AN ANALYSIS OF THE FAT-TAILEDNESS OF THE CENTRALITY DISTRIBUTIONS OF REAL-WORLD NETWORKS

Natarajan Meghanathan

Jackson State University, MS, USA

ABSTRACT

"Kurtosis" has long been considered an appropriate measure to quantify the extent of fat-tailedness of the degree distribution of a complex real-world network. However, the Kurtosis values for more than one real-world network have not been studied in conjunction with other statistical measures that also capture the extent of variation in node degree. Also, the Kurtosis values of the distributions of other commonly centrality metrics for real-world networks have not been analyzed. In this paper, we determine the Kurtosis values for a suite of 48 real-world networks along with measures such as SPR(K), Max(K)-Min(K), Max(K)-Avg(K), SD(K)/Avg(K), wherein SPR(K), Max(K), Min(K), Avg(K) and SD(K) represent the spectral radius ratio for node degree, maximum node degree, minimum node degree, average and standard deviation of node degree respectively. Contrary to the conceived notion in the literature, we observe that real-world networks whose degree distribution is Poisson in nature (characterized by lower values of SPR(K), Max(K)-Min(K), Max(K)-Avg(K), SD(K)/Avg(K), SD(K)/Avg(K), SD(K)/Avg(K)). We also observe the Kurtosis values of the betweenness centrality distributions of the real-world networks to be more likely the largest among the Kurtosis values with respect to the commonly studied centrality metrics.

KEYWORDS

Fat-tailedness, Degree Distribution, Kurtosis, Real-World Networks, Centrality Metrics, Concordance

1. INTRODUCTION

Complex network analysis is about analyzing complex real-world networks from a graph theoretic perspective [1]. Several measures from Statistics are also used to infer the distribution of the node-level metrics [2]. One such metric and distribution that is of interest in this paper is the degree centrality metric and the fat-tailedness of its distribution. The degree of a vertex is the number of neighbours for the vertex. A degree distribution is considered to be fat-tailed if the maximum degree of a vertex is much different from the minimum or the average degree of the vertex (correspondingly, the standard deviation of node degree is also comparable or even larger than that of the average node degree) [3]. Poisson degree distributions (characteristic of random networks [4]) are not fat-tailed; whereas, power-law degree distributions (characteristic of scale-free networks [5]) are fat-tailed. Real-world networks typically exhibit power-law degree distribution [3]; however, the extent of fat-tailedness of the distribution differs among the networks.

Until now, the Kurtosis measure has been perceived to be the most appropriate measure that could be used to quantify the extent of fat-tailedness of the degree distribution of the vertices in a real-world network [2]. But, there is no formal work that determined the Kurtosis of a suite of real-world networks of diverse degree distributions and analyzed whether the Kurtosis of a

DOI: 10.5121/ijcnc.2017.9501

network with smaller variation in node degree (i.e., less fat-tailed) is more likely to be larger than the Kurtosis of a network with a relatively larger variation in node degree (i.e., more fat-tailed). In this paper, we measure the Kurtosis of the degree distributions for a suite of 48 real-world networks in conjunction with several other relevant metrics that also capture the extent of variation in node degree. Let SPR(*K*), Max(*K*), Min(*K*), Avg(*K*) and SD(*K*) represent the spectral radius ratio for node degree, maximum node degree, minimum node degree, average and standard deviation of node degree respectively. The metrics that are explored in this research along with Kurtosis for node degree are SPR(*K*), Max(*K*)-Min(*K*), Max(*K*)-Avg(*K*) and SD(*K*)/Avg(*K*). The spectral radius ratio for node degree (SPR(*K*)) [6] is defined as the ratio of the principal eigenvalue of the adjacency matrix of the network graph to that of the average node degree. According to literature [7], Min(*K*) \leq Avg(*K*) \leq Principal Eigenvalue(*K*) \leq Max(*K*). The smaller the difference between Max(*K*) and Min(*K*) for a network, the lower the value for SPR(*K*) = Principal Eigenvalue(*K*) / Avg(*K*). SPR(*K*) values start from 1.0 and this is the value expected for a truly random network.

We seek to explore whether or not a real-world network A with larger Kurtosis for node degree than a real-world network B also incurs larger values for one of these above metrics that also capture the extent of variation in node degree. We measure the Kendall's concordance-based correlation coefficient [8] for Kurtosis with each of the above four metrics for the suite of 48 realworld networks. We say two networks A and B are concordant with respect to any two metrics (say, X and Y) if X(A) < X(B) and Y(A) < Y(B) or X(A) > X(B) and Y(A) > Y(B) or X(A) =X(B) and Y(A) = Y(B). Surprisingly, we observe Kendall's concordance-based correlation coefficient for Kurtosis with each of SPR(*K*), Max(*K*)-Min(*K*), Max(*K*)-Avg(*K*) and SD(*K*)/Avg(*K*) to be low: 0.40, 0.26, 0.34 and 0.50 respectively; thus, seriously raising the question of using Kurtosis to compare the extent of fat-tailedness of the degree distribution of real-world networks when it has lower correlation with metrics that also capture the extent of variation in node degree.

There has been no analysis done on the Kurtosis of the distributions of the other commonly studied centrality metrics (such as eigenvector centrality, EVC; closeness centrality, CLC; betweenness centrality, BWC and the recently proposed local clustering coefficient complement-based degree centrality, LCC'DC). It is not clear which of these centrality metrics typically have the largest Kurtosis values. In the second half of the paper, we compute the Kurtosis values for the distributions of the other four commonly studied centrality metrics (as listed earlier: EVC, CLC, BWC and LCC'DC). We observe the Kurtosis for the BWC metric to be typically the largest among the centrality metrics, including degree centrality (DEG), for more than 75% of the real-world networks; on the other hand, the Kurtosis for the CLC metrics typically appears to be the smallest among the centrality metrics for slightly larger than 50% of the networks.

The rest of the paper is organized as follows: Section 2 illustrates the computation of Kurtosis for a real-world network with an example graph. Section 3 illustrates the computation of Kendall's concordance-based correlation coefficient (Kurtosis vs. Spectral radius ratio for node degree) for a subset of 8 real-world networks from the suite of 48 real-world networks studied in this research. Section 4 first provides a brief overview of the 48 real-world networks and then presents the values for Kurtosis and the other metrics (stated above) that capture the extent of variation in node degree. Section 4 also discusses the correlation for Kurtosis with each of these metrics. Section 5 presents an analysis of the Kurtosis values obtained for the commonly studied centrality metrics and identifies the centrality metric whose distribution is the fat-tailed for most of the real-world networks. Section 6 discusses related work and Section 7 concludes the paper. Throughout the paper, the terms 'node' and 'vertex', 'link' and 'edge', 'network' and 'graph' are used interchangeably. They mean the same.

2. KURTOSIS: FORMULATION AND ILLUSTRATION

Kurtosis has been traditionally used to quantify the extent of fat-tailedness of the distribution of a random variable. In the context of complex network analysis, Kurtosis has been used to quantify the extent of fat-tailedness of the degree distribution of the vertices in a real-world network. However, there is no formal work that has evaluated its appropriateness for comparing two real-world networks on the basis of the fat-tailedness of the degree distribution of the vertices in conjunction with other statistical and spectral metrics that also capture the extent of variation in node degree. In this section, we first present the formulation to compute the Kurtosis of the degree distribution of the vertices and then illustrate the computation with an example graph.

