 

MPN 

Mexican Political Elite 

Net. 

[33] Political Net. 

35 117 

33 MMN ModMath Network [19] Friendship Net. 38 61 
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34 

PBN 

US Politics Books 

Network 

[34] Literature Net. 

105 441 

35 

PSN 

Primary School Contact 

Net. 

[35] Acquaintance 

Net. 238 5539 

36 

PFN 

Prison Friendship 

Network 

[36] Friendship Net. 

67 182 

37 

SJN 

San Juan Sur Family Net. [37] Acquaintance 

Net. 75 155 

38 

SDI 

Scotland Corp. Interlock 

Net 

[38] Employment Net. 

244 358 

39 SPR Senator Press Release Net. [39] Political Net. 92 477 

40 

SWC 

Soccer World Cup 1998 

Net 

[19] Game Net. 

35 118 

41 

SSM 

Sawmill Strike Comm. 

Net. 

[40] Acquaintance 

Net. 24 38 

42 

TEN 

Taro Exchange Network [41] Acquaintance 

Net. 22 39 

43 

TWF 

Teenage Female Friend 

Net. 

[42] Friendship Net. 

50 122 

44 

UKF 

UK Faculty Friendship 

Net. 

[43] Friendship Net. 

81 577 

45 

APN 

US Airports 1997 

Network 

[19] Transportation 

Net. 332 2126 

46 

RHF 

Residence Hall Friend 

Net. 

[45] Friendship Net. 

43 336 

47 

WSB 

Windsurfers Beach 

Network 

[46] Friendship Net. 

80 875 

48 

WTN 

World Trade Metal 

Network 

[47] Trade Net. 

112 425 

 

Table 2 lists the values for SPR(K), Avg(K), SD(K), Min(K), Max(K) and Kurtosis(K) obtained 

for these 48 real-world networks. Figure 3 plots the distribution of Kurtosis(K) vs. each of the 

following: SPR(K), SD(K)/Avg(K), Max(K) - Min(K) and Max(K) - Avg(K). We also mention the 

values for Kendall's correlation coefficient obtained for Kurtosis(K) vs. each of these metrics. We 

observe all the four correlation coefficient values to be less than or equal to 0.50; the largest being 

0.50 for Kurtosis vs. SD(K)/Avg(K) ratio and the lowest being 0.26 for Kurtosis(K) vs. Max(K) - 

Min(K), an appreciable measure of the extent of variation in node degree and fat-tailedness nature 

of the degree distribution. 

 

 
Table 2. SPR, Avg, SD, Min, Max and Kurtosis Values for the Degree Distribution of the Real-World 

Networks 

 

# Net.  SPR(K) Avg(K) SD(K) Min(K) Max(K) Kurtosis 

(K) 