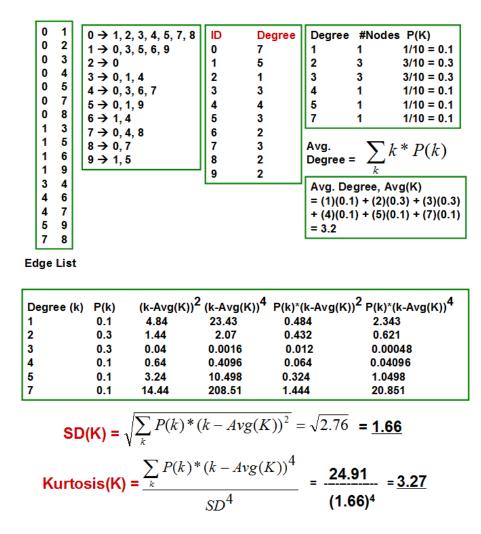


Figure 1. Example Illustration to Compute the Average, Standard Deviation and Kurtosis of the Degree Distribution of the Vertices in a Graph

Let *K* be the set of all degree values for the vertices in a graph. Let P(k) indicate the probability of finding a vertex with degree *k*, where $k \in K$. The average, standard deviation and kurtosis for node degree are computed as follows:

$$Avg(K) = \sum_{k \in K} P(k) * (k)$$
(1)

$$SD(K) = \sqrt{\sum_{k \in K} P(k) * (k - Avg(K))^2}$$
(2)

Figure 1 presents an illustration of the computation of the Avg(K), SD(K) and Kurtosis(K) for node degree for an example undirected graph of 10 vertices (whose list of edges is given). We first compute the node degree (the number of neighbours for a vertex) and determine the number of vertices that are of a particular degree. The probability of finding a vertex with a certain degree is simply the fraction of the total number of vertices with the particular degree. Once we have the k vs. P(k) values for a graph, we can compute the above three statistical metrics using formulations (1), (2) and (3).

3. KENDALL'S CONCORDANCE-BASED CORRELATION

The Kendall's concordance-based correlation measure could be used to evaluate the relative ranking of two networks with respect to any two network-level metrics; in our case, Kurtosis vs. any statistical or spectral metric. In this section, we illustrate the computation of Kendall's concordance-based correlation coefficient for a set of 8 real-world networks (taken from the suite of 48 real-world networks analyzed in Section 4) with respect to Kurtosis and Spectral radius ratio for node degree. Figure 2 illustrates the calculations. We count the number of concordat pairs of networks and the number of discordant pairs of networks and calculate Kendall's correlation coefficient as the ratio of the sum of the number of concordant pairs and discordant pairs to that of the difference of the number of concordant pairs and discordant pairs.

Net.	# Net. Name	Kurtosis (K)	SPR(K)	Net. Pairs	Kurtosis Values	SPR(K) Values	C/D
1	ADJ	15.41	1.73	15, 23	5.89, 6.30	1.01, 1.47	С
8	DON	2.25	1.40	15, 25	5.89, 8.89	1.01, 1.82	С
15	FON	5.89	1.01	15, 33	5.89, 4.35	1.01, 1.42	D
23	KCN	6.30	1.47	15, 36	5.89, 6.34	1.01, 1.29	С
25	LMN	8.89	1.82	15, 44	5.89, 12.77	1.01, 3.22	С
33	PBN	4.35	1.42	23, 25	6.30, 8.89	1.47, 1.82	С
36	SJN	6.34	1.29	23, 33	6.30, 4.35	1.47, 1.42	С
44	APN	12.77	3.22	23, 36	6.30, 6.34	1.47, 1.29	D
				23, 44	6.30, 12.77	1.47, 3.22	С
Net. Pairs		lues SPR(K) Valu		25, 33	8.89, 4.35	1.82, 1.42	С
1, 8	15.41, 2.25	1.73, 1.40	c	25, 36	8.89, 6.34	1.82, 1.29	С
1, 15	15.41, 5.89		c	25, 44	8.89, 12.77	1.82, 3.22	С
1, 23	15.41, 6.30	· · · · ·	C	33, 36	4.35, 6.34	1.42, 1.29	D
1, 25	15.41, 8.89	· ·	D	33, 44	4.35, 12.77	1.42, 3.22	С
1, 33	15.41, 4.35	1.73, 1.42	С	36, 44	6.34, 12.77	1.29, 3.22	с
1, 36	15.41, 6.34	1.73, 1.29	с				
1, 44	15.41, 12.77	1.73, 3.22	D		dant Pairs = 21		
8, 15	2.25, 5.89	1.40, 1.01	D	#. Discord	ant Pairs = 7		
8, 23	2.25, 6.30	1.40, 1.47	С				
8, 25	2.25, 8.89	1.40, 1.82	С		Concordance		airs – # Discordant Pairs
8, 33	2.25, 4.35	1.40, 1.42	С	based Cor	relation Coefficient =		
8, 36	2.25, 6.34	1.40, 1.29	D			# Concordant Pa	airs + # Discordant Pairs
8, 44	2.25, 12.77	1.40, 3.22	С				
					Concordance	21 – 7 14	
				based Cor	relation Coefficient =	= = (0.50
						21 + 7 28	

Figure 2. Example Illustration to Compute Kendall's Concordance-based Correlation Coefficient between Kurtosis and Spectral Radius Ratio for Node Degree for a Subset of the Real-World Networks

A pair of networks X and Y are said to be concordant with respect to Kurtosis(K) and SPR(K) if either one of the following is true:

(i) Kurtosis_X(K) < Kurtosis_Y(K) and SPR_X(K) < SPR_Y(K) or

(ii) Kurtosis_X(K) > Kurtosis_Y(K) and SPR_X(K) > SPR_Y(K) or

(iii) Kurtosis_x(K) = Kurtosis_y(K) and SPR_x(K) = SPR_y(K)

A pair of networks X and Y are said to be discordant with respect to Kurtosis(K) and SPR(K) if either one of the following are true:

(i) Kurtosis_X(K) > Kurtosis_Y(K) and SPR_X(K) \leq SPR_Y(K) or

(ii) Kurtosis_X(K) < Kurtosis_Y(K) and SPR_X(K) \leq SPR_Y(K)

For the set of 8 real-world networks considered in Figure 2 and their Kurtosis(K) and SPR(K) values, we observe 21 concordant pairs of networks and 7 discordant pairs of networks; this leads to Kendall's concordance-based correlation coefficient of (21-7) / (21+7) = 0.50.

4. REAL-WORLD NETWORKS AND THEIR CORRELATION ANALYSIS

In this section, we first introduce the 48 real-world networks analyzed in this paper. Table 1 lists the three character code acronym, name and the network type as well as the number of nodes and edges. The networks considered cover a broad range of categories (as listed below along with the number of networks in each category): Acquaintance network (12), Friendship network (9), Coappearance network (6), Employment network (4), Citation network (3), Literature network (3), Collaboration network (2), Political network (2), Biological network (2), Game network (2), Geographical Network, Transportation network and Trade network (1 each). A brief description of each category of networks is as follows: An acquaintance network is a kind of social network in which the participant nodes slightly (not closely) know each other, as observed typically during an observation period. A *friendship network* is a kind of social network in which the participant nodes closely know each other and the relationship is not captured over an observation period. A co-appearance network is a network typically extracted from novels/books in such a way that two characters or words (modelled as nodes) are connected if they appear alongside each other. An employment network is a network in which the interaction/relationship between people is primarily due to their employment requirements and not due to any personal liking. A citation network is a network in which two papers (nodes) are connected if one paper cites the other paper as a reference. A collaboration network is a network of researchers/authors who are listed as coauthors in at least one publication. A *biological network* is a network that models the interactions between genes, proteins, animals of a species, etc. A political network is a network of entities (typically politicians) involved in politics. A game network is a network of teams or players playing for different teams and their associations. A literature network is a network of books/papers/terminologies/authors (other than collaboration, citation or co-authorship) involved in a particular area of literature. A transportation network is a network of entities (like airports and their flight connections) involved in public transportation. A *trade network* is a network of countries/people involved in a certain trade. The reader is referred to [9] for a more detailed description of the individual real-world networks.

#	Net.	Net. Description		Network Type	#nodes	#edges
1		Word Adjacency Network		Co-appearance		
	ADJ			Net.	112	425
2		Anna Karnenina Network	[11]	Co-appearance		
	AKN			Net.	138	493
3	JBN	Jazz Band Network	[12]	Employment Net.	198	2742
4	CEN	C. Elegans Neural	[13]	Biological Net.	297	2148

Table 1. Real-World Networks used in the Correlation Analysis

		Network				
5	CLN	Centrality Literature Net.	[14]	Citation Net.	129	613
6	CLI	Citation Graph Drawing	[15]	Citation Net.	127	010
0	CGD	Net	[15]	Citation i vet.	311	640
7	COD	Copperfield Network	[11]	Co-appearance	511	010
,	CFN	coppendent vetwork	[11]	Net.	87	406
8	CIIV	Dolphin Network	[16]		07	100
0	DON	Dolphin Retwork			62	159
9	DOIN	Drug Network	[17]	Acquaintance	02	107
<i></i>	DRN	Drug Hetwork	[1/]	Net.	298	337
10	DIG	Dutch Literature 1976	[18]	Literature Net.	270	557
10	DLN	Net.	[10]	Entertature rvet.	35	80
11	DLA	Erdos Collaboration Net.	[19]	Collaboration	55	00
	ERD	Endos Condobration Pret.	[17]	Net.	472	1314
12	EUR	Euro Road Network	[51]	Geographical Net.	1174	1417
13	LOR	Faux Mesa High School	[20]	Friendship Net.	11/1	1117
15	FMH	Net	[20]	Theneship 100.	205	404
14	1 17411	Friendship in Hi-Tech	[21]	Friendship Net.	200	101
11	FHT	Firm	[21]	Thendiship Ttet.	36	147
15	FTC	Flying Teams Cade Net.	[22]	Employment Net.	48	170
16	FON	US Football Network	[23]	Game Net.	115	613
17	1011	College Dorm Fraternity	[24]	Acquaintance	115	015
17	CDF	Net	[27]	Net.	58	967
18	GD96	Graph Drawing 1996 Net	[19]	Citation Net.	180	229
19	00/0	Marvel Universe Network	[25]	Co-appearance	100	
17	MUN	What ver entitiense retwork	[23]	Net.	165	300
20	GLN	Graph Glossary Network	[19]	Literature Net.	72	236
21	<u>OBI</u>	Hypertext 2009 Network	[26]	Acquaintance		200
	HTN		[=0]	Net.	113	2163
22		Huckleberry Coappear.	[11]	Co-appearance		
	HCN	Net.		Net.	74	301
23		Infectious Socio-Patterns	[26]	Acquaintance		
	ISP	Net	[]	Net.	309	1924
24		Karate Club Network	[27]	Acquaintance		
	KCN		r=.1	Net.	34	78
25		Korea Family Planning	[28]	Acquaintance	_	
	KFP	Net.	L - J	Net.	39	84
26		Les Miserables Network	[11]	Co-appearance		
	LMN			Net.	77	254
27	MDN	Macaque Dominance Net.	[29]	Biological Net.	62	1167
28		Madrid Train Bombing	[30]	Acquaintance	-	
-	MTB	Net.	r. «1	Net.	70	486
29		Manufact. Comp. Empl.	[31]	Employment Net.		
-	MCE	Net.		1 5	77	2326
30		Soc. Net. Journal Co-	[32]	Co-author Net.		
-	MSJ	authors			475	625
31	AFB	Author Facebook Network	-	Friendship Net.	187	939
32		Mexican Political Elite	[33]	Political Net.		
	MPN	Net.			35	117
33	MMN	ModMath Network	[19]	Friendship Net.	38	61

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.5, September 2017

34		US Politics Books	[34]	Literature Net.		
	PBN	Network			105	441
35		Primary School Contact	[35]	Acquaintance		
	PSN	Net.		Net.	238	5539
36		Prison Friendship	[36]	Friendship Net.		
	PFN	Network			67	182
37		San Juan Sur Family Net.	[37]	Acquaintance		
	SJN			Net.	75	155
38		Scotland Corp. Interlock	[38]	Employment Net.		
	SDI	Net			244	358
39	SPR	Senator Press Release Net.	[39]	Political Net.	92	477
40		Soccer World Cup 1998	[19]	Game Net.		
	SWC	Net			35	118
41		Sawmill Strike Comm.	[40]	Acquaintance		
	SSM	Net.		Net.	24	38
42		Taro Exchange Network	[41]	Acquaintance		
	TEN	_		Net.	22	39
43		Teenage Female Friend	[42]	Friendship Net.		
	TWF	Net.		-	50	122
44		UK Faculty Friendship	[43]	Friendship Net.		
	UKF	Net.		-	81	577
45		US Airports 1997	[19]	Transportation		
	APN	Network		Net.	332	2126
46		Residence Hall Friend	[45]	Friendship Net.		
	RHF	Net.		-	43	336
47		Windsurfers Beach	[46]	Friendship Net.		
	WSB	Network		±	80	875
48		World Trade Metal	[47]	Trade Net.		
	WTN	Network			112	425

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.5, S	September 2017
--	----------------

Table 2 lists the values for SPR(K), Avg(K), SD(K), Min(K), Max(K) and Kurtosis(K) obtained for these 48 real-world networks. Figure 3 plots the distribution of Kurtosis(K) vs. each of the following: SPR(K), SD(K)/Avg(K), Max(K) - Min(K) and Max(K) - Avg(K). We also mention the values for Kendall's correlation coefficient obtained for Kurtosis(K) vs. each of these metrics. We observe all the four correlation coefficient values to be less than or equal to 0.50; the largest being 0.50 for Kurtosis vs. SD(K)/Avg(K) ratio and the lowest being 0.26 for Kurtosis(K) vs. Max(K) -Min(K), an appreciable measure of the extent of variation in node degree and fat-tailedness nature of the degree distribution.