1 ADJ 1.73 7.59 6.85 1 49 15.41 

2 AKN 2.48 7.14 10.43 1 71 16.97 

3 JBN 1.45 27.70 17.41 1 100 4.54 

4 CEN 1.68 14.46 12.94 1 134 30.18 

5 CLN 2.03 9.50 10.35 0 66 10.30 

6 CGD 2.24 4.12 3.98 0 20 4.27 
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7 CFN 1.83 9.33 10.49 1 82 27.46 

8 DON 1.40 5.13 2.93 1 12 2.25 

9 DRN 2.76 1.91 2.06 0 15 10.12 

10 DLN 1.49 4.57 2.96 1 12 2.52 

11 ERD 3.00 5.57 6.69 0 41 10.11 

12 EUR 1.66 2.41 1.19 1 10 7.03 

13 FMH 2.81 1.97 2.12 0 13 7.29 

14 FHT 1.57 5.06 3.74 0 16 3.41 

15 FTC 1.21 7.08 2.97 1 16 3.82 

16 FON 1.01 10.66 0.88 7 12 5.89 

17 CDF 1.11 33.34 11.43 6 52 2.87 

18 GD96 2.38 2.53 3.82 1 27 28.07 

19 MUN 2.54 3.64 3.76 1 26 12.92 

20 GLN 2.01 3.28 3.19 0 18 10.96 

21 HTN 1.21 38.28 18.30 1 97 3.21 

22 HCN 1.66 8.14 7.34 1 53 19.77 

23 ISP 1.69 12.45 8.33 1 47 4.14 

24 KCN 1.47 4.59 3.82 1 17 6.30 

25 KFP 1.70 4.31 3.11 0 13 3.99 

26 LMN 1.82 6.60 6.00 1 36 8.89 

27 MDN 1.04 37.65 7.40 17 55 3.24 

28 MTB 1.95 6.94 6.27 0 29 4.91 

29 MCE 1.12 34.91 12.53 18 76 5.64 

30 MSJ 3.48 2.63 2.15 1 15 10.25 

31 AFB 2.29 10.04 8.16 0 33 3.11 

32 MPN 1.23 6.69 3.27 2 17 4.18 

33 MMN 1.59 3.21 2.26 0 11 4.81 

34 PBN 1.42 8.40 5.45 2 25 4.35 

35 PSN 1.22 46.55 19.85 8 88 2.00 

36 PFN 1.32 4.24 2.07 1 11 3.83 

37 SJN 1.29 4.13 2.02 1 12 6.34 

38 SDI 1.94 2.93 2.04 0 13 7.53 

39 SPR 1.57 10.37 7.55 1 41 4.91 

40 SWC 1.45 6.74 4.71 1 19 4.02 

41 SSM 1.22 3.17 1.34 1 7 4.20 

42 TEN 1.06 3.55 0.94 3 6 3.24 

43 TWF 1.49 3.08 1.55 0 7 2.75 

44 UKF 1.35 14.25 8.11 2 41 4.48 

45 APN 3.22 12.81 20.10 1 139 12.77 

46 RHF 1.27 16.95 7.76 2 56 6.42 

47 WSB 1.16 15.63 6.53 6 31 2.26 

48 WTN 1.38 21.88 16.33 4 77 5.54 
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                        Kurtosis(K) vs. SPR(K)                                            Kurtosis(K) vs. SD(K)/Avg(K) 

      Kendall's Correlation Coefficient = 0.40                    Kendall's Correlation Coefficient = 0.50 

 

      
                  Kurtosis(K) vs. Max(K) - Min(K)                                   Kurtosis(K) vs. Max(K) - 

Avg(K) 

    Kendall's Correlation Coefficient = 0.26                        Kendall's Correlation Coefficient = 0.35 

 

Figure 3. Distribution of the Kurtosis(K) Values vs. {SPR(K), SD(K)/Avg(K), Max(K)-Min(K) 

and Max(K)-Avg(K)} Values and the Kendall's Correlation Coefficient for the 48 Real-World 

Networks 

 

5. KURTOSIS ANALYSIS FOR CENTRALITY METRICS 

 

In this section, we present a comparison of the Kurtosis values for five centrality metrics 

(including degree centrality) that are widely applicable for complex network analysis. The 

centrality metrics considered (in addition to degree centrality, represented as DEG in this section) 

are: eigenvector centrality (EVC), closeness centrality (CLC), betweenness centrality (BWC) and 

the local clustering coefficient complement-based degree centrality (LCC'DC). The EVC [52] of a 

vertex is a measure of the degree of the vertex as well as the degree of its neighbors. The CLC 

[53] of a vertex is a measure of the sum of the distances (typically the number of hops on the 

shortest path) of the vertex to the rest of the vertices in the network. The BWC [54] of a vertex is 

a measure of the fraction of the shortest paths that the vertex lies on between any two vertices in 

the network. While DEG and EVC are degree-based centrality metrics, CLC and BWC are 

shortest path-based metrics. The LCC'DC metric [55] is a computationally-light alternative to the 

computationally-heavy BWC metric. The LCC'DC (a hybrid of both the degree and shortest path-

based metrics) of a vertex is computed as the product of the degree centrality of the vertex and the 

probability that any two neighbors of the vertex go through the vertex for shortest path 

communication (the latter is computed as the ratio of the number of pairs of neighbors of the 

vertex that are not directly connected to each other to that of the maximum number of pairs of 
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neighbors of the vertex that could be directly connected to each other). Table 3 presents the 

Kurtosis values for the distributions of the five centrality metrics (DEG, EVC, CLC, BWC and 

LCC'DC) obtained for the 48 real-world networks. 

 
Table 3. Kurtosis Values of the Centrality Metrics for Real-World Networks 

 

# Net.  DEG EVC CLC BWC LCC'DC Max. Min. Max.-

Min. 