Table 2. SPR, Avg, SD, Min, Max and Kurtosis Values for the Degree Distribution of the Real-World
Networks

#	Net.	SPR(K)	Avg(K)	SD(K)	Min(K)	Max(K)	Kurtosis
							(K)
1	ADJ	1.73	7.59	6.85	1	49	15.41
2	AKN	2.48	7.14	10.43	1	71	16.97
3	JBN	1.45	27.70	17.41	1	100	4.54
4	CEN	1.68	14.46	12.94	1	134	30.18
5	CLN	2.03	9.50	10.35	0	66	10.30
6	CGD	2.24	4.12	3.98	0	20	4.27

	-		1	1	1		•
7	CFN	1.83	9.33	10.49	1	82	27.46
8	DON	1.40	5.13	2.93	1	12	2.25
9	DRN	2.76	1.91	2.06	0	15	10.12
10	DLN	1.49	4.57	2.96	1	12	2.52
11	ERD	3.00	5.57	6.69	0	41	10.11
12	EUR	1.66	2.41	1.19	1	10	7.03
13	FMH	2.81	1.97	2.12	0	13	7.29
14	FHT	1.57	5.06	3.74	0	16	3.41
15	FTC	1.21	7.08	2.97	1	16	3.82
16	FON	1.01	10.66	0.88	7	12	5.89
17	CDF	1.11	33.34	11.43	6	52	2.87
18	GD96	2.38	2.53	3.82	1	27	28.07
19	MUN	2.54	3.64	3.76	1	26	12.92
20	GLN	2.01	3.28	3.19	0	18	10.96
21	HTN	1.21	38.28	18.30	1	97	3.21
22	HCN	1.66	8.14	7.34	1	53	19.77
23	ISP	1.69	12.45	8.33	1	47	4.14
24	KCN	1.47	4.59	3.82	1	17	6.30
25	KFP	1.70	4.31	3.11	0	13	3.99
26	LMN	1.82	6.60	6.00	1	36	8.89
27	MDN	1.04	37.65	7.40	17	55	3.24
28	MTB	1.95	6.94	6.27	0	29	4.91
29	MCE	1.12	34.91	12.53	18	76	5.64
30	MSJ	3.48	2.63	2.15	1	15	10.25
31	AFB	2.29	10.04	8.16	0	33	3.11
32	MPN	1.23	6.69	3.27	2	17	4.18
33	MMN	1.59	3.21	2.26	0	11	4.81
34	PBN	1.42	8.40	5.45	2	25	4.35
35	PSN	1.22	46.55	19.85	8	88	2.00
36	PFN	1.32	4.24	2.07	1	11	3.83
37	SJN	1.29	4.13	2.02	1	12	6.34
38	SDI	1.94	2.93	2.04	0	13	7.53
39	SPR	1.57	10.37	7.55	1	41	4.91
40	SWC	1.45	6.74	4.71	1	19	4.02
41	SSM	1.22	3.17	1.34	1	7	4.20
42	TEN	1.06	3.55	0.94	3	6	3.24
43	TWF	1.49	3.08	1.55	0	7	2.75
44	UKF	1.35	14.25	8.11	2	41	4.48
45	APN	3.22	12.81	20.10	1	139	12.77
46	RHF	1.27	16.95	7.76	2	56	6.42
47	WSB	1.16	15.63	6.53	6	31	2.26
48	WTN	1.38	21.88	16.33	4	77	5.54

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.5, September 2017

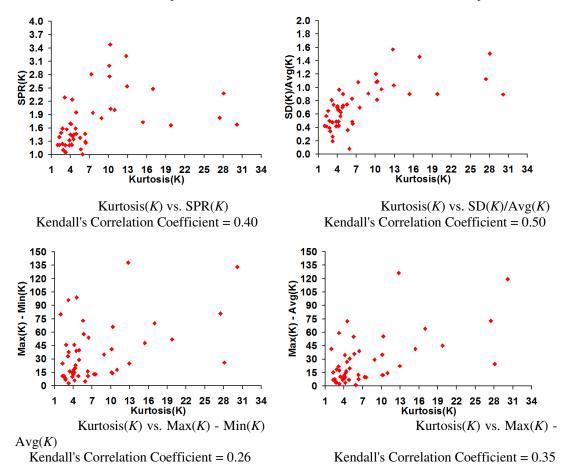


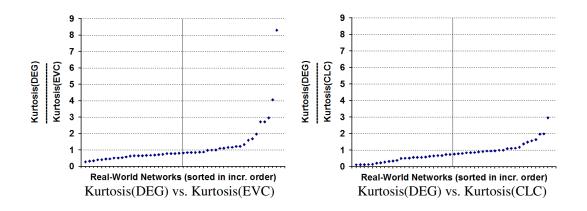
Figure 3. Distribution of the Kurtosis(K) Values vs. {SPR(K), SD(K)/Avg(K), Max(K)-Min(K) and Max(K)-Avg(K)} Values and the Kendall's Correlation Coefficient for the 48 Real-World Networks

5. KURTOSIS ANALYSIS FOR CENTRALITY METRICS

In this section, we present a comparison of the Kurtosis values for five centrality metrics (including degree centrality) that are widely applicable for complex network analysis. The centrality metrics considered (in addition to degree centrality, represented as DEG in this section) are: eigenvector centrality (EVC), closeness centrality (CLC), betweenness centrality (BWC) and the local clustering coefficient complement-based degree centrality (LCC'DC). The EVC [52] of a vertex is a measure of the degree of the vertex as well as the degree of its neighbors. The CLC [53] of a vertex is a measure of the sum of the distances (typically the number of hops on the shortest path) of the vertex to the rest of the vertices in the network. The BWC [54] of a vertex is a measure of the fraction of the shortest paths that the vertex lies on between any two vertices in the network. While DEG and EVC are degree-based centrality metrics, CLC and BWC are shortest path-based metrics. The LCC'DC metric [55] is a computationally-light alternative to the computationally-heavy BWC metric. The LCC'DC (a hybrid of both the degree and shortest pathbased metrics) of a vertex is computed as the product of the degree centrality of the vertex and the probability that any two neighbors of the vertex go through the vertex for shortest path communication (the latter is computed as the ratio of the number of pairs of neighbors of the vertex that are not directly connected to each other to that of the maximum number of pairs of

neighbors of the vertex that could be directly connected to each other). Table 3 presents the Kurtosis values for the distributions of the five centrality metrics (DEG, EVC, CLC, BWC and LCC'DC) obtained for the 48 real-world networks.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#	Net.	DEG	EVC	CLC	BWC	LCC'DC	Max.	Min.	Max Min.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ADI	15/11	10.18	3.60	35 /7	16.52	BWC	CLC	
3 JBN 4.54 3.09 4.53 60.71 9.84 BWC EVC 57.63 4 CEN 30.18 9.74 3.96 216.69 46.93 BWC CLC 212.73 5 CLN 10.30 5.28 9.82 34.01 18.09 BWC EVC 28.72 6 CGD 4.27 8.47 32.7 15.54 5.05 BWC EUC 73.88 8 DON 2.25 2.60 2.46 7.52 2.49 BWC DEC 2.61 5.11 0 DLN 1.52 2.16 2.31 2.81 2.46 BWC CLC 0.65 11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCD 5.306 13 FMH 7.29 14.62 1.01 16.35										
4 CEN 30.18 9.74 3.96 216.69 46.93 BWC CLC 212.73 5 CLN 10.30 5.28 9.82 34.01 18.09 BWC EVC 28.72 6 CGD 4.27 8.47 3.27 15.54 5.05 BWC CLC 12.28 7 CFN 27.46 7.84 3.221 81.72 48.70 BWC DEG 5.27 9 DRN 10.12 27.53 1.38 24.77 8.89 BWC CLC 26.15 10 DLN 2.52 2.16 2.31 2.81 2.46 BWC EVC 0.65 11 ERD 10.11 12.41 9.08 2.279 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCD 5.06 13 FMH 7.29 11.02 16.35 7.32 <										
5 CLN 10.30 5.28 9.82 34.01 18.09 BWC EVC 28.72 6 CGD 4.27 8.47 3.27 15.54 5.05 BWC CLC 12.28 7 CFN 27.46 7.84 32.21 81.72 48.70 BWC EVC 73.88 8 DON 2.25 2.60 2.46 7.52 2.44 BWC DEG 5.27 9 DRN 10.12 27.53 1.38 24.77 8.89 BWC CLC 26.15 10 DLN 2.52 2.16 2.31 2.81 2.46 BWC EVC 0.65 11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 20.50 14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCCDC 5.06 15 FTC 3.82 2.62 3.04 4.08 3.12										
6 CGD 4.27 8.47 3.27 15.54 5.05 BWC CLC 12.28 7 CFN 27.46 7.84 32.21 81.72 48.70 BWC EVC 73.88 8 DON 22.55 2.60 2.46 7.52 2.49 BWC EUC 26.15 10 DLN 2.52 2.16 2.31 2.477 8.89 BWC CLC 26.15 10 DLN 2.52 2.16 2.31 2.46 BWC EVC 0.65 11 ERD 10.11 12.41 9.08 2.79 12.09 BWC CLC 23.06 13 FMH 7.29 21.62 1.12 16.35 7.32 EVC CLC 20.50 14 FHT 3.41 2.79 13.04 2.67 2.54 DEG EVC 1.46 16 FON 5.89										
7CFN 27.46 7.84 32.21 81.72 48.70 BWCEVC 73.88 8DON 2.25 2.60 2.46 7.52 2.49 BWCDEG 5.27 9DRN 10.12 27.53 1.38 24.77 8.89 BWCCLC 26.15 10DLN 2.52 2.16 2.31 2.81 2.46 BWCCLC 13.72 12EUR 7.03 58.35 6.82 21.25 5.29 EVCLCC'DC 53.06 13FMH 7.29 21.62 1.12 16.35 7.32 EVCCLC 20.50 14FHT 3.41 2.79 10.09 3.33 2.53 DEGLCC'DC 7.56 15FTC 3.82 2.62 3.04 4.08 3.12 BWCEVC 1.46 16FON 5.89 2.41 3.06 3.88 3.49 DEGEVC 1.46 16FON 5.89 2.41 3.06 3.88 3.49 DEGCLC 24.73 19MUN 12.92 12.83 1.63 54.50 14.32 BWCCLC 11.02 21HTN 3.21 2.63 5.04 29.59 10.49 BWCEVC 26.96 22HCN 19.77 8.02 12.87 60.78 24.91 BWCEVC 52.77 23ISP 4.14 4.84 2.78 31.93 5.20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
8 DON 2.25 2.60 2.46 7.52 2.49 BWC DEG 5.27 9 DRN 10.12 27.53 1.38 24.77 8.89 BWC CLC 26.15 10 DLN 2.52 2.16 2.31 2.81 2.46 BWC CLC 13.72 11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCDC 53.06 13 FMH 7.29 21.62 1.12 16.35 7.32 EVC LCCDC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.84 3.49 DEG EVC 2.473 19 MUN 12.92 12.83 1.63 54.50 1										
9 DRN 10.12 27.53 1.38 24.77 8.89 BWC CLC 26.15 10 DLN 2.52 2.16 2.31 2.81 2.46 BWC EVC 0.65 11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCDC 53.06 13 FMH 7.29 11.02 16.35 7.32 EVC CLC 20.50 14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCCDC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG CLC 24.73 19 MUN 12.92 12.83 1.635 5.44 DEG										
10 DLN 2.52 2.16 2.31 2.81 2.46 BWC EVC 0.65 11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCDC 53.06 13 FMH 7.29 21.62 1.12 16.35 7.32 EVC LCCDC 7.56 14 FTT 3.41 2.79 10.09 3.33 2.53 DEG EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 20 GLN 10.96 7.23 4.20 15.22 <										
11 ERD 10.11 12.41 9.08 22.79 12.09 BWC CLC 13.72 12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCDC 53.06 13 FMH 7.29 21.62 1.12 16.35 7.32 EVC CLC 20.50 14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCCDC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 19.7 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 20 GLN 10.96 7.23 4.20 15.22										
12 EUR 7.03 58.35 6.82 21.25 5.29 EVC LCCDC 53.06 13 FMH 7.29 21.62 1.12 16.35 7.32 EVC CLC 20.50 14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCCDC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.84 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 21.102 21 HTN 3.21 2.63 5.04 29.59										
13 FMH 7.29 21.62 1.12 16.35 7.32 EVC CLC 20.50 14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCC'DC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCC'DC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 20 GLN 10.96 7.23 4.20 15.22 8.79 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78										
14 FHT 3.41 2.79 10.09 3.33 2.53 DEG LCCDC 7.56 15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 11.02 21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 29.14 24 KCN 6.30 3.24 2.20 11.31 <										
15 FTC 3.82 2.62 3.04 4.08 3.12 BWC EVC 1.46 16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 11.02 20 GLN 10.96 7.23 4.20 15.22 8.79 BWC CLC 11.02 21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC CLC 9.14 24 KCN 6.30 3.24 2.20 11.31 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
16 FON 5.89 2.41 3.06 3.88 3.49 DEG EVC 3.48 17 CDF 2.87 3.20 2.45 3.41 4.41 LCC'DC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 20 GLN 10.96 7.23 4.20 15.22 8.79 BWC CLC 21.73 21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 52.77 23 ISP 4.14 4.84 2.78 31.93 5.20 BWC CLC 9.14 24 KCN 6.30 3.24 3.21 3.23										
17 CDF 2.87 3.20 2.45 3.41 4.41 LCCDC CLC 1.97 18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 20 GLN 10.96 7.23 4.20 15.22 8.79 BWC CLC 10.22 21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 52.77 23 ISP 4.14 4.84 2.78 31.93 5.20 BWC CLC 9.14 24 KCN 6.30 3.24 2.20 11.31 6.35 BWC EVC 40.86 27 MDN 3.24 3.21 3.23 3.74 3.14 BWC LCCDC 0.60 28 MTB 4.91 3.2										
18 GD96 28.07 16.21 3.34 26.77 25.44 DEG CLC 24.73 19 MUN 12.92 12.83 1.63 54.50 14.32 BWC CLC 52.87 20 GLN 10.96 7.23 4.20 15.22 8.79 BWC CLC 11.02 21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 52.77 23 ISP 4.14 4.84 2.78 31.93 5.20 BWC CLC 29.14 24 KCN 6.30 3.24 2.20 11.31 6.35 BWC CLC 9.11 25 KFP 3.99 2.77 7.86 2.95 3.24 CLC EVC 40.86 27 MDN 3.24 3.21 3.23 3.74										
19MUN12.9212.831.6354.5014.32BWCCLC52.8720GLN10.967.234.2015.228.79BWCCLC11.0221HTN3.212.635.0429.5910.49BWCEVC26.9622HCN19.778.0212.8760.7824.91BWCEVC52.7723ISP4.144.842.7831.935.20BWCCLC29.1424KCN6.303.242.2011.316.35BWCCLC9.1125KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCCDC0.6028MTB4.913.209.768.063.19CLCLCCDC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC42.8931AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC4.14 <td></td>										
20GLN10.967.234.2015.228.79BWCCLC11.0221HTN3.212.635.0429.5910.49BWCEVC26.9622HCN19.778.0212.8760.7824.91BWCEVC52.7723ISP4.144.842.7831.935.20BWCCLC29.1424KCN6.303.242.2011.316.35BWCCLC9.1125KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC4.1434PBN4.355.282.455.313.83BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.12 <td></td>										
21 HTN 3.21 2.63 5.04 29.59 10.49 BWC EVC 26.96 22 HCN 19.77 8.02 12.87 60.78 24.91 BWC EVC 52.77 23 ISP 4.14 4.84 2.78 31.93 5.20 BWC CLC 29.14 24 KCN 6.30 3.24 2.20 11.31 6.35 BWC CLC 9.11 25 KFP 3.99 2.77 7.86 2.95 3.24 CLC EVC 5.09 26 LMN 8.89 3.04 4.51 43.90 13.36 BWC LCCDC 6.60 28 MTB 4.91 3.20 9.76 8.06 3.19 CLC LCCDC 6.57 29 MCE 5.64 3.03 9.31 14.61 4.27 BWC EVC 41.30 30 MSJ 10.25 41.63 2.27 45.57										
22HCN19.778.0212.8760.7824.91BWCEVC52.7723ISP4.144.842.7831.935.20BWCCLC29.1424KCN6.303.242.2011.316.35BWCCLC9.1125KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC3.7537SJN6.348.493.6314.554.59BWCCLC10.92<										
23ISP4.144.842.7831.935.20BWCCLC29.1424KCN6.303.242.2011.316.35BWCCLC9.1125KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCLCC'DC1.31 </td <td></td>										
24KCN6.303.242.2011.316.35BWCCLC9.1125KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC42.8931AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCLCC'DC13.7340SWC4.022.873.005.722.69BWCLCC'DC5.19										
25KFP3.992.777.862.953.24CLCEVC5.0926LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
26LMN8.893.044.5143.9013.36BWCEVC40.8627MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
27MDN3.243.213.233.743.14BWCLCC'DC0.6028MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
28MTB4.913.209.768.063.19CLCLCC'DC6.5729MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC4.1434PBN4.355.282.455.313.83BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
29MCE5.643.039.3114.614.27BWCEVC11.5830MSJ10.2541.632.2745.576.35BWCCLC43.3031AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC4.1434PBN4.355.282.455.313.83BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC10.9238SDI7.5320.527.1616.656.78BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
30 MSJ 10.25 41.63 2.27 45.57 6.35 BWC CLC 43.30 31 AFB 3.11 5.24 1.76 44.65 3.60 BWC CLC 42.89 32 MPN 4.18 3.26 3.52 9.38 4.91 BWC EVC 6.12 33 MMN 4.81 4.24 3.02 7.15 3.80 BWC CLC 4.14 34 PBN 4.35 5.28 2.45 5.31 3.83 BWC CLC 2.86 35 PSN 2.00 2.01 2.21 4.12 2.37 BWC DEG 2.12 36 PFN 3.83 4.22 2.85 6.59 2.86 BWC CLC 3.75 37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 38 SDI 7.53 20.52 7.16 16.65 6.78										
31AFB3.115.241.7644.653.60BWCCLC42.8932MPN4.183.263.529.384.91BWCEVC6.1233MMN4.814.243.027.153.80BWCCLC4.1434PBN4.355.282.455.313.83BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC3.7537SJN6.348.493.6314.554.59BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
32 MPN 4.18 3.26 3.52 9.38 4.91 BWC EVC 6.12 33 MMN 4.81 4.24 3.02 7.15 3.80 BWC CLC 4.14 34 PBN 4.35 5.28 2.45 5.31 3.83 BWC CLC 2.86 35 PSN 2.00 2.01 2.21 4.12 2.37 BWC DEG 2.12 36 PFN 3.83 4.22 2.85 6.59 2.86 BWC CLC 3.75 37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 39 SPR 4.91 3.68 2.86 14.17 6.97 BWC LCC'DC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69										
33MMN4.814.243.027.153.80BWCCLC4.1434PBN4.355.282.455.313.83BWCCLC2.8635PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC3.7537SJN6.348.493.6314.554.59BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
34 PBN 4.35 5.28 2.45 5.31 3.83 BWC CLC 2.86 35 PSN 2.00 2.01 2.21 4.12 2.37 BWC DEG 2.12 36 PFN 3.83 4.22 2.85 6.59 2.86 BWC CLC 3.75 37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
35PSN2.002.012.214.122.37BWCDEG2.1236PFN3.834.222.856.592.86BWCCLC3.7537SJN6.348.493.6314.554.59BWCCLC10.9238SDI7.5320.527.1616.656.78BWCLCC'DC13.7339SPR4.913.682.8614.176.97BWCCLC11.3140SWC4.022.873.005.722.69BWCLCC'DC3.0341SSM4.203.553.627.762.57BWCLCC'DC5.19										
36 PFN 3.83 4.22 2.85 6.59 2.86 BWC CLC 3.75 37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
37 SJN 6.34 8.49 3.63 14.55 4.59 BWC CLC 10.92 38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
38 SDI 7.53 20.52 7.16 16.65 6.78 BWC LCC'DC 13.73 39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
39 SPR 4.91 3.68 2.86 14.17 6.97 BWC CLC 11.31 40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
40 SWC 4.02 2.87 3.00 5.72 2.69 BWC LCC'DC 3.03 41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
41 SSM 4.20 3.55 3.62 7.76 2.57 BWC LCC'DC 5.19										
42 TEN 5 24 2 55 2 7 2 88 1 96 DEG+ LCC"DC 28	42	TEN	3.24	2.55	2.17	2.88	1.96	DEG	LCC'DC	1.28