1 ADJ 15.41 10.18 3.69 35.47 16.52 BWC CLC 31.77 

2 AKN 16.97 7.95 5.63 41.22 25.60 BWC CLC 35.59 

3 JBN 4.54 3.09 4.53 60.71 9.84 BWC EVC 57.63 

4 CEN 30.18 9.74 3.96 216.69 46.93 BWC CLC 212.73 

5 CLN 10.30 5.28 9.82 34.01 18.09 BWC EVC 28.72 

6 CGD 4.27 8.47 3.27 15.54 5.05 BWC CLC 12.28 

7 CFN 27.46 7.84 32.21 81.72 48.70 BWC EVC 73.88 

8 DON 2.25 2.60 2.46 7.52 2.49 BWC DEG 5.27 

9 DRN 10.12 27.53 1.38 24.77 8.89 BWC CLC 26.15 

10 DLN 2.52 2.16 2.31 2.81 2.46 BWC EVC 0.65 

11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 

12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCC'DC 53.06 

13 FMH 7.29 21.62 1.12 16.35 7.32 EVC CLC 20.50 

14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCC'DC 7.56 

15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 

16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 

17 CDF 2.87 3.20 2.45 3.41 4.41 LCC'DC CLC 1.97 

18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 

19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 

20 GLN 10.96 7.23 4.20 15.22 8.79 BWC CLC 11.02 

21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 

22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 52.77 

23 ISP 4.14 4.84 2.78 31.93 5.20 BWC CLC 29.14 

24 KCN 6.30 3.24 2.20 11.31 6.35 BWC CLC 9.11 

25 KFP 3.99 2.77 7.86 2.95 3.24 CLC EVC 5.09 

26 LMN 8.89 3.04 4.51 43.90 13.36 BWC EVC 40.86 

27 MDN 3.24 3.21 3.23 3.74 3.14 BWC LCC'DC 0.60 

28 MTB 4.91 3.20 9.76 8.06 3.19 CLC LCC'DC 6.57 

29 MCE 5.64 3.03 9.31 14.61 4.27 BWC EVC 11.58 

30 MSJ 10.25 41.63 2.27 45.57 6.35 BWC CLC 43.30 

31 AFB 3.11 5.24 1.76 44.65 3.60 BWC CLC 42.89 

32 MPN 4.18 3.26 3.52 9.38 4.91 BWC EVC 6.12 

33 MMN 4.81 4.24 3.02 7.15 3.80 BWC CLC 4.14 

34 PBN 4.35 5.28 2.45 5.31 3.83 BWC CLC 2.86 

35 PSN 2.00 2.01 2.21 4.12 2.37 BWC DEG 2.12 

36 PFN 3.83 4.22 2.85 6.59 2.86 BWC CLC 3.75 

37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 

38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 

39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 

40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 

41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19 

42 TEN 3.24 2.55 2.17 2.88 1.96 DEG LCC'DC 1.28 
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43 TWF 2.75 4.38 3.81 3.23 2.02 EVC LCC'DC 2.37 

44 UKF 4.48 2.81 3.52 17.34 6.93 BWC EVC 14.52 

45 APN 12.77 5.92 3.68 47.41 33.46 BWC CLC 43.73 

46 RHF 6.42 5.46 3.28 21.35 5.77 BWC CLC 18.07 

47 WSB 2.26 1.98 2.55 7.12 4.42 BWC EVC 5.15 

48 WTN 5.54 4.34 8.30 14.80 7.76 BWC EVC 10.46 

 

From Table 3, it is evident that the Kurtosis values for the BWC metric are the largest among the 

five centrality metrics for 38 of the 48 (i.e., more than 75%) of the real-world networks. The CLC 

metric incurs the smallest of the Kurtosis values for 23 of the 48 (i.e., about 48%) real-world 

networks. While one of the four centrality metrics (DEG, EVC, CLC and LCC'DC) exhibited the 

smallest of the Kurtosis values for at least one real-world network, the BWC metric did not incur 

the smallest of the Kurtosis values for any of the real-world networks. Hence, the distribution of 

the BWC metric for real-world networks could be confidently considered the most fat-tailed of 

the centrality metrics. 

 

In Figure 4, we show the distribution of the Kurtosis(X)/Kurtosis(DEG) where X ∈{EVC, CLC, 

BWC and LCC'DC} for the real-world networks. We observe the Kurtosis(BWC)/Kurtosis(DEG) 

ratios to be above 1 for 43 of the 48 (close to 90%)  real-world networks, with a median of 2.30. 