Table 3. Kurtosis Values of the Centrality Metrics for Real-World Networks

43	TWF	2.75	4.38	3.81	3.23	2.02	EVC	LCC'DC	2.37
44	UKF	4.48	2.81	3.52	17.34	6.93	BWC	EVC	14.52
45	APN	12.77	5.92	3.68	47.41	33.46	BWC	CLC	43.73
46	RHF	6.42	5.46	3.28	21.35	5.77	BWC	CLC	18.07
47	WSB	2.26	1.98	2.55	7.12	4.42	BWC	EVC	5.15
48	WTN	5.54	4.34	8.30	14.80	7.76	BWC	EVC	10.46

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.5, September 2017

From Table 3, it is evident that the Kurtosis values for the BWC metric are the largest among the five centrality metrics for 38 of the 48 (i.e., more than 75%) of the real-world networks. The CLC metric incurs the smallest of the Kurtosis values for 23 of the 48 (i.e., about 48%) real-world networks. While one of the four centrality metrics (DEG, EVC, CLC and LCC'DC) exhibited the smallest of the Kurtosis values for at least one real-world network, the BWC metric did not incur the smallest of the Kurtosis values for any of the real-world networks. Hence, the distribution of the BWC metric for real-world networks could be confidently considered the most fat-tailed of the centrality metrics.