On the other hand, the Kurtosis(EVC)/Kurtosis(DEG) and Kurtosis(CLC)/Kurtosis(DEG) ratios 

are below 1 for 32 and 37 of the 48 real-world networks (with medians of 0.82 and 0.75) 

respectively. In earlier works [55-56], the BWC and DEG metrics have been observed to exhibit a 

very strong correlation for several real-world networks. However, the above observations 

regarding the Kurtosis(DEG) and Kurtosis(BWC) values indicate that real-world networks are 

expected to be relatively more fat-tailed with respect to BWC compared to that of DEG. On the 

other hand, the lower values (lower than 1.0) for the Kurtosis(CLC)/Kurtosis(DEG) and 

Kurtosis(EVC)/Kurtosis(DEG) ratios for at least 2/3rds of the real-world networks indicate that 

real-world networks are likely to be less fat-tailed with respect to the EVC and CLC metrics vis-

a-vis DEG. The median of the Kurtosis(DEG)/Kurtosis(LCC'DC) ratios is 1.00, indicating that 

the local clustering coefficient component of the LCC'DC formulation does not contribute to the 

fat-tailedness of the LCC'DC distribution. These are interesting observations that have been 

hitherto not reported in the literature. 

 

 

     
                Kurtosis(DEG) vs. Kurtosis(EVC)                        Kurtosis(DEG) vs. Kurtosis(CLC)  
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                Kurtosis(DEG) vs. Kurtosis(BWC)                 Kurtosis(DEG) vs. Kurtosis(LCC'DC)  

 
Figure 4. Comparison of the Kurtosis Values for the Centrality Metrics 

 

6. RELATED WORK 

 

In the context of complex network analysis, Kurtosis has been typically used to capture the extent 

of fat-tailedness of degree distribution of the vertices and make an initial educated guess on the 

type (i.e., Poisson random networks or Power-law scale-free networks) of degree distribution for 

an underlying network graph [3]. A real-world network with Kurtosis for the degree distribution 

greater than 3 is typically considered to be fat-tailed [48]. Kurtosis has also been used to analyze 

the possibility of an existence of outlier(s) in a data set [49]. In the context of complex network 

analysis, a larger Kurtosis for the degree distribution of a network could imply that the network 

has one or more nodes with degree(s) that is extremely different from the rest of the nodes in the 

network [3]. But, the existence of few such outlier nodes is not sufficient to classify a network as 

a fat-tailed network. We would need the degree distribution to exhibit non-zero probability values 

for degree values spanning a broader range and exhibit a decreasing trend as the degree values 

approach the extreme value.  

 

Instead of Kurtosis, several other approaches have also been attempted in the literature to capture 

the extent of variation in node degree (inclusive of fat-tailedness). For example, graph traversal 

algorithms like Breadth First Search (BFS) [50] have been used in the literature to analyze the fat-

tailed nature of real-world networks. The BFS algorithm could be used to determine the diameter 

of a network. The idea proposed in [50] is to calculate the diameter (D0) of the unperturbed 

network (with all nodes in the network) and calculate the diameter (Di) of the network due to the 

removal of node i. The ∆i = Di -D0/D0 value for each node is then calculated. A distribution of 

probability(∆i) vs. the ∆i values (for ∆i > 0) is plotted and if it appears to mimic a power-law 

distribution, then the network is considered to be fat-free.  

 

7. CONCLUSIONS 

 

The high-level contribution of this paper is to illustrate that Kurtosis measure may not be 

appropriate to compare any two real-world networks with respect to the extent of fat-tailedness. 

The Kurtosis of a network with a lower variation in node degree (less fat-tailed) could be larger 

than the Kurtosis of a network with a relatively larger variation in node degree (relatively more 

fat-tailed). We measure the Kendall's concordance-based correlation coefficient for Kurtosis with 

four different statistical/spectral measures that effectively capture the variation in node degree. 

We observe the correlation coefficients to be no more than 0.50. From the analysis done in 

Section 5, we could confidently conclude that the distribution of the BWC metric is more likely to 

be most fat-tailed among all the centrality distributions for real-world networks. We could also 
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conclude that the distributions of the EVC and CLC metrics are more likely to be relatively less 

fat-tailed compared to the distribution of the degree centrality metric.  
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