In Figure 4, we show the distribution of the Kurtosis(X)/Kurtosis(DEG) where $X \in \{EVC, CLC, e^{-1}\}$ BWC and LCC'DC} for the real-world networks. We observe the Kurtosis(BWC)/Kurtosis(DEG) ratios to be above 1 for 43 of the 48 (close to 90%) real-world networks, with a median of 2.30. On the other hand, the Kurtosis(EVC)/Kurtosis(DEG) and Kurtosis(CLC)/Kurtosis(DEG) ratios are below 1 for 32 and 37 of the 48 real-world networks (with medians of 0.82 and 0.75) respectively. In earlier works [55-56], the BWC and DEG metrics have been observed to exhibit a very strong correlation for several real-world networks. However, the above observations regarding the Kurtosis(DEG) and Kurtosis(BWC) values indicate that real-world networks are expected to be relatively more fat-tailed with respect to BWC compared to that of DEG. On the other hand, the lower values (lower than 1.0) for the Kurtosis(CLC)/Kurtosis(DEG) and Kurtosis(EVC)/Kurtosis(DEG) ratios for at least 2/3rds of the real-world networks indicate that real-world networks are likely to be less fat-tailed with respect to the EVC and CLC metrics visa-vis DEG. The median of the Kurtosis(DEG)/Kurtosis(LCC'DC) ratios is 1.00, indicating that the local clustering coefficient component of the LCC'DC formulation does not contribute to the fat-tailedness of the LCC'DC distribution. These are interesting observations that have been hitherto not reported in the literature.

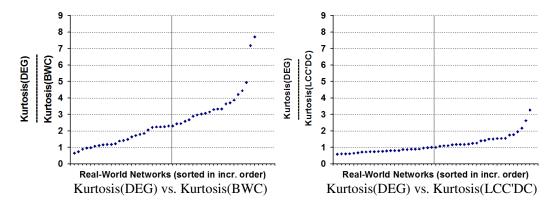


Figure 4. Comparison of the Kurtosis Values for the Centrality Metrics

6. RELATED WORK

In the context of complex network analysis, Kurtosis has been typically used to capture the extent of fat-tailedness of degree distribution of the vertices and make an initial educated guess on the type (i.e., Poisson random networks or Power-law scale-free networks) of degree distribution for an underlying network graph [3]. A real-world network with Kurtosis for the degree distribution greater than 3 is typically considered to be fat-tailed [48]. Kurtosis has also been used to analyze the possibility of an existence of outlier(s) in a data set [49]. In the context of complex network analysis, a larger Kurtosis for the degree distribution of a network could imply that the network has one or more nodes with degree(s) that is extremely different from the rest of the nodes in the network [3]. But, the existence of few such outlier nodes is not sufficient to classify a network as a fat-tailed network. We would need the degree distribution to exhibit non-zero probability values for degree values spanning a broader range and exhibit a decreasing trend as the degree values approach the extreme value.

Instead of Kurtosis, several other approaches have also been attempted in the literature to capture the extent of variation in node degree (inclusive of fat-tailedness). For example, graph traversal algorithms like Breadth First Search (BFS) [50] have been used in the literature to analyze the fattailed nature of real-world networks. The BFS algorithm could be used to determine the diameter of a network. The idea proposed in [50] is to calculate the diameter (D_0) of the unperturbed network (with all nodes in the network) and calculate the diameter (D_i) of the network due to the removal of node *i*. The $\Delta_i = D_i - D_0/D_0$ value for each node is then calculated. A distribution of probability(Δ_i) vs. the Δ_i values (for $\Delta_i > 0$) is plotted and if it appears to mimic a power-law distribution, then the network is considered to be fat-free.

7. CONCLUSIONS

The high-level contribution of this paper is to illustrate that Kurtosis measure may not be appropriate to compare any two real-world networks with respect to the extent of fat-tailedness. The Kurtosis of a network with a lower variation in node degree (less fat-tailed) could be larger than the Kurtosis of a network with a relatively larger variation in node degree (relatively more fat-tailed). We measure the Kendall's concordance-based correlation coefficient for Kurtosis with four different statistical/spectral measures that effectively capture the variation in node degree. We observe the correlation coefficients to be no more than 0.50. From the analysis done in Section 5, we could confidently conclude that the distribution of the BWC metric is more likely to be most fat-tailed among all the centrality distributions for real-world networks. We could also

conclude that the distributions of the EVC and CLC metrics are more likely to be relatively less fat-tailed compared to the distribution of the degree centrality metric.

REFERENCES

- M. E. J. Newman, Networks: An Introduction. 1st Edition, Oxford University Press, Oxford, UK, May 2010.
- [2] E. D. Kolaczyk, Statistical Analysis of Network Data, Springer, Berlin, Germany, March 2009.
- [3] A. L. Barabasi, Network Science, 1st Edition, Cambridge University Press, Cambridge, UK.
- [4] P. Erdos and A. Renyi, "On Random Graphs I," Publicationes Mathematicae, vol. 6, pp. 290-297, 1959.
- [5] A. L. Barabasi and R. Albert, "Emergence of Scaling in Random Networks," Science, vol. 286, no. 5439, pp. 509-512, October 1999.
- [6] N. Meghanathan, "Spectral Radius as a Measure of Variation in Node Degree for Complex Network Graphs," Proceedings of the 3rd International Conference on Digital Contents and Applications, pp. 30-33, Hainan, China, December 2014.
- [7] B. G. Horne, "Lower Bounds for the Spectral Radius of a Matrix," Linear Algebra and its Applications, September 1997, vol. 263, pp. 261-273.
- [8] G. Strang, G. Linear Algebra and its Applications, 4th Edition, Brooks Cole, Pacific Grove, CA, USA, 2006.
- [9] N. Meghanathan, "A Computationally-Lightweight and Localized Centrality Metric in lieu of Betweenness Centrality for Complex Network Analysis," Springer Vietnam Journal of Computer Science, vol. 4, no. 1, pp. 23-38, February 2017.
- [10] M. E. J. Newman, "Finding Community Structure in Networks using the Eigenvectors of Matrices," Physical Review E, vol. 74, no. 3, 036104, September 2006.
- [11] D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing, 1st Edition, Addison-Wesley, Reading, MA, December 1993.
- [12] P. Geiser and L. Danon, "Community Structure in Jazz," Advances in Complex Systems, vo. 6, no. 4, pp. 563-573, July 2003.
- [13] J. G. White, E. Southgate, J. N. Thomson and S. Brenner, "The Structure of the Nervous System of the Nematode Caenorhabditis Elegans," Philosophical Transactions B, vol. 314, no. 1165, pp. 1-340, November 1986.
- [14] N. P. Hummon, P. Doreian and L. C. Freeman, "Analyzing the Structure of the Centrality-Productivity Literature Created between 1948 and 1979," Science Communication, vol. 11, no. 4, pp. 459-480, May 1990. DOI: 10.1177/107554709001100405.
- [15] T. Biedl and B. J. Franz, "Graph-Drawing Contest Report," Proceedings of the 9th International Symposium on Graph Drawing, pp. 513-521, September 2001.
- [16] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, "The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-lasting Associations," Behavioral Ecology and Sociobiology, vol. 54, no. 3, pp. 396-405, September 2003.
- [17] J.-S. Lee, "Generating Networks of Illegal Drug Users Using Large Samples of Partial Ego-Network Data," Intelligence and Security Informatics, Lecture Nodes in Computer Science, vol. 3073, pp. 390-402, 2004.
- [18] W. de Nooy, "A Literary Playground: Literary Criticism and Balance Theory," Poetics, vol. 26, no. 5-6, pp. 385-404, August 1999.
- [19] V. Batagelj and A. Mrvar, Pajek Datasets, http://vlado.fmf.uni-lj.si/pub/networks/data/, 2006.
- [20] M. D. Resnick, P. S. Bearman, R. W. Blum, K. E. Bauman, K. M. Harris, J. Jones, J. Tabor, T. Beuhring, R. E. Sieving, M. Shew, M. Ireland, L. H. Bearinger and J. R. Udry, "Protecting Adolescents from Harm. Findings from the National Longitudinal Study on Adolescent Health," Journal of the American Medical Association, vol. 278, no. 10, pp. 823-832, September 1997.
- [21] D. Krackhardt, "The Ties that Torture: Simmelian Tie Analysis in Organizations," Research in the Sociology of Organizations, vol. 16, pp. 183-210, 1999.
- [22] J. L. Moreno, The Sociometry Reader, The Free Press, pp. 534-547, Glencoe, IL, USA, 1960.
- [23] M. Girvan and M. E. J. Newman, "Community Structure in Social and Biological Networks," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821-7826, June 2002.

- [24] H. R. Bernard, P. D. Killworth and L. Sailer, "Informant Accuracy in Social Network Data IV: A Comparison of Clique-level Structure in Behavioral and Cognitive Network Data," Social Networks, vol. 2, no. 3, pp. 191-218, 1980.
- [25] P. M. Gleiser, "How to become a Superhero," Journal of Statistical Mechanics: Theory and Experiments, P09020, September 2007.
- [26] L. Isella, J. Stehle, A. Barrat, C. Cattuto, J. F. Pinton and W. Van den Broeck, "What's in a Crowd? Analysis of Face-to-Face Behavioral Networks," Journal of Theoretical Biology, vol. 271, no. 1, pp. 166-180, February 2011. DOI: 10.1016/j.jtbi.2010.11.033.
- [27] W. W. Zachary, "An Information Flow Model for Conflict and Fission in Small Groups," Journal of Anthropological Research, vol. 33, no. 4, pp. 452-473, 1977.
- [28] E. M. Rogers and D. L. Kincaid, Communication Networks: Toward a New Paradigm for Research, Free Press, June 1980.
- [29] Y. Takahata, "Diachronic Changes in the Dominance Relations of Adult Female Japanese Monkeys of the Arashiyama B Group," The Monkeys of Arashiyama, pp. 124-139, Albany: State University of New York Press, 1991.
- [30] B. Hayes, "Connecting the Dots," American Scientist, vol. 94, no. 5, pp. 400-404, 2006.
- [31] R. L. Cross, A. Parker and R. Cross, The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations, Harvard Business Review Press, 1st Edition, June 2004.
- [32] C. McCarty and L. Freeman, http://moreno.ss.uci.edu/data.html, 2008.
- [33] J. Gil-Mendieta and S. Schmidt, "The Political Network in Mexico," Social Networks, vol. 18, no. 4, pp. 355-381, October 1996.
- [34] V. Krebs, "Proxy Networks: Analyzing One Network to Reveal Another," Bulletin de Méthodologie Sociologique, vol. 79, pp. 61-40, July 2003.
- [35] V. Gemmetto, A. Barrat and C. Cattuto, "Mitigation of Infectious Disease at School: Targeted Class Closure vs. School Closure," BMC Infectious Diseases, vol. 14, no. 695, pp. 1-10, December 2014.
- [36] D. MacRae, "Direct Factor Analysis of Sociometric Data," Sociometry, vol. 23, no. 4, pp. 360-371, December 1960.
- [37] C. P. Loomis, J. O. Morales, R. A. Clifford and O. E. Leonard, Turrialba Social Systems and the Introduction of Change, pp. 45-78, The Free Press, Glencoe, IL, USA, 1953.
- [38] J. P. Scott, The Anatomy of Scottish Capital: Scottish Companies and Scottish Capital, 1900-1979, Croom Helm, 1st Edition, 1980.
- [39] J. Grimmer, "A Bayesian Hierarchical Topic Mode for Political Texts: Measuring Expressed Agendas in Senate Press Releases," Political Analysis, vol. 18, no. 1, pp. 1-35, January 2010.
- [40] J. H. Michael, "Labor Dispute Reconciliation in a Forest Products Manufacturing Facility," Forest Products Journal, vol. 47, no. 11-12, pp. 41-45, October 1997.
- [41] E. Schwimmer, Exchange in the Social Structure of the Orokaiva: Traditional and Emergent Ideologies in the Northern District of Papua, C Hurst and Co-Publishers Ltd., December 1973.
- [42] M. Pearson and L. Michell, "Smoke Rings: Social Network Analysis of Friendship Groups, Smoking and Drug-taking," Drugs: Education, Prevention and Policy, vol. 7, no. 1, pp. 21-37, 2000.
- [43] T. Nepusz, A. Petroczi, L. Negyessy and F. Bazso, "Fuzzy Communities and the Concept of Bridgeness in Complex Networks," Physical Review E, vol. 77, no. 1, 016107, January 2008.
- [44] N. Meghanathan, " Complex Network Analysis of the Contiguous United States Graph," Computer and Information Science, vol. 10, no. 1, pp. 54-76, February 2017.
- [45] L. C. Freeman, C. M. Webster and D. M. Kirke, "Exploring Social Structure using Dynamic Three-Dimensional Color Images," Social Networks, vol. 20, no. 2, pp. 109-118, April 1998.
- [46] L. C. Freeman, S. C. Freeman and A. G. Michaelson, "How Humans See Social Groups: A Test of the Sailer-Gaulin Models," Journal of Quantitative Anthropology, vol. 1, pp. 229-238, 1989.
- [47] D. A. Smith and D. R. White, "Structure and Dynamics of the Global Economy: Network Analysis of International Trade 1965-1980," Social Forces, vol. 70, no. 4, pp. 857-893, June 1992.
- [48] K. P. Balanda and H. L. MacGillivray, "Kurtosis: A Critical Review," The American Statistician, vol. 42, no. 2, pp. 111-119, 1988.
- [49] J. H. Livesey, "Kurtosis Provides a Good Omnibus Test for Outliers in Small Samples," Clinical Biochemistry, vol. 40, no. 13-14, pp. 1032-1036, September 2007.
- [50] K. Goh, E. Oh, C-M. Ghim, B. Kahng and D. Kim, "Classes of the Shortest Pathway Structures in Scale Free Networks," Complex Networks, Lecture Notes in Physics, vol. 650, pp. 105-125, August 2004.

- [51] L. Subelj & M. Bajec, "Robust Network Community Detection using Balanced Propagation," The European Physical Journal B, vol. 81, no. 3, pp. 353-362, 2011.
- [52] P. Bonacich, "Power and Centrality: A Family of Measures," American Journal of Sociology, vol. 92, no. 5, pp. 1170-1182, February 1987.
- [53] L. Freeman, "Centrality in Social Networks Conceptual Clarification," Social Networks, vol. 1, no. 3, pp. 215-239, 1979.
- [54] L. Freeman, "A Set of Measures of Centrality based on Betweenness," Sociometry, vol. 40, no. 1, pp. 35-41, February 1977.
- [55] N. Meghanathan, "A Computationally-Lightweight and Localized Centrality Metric in lieu of Betweenness Centrality for Complex Network Analysis," Springer Vietnam Journal of Computer Science, vol. 4, no. 1, pp. 23-38, February 2017.
- [56] N. Meghanathan, "Correlation Coefficient Analysis of Centrality Metrics for Complex Network Graphs," Proceedings of the 4th Computer Science Online Conference, (CSOC-2015), Intelligent Systems in Cybernetics and Automation Theory: Advances in Intelligent Systems and Computing, vol. 348, pp. 11-20, April 27-30, 2015.