
International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

DOI: 10.5121/ijcnc.2017.9606                                                                                                                       77 

A RAPID DEPLOYMENT BIG DATA COMPUTING 

PLATFORM FOR CLOUD ROBOTICS 
 

Leigh Duggan
1
, James Dowzard

2
, Jayantha Katupitiya

3
, and Ka C. Chan

4 

 

1,2,3,4
Department of Mechatronic Engineering, University of New South Wales, Australia 

4
Department of Computer Science and Information Technology, La Trobe University, 

Australia
 

 

ABSTRACT 
 

The primary contribution of this research is the production of a general cloud robotics architecture that 

leverages the established and evolving big data technologies. Prior research in this area has not released 

all details of their deployed architectures, which prevents experimental results from being replicated and 

verified. By providing a general-purpose architecture, it is hoped that this framework will allow future 

research to build upon and begin to create a standardised platform, where research can be easily repeated, 

validated and compared.The secondary contribution is the critical evaluation of the design of cloud robotic 

architectures. Whilst prior research has demonstrated that cloud-based robotic processing is achievable 

via big data technologies, such research has not discussed the choice in design. With the ecosystem of big 

data technologies expanding in recent years, a review of the most relevant technologies for cloud robotics 

is appropriate to demonstrate and validate the proposed architectural design. 
 

KEYWORDS 
 

Cloud robotics, big data, OpenStack, Apache, ROS. 
 

1. INTRODUCTION 
 

Cloud robotics possesses enormous potential for furthering the capabilities and applications of 

robots in existing and new challenging environments. The designed architecture detailed in this 

paper has the potential to dramatically change the affordability of features and capabilities 

currently available to high performance and expensive robots. Cloud robotics and cloud-based 

deployments of big data systems share similar objectives and features. The more established and 

mature big data frameworks have the potential to be leveraged by cloud robotics, which prior 

research has demonstrated through the implementation of cloud-based processing with such 

technologies. 
 

Since the original Cloud Robotic framework of DAvinCi [1], few cloud robotic architectures have 

validated their choice of design, or explored the growing ecosystem of big data software and 

frameworks. 
 

The objective of this research is to: 
 

• Create a general cloud robotic architecture that leverages appropriate and mature big data 

technologies which can be used as a blueprint for cloud robotic deployments; 

• For this general architecture to possess components which are flexible, relevant, 

affordable, well supported, and implementable on a variety of infrastructures. 
 

The approach to achieve this objective is to: 
 

• Examine the architecture of prior research and deployments of cloud robotics to 

understand and identify the main components that constitute cloud robotics; 

• Examine and assess the current technologies of each component; 

• Make an appropriate recommendation for technology which is most appropriate for cloud 

robotics. 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

78 

2. RELATED WORK 
 

The primary cloud robotic projects that have utilized aspects of big data include: 
 

• DAvinCi (Distributed Agents with Collective Intelligence) project [1]; 

• RoboEarth Platform (including Raputya) [2] [3]; 

• Robot Grasping project [4]. 
 

2.1 DAVINCI 
 

DAvinCi was a privately funded project in 2010, that utilised a cloud-based infrastructure to 

demonstrate the advantages of moving heavy computational processes such as SLAM and 

mapping to the cloud. The project utilised Robot Operating System (ROS) software for data 

collection from sensors and forwarding to the cloud architecture, and a Hadoop cluster to store 

and process this data with localisation and mapping algorithms. The project demonstrated the 

scalability of Hadoop, and its impact on the time to perform robotic algorithms [1]. 
 

2.2 ROBOEARTH PLATFORM 
 

The RoboEarth Platform is a collection of software components that aims to create and facilitate 

the ‘World Wide Web for Robots’ [2]. The platform’s aim was for robots to exchange their 

acquired data to enable robots to collectively learn from one another. Big data techniques are used 

to learn and extract useful information such as acquired data, and make this available to robots in 

RoboEarth’s online database. This database houses a variety of robot-centric information 

including software components, maps, and task knowledge and object recognition models. Such 

information can be used by a robot (and its hardware) to extend a robots sensing, reasoning and 

functionality. Rapyuta [2] [3] is an open-source cloud computing component that creates a 

Platform-as-a-Service (PaaS) framework to move computational intensive activities from robots 

into the cloud. Each robot running Rapyuta creates a virtual container in the cloud that can be 

used to store data, to run computational intensive tasks, exchange information with other Rapyuta 

containers, and connect to the RoboEarth knowledge database [5]. 
 

2.3 CLOUD BASED ROBOT GRASPING 
 

The Cloud Based Robot Grasping project was developed to facilitate the sharing and learning of 

objects and grasping functions [4]. The project allowed a robot to send a picture of an object to 

the cloud for processing, which would attempt to identify it within its database, returning the 

information on the item if found. This information allowed a robot to understand and perform the 

appropriate grasping manoeuvre, the results of which were stored in the cloud for future 

reference. 
 

3. DESIGN JUSTIFICATION 
 

Whilst the introduction of big data conjures the characteristics of scalability, reliability, durability 

and fault tolerance, the overall characteristics of an end-to-end architecture must be appropriated 

as not all components will require such functionality. The characteristics of a general framework 

come from the need to make an architecture open and accessible to the widest audience possible, 

and to limit barriers to its use. A general architecture should also be modular and allow for 

components to be interchanged with alternative or more relevant technologies as they evolve and 

mature. Finally, a general architecture must have relevance to the area of study, but also be 

trending up within their uptake and use; this brings longevity to a general architecture. The 

characteristics of the proposed cloud robotic architecture to adhere to is summarised in Table 1. 
 

 

 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

Table 1.Characteristics for a gener

Characteristics 

Repeatability and 

Accessibility 

Modular/Flexible 

Relevance 

  

 

3.1 ROBOT COMPONENT 
 

Utilising the robot middleware ROS (Robot Operating System) 

research field of robotics. This platform is well established, actively supported, implemented 

upon basic robots right through to industrial implementations, and offers the greatest form of 

flexibility and features than any other robot middleware. Therefore, the robot component will not 

be exposed to an analysis. 
 

3.2 INTEGRATION AND MESSAGE 
 

The messaging system must satisfy a range of requirements to ensure it is suitable for a cloud 

robotics architecture and compatible with its interfac
 

Figure 1.Messaging system framework between the ROS robot platform and Apache Spark big data 

 

The three primary solutions as compared relative to these requirements as deta

below.   

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

Characteristics for a generic cloud robotic architecture. 
 

Description 

The architecture is not restricted and readily available for a 

free or nominal amount. Such features reduce the access 

barrier for future research to build upon. Accessibility also 

allows results to be repeatable and verified. 

Framework selection should not restrict the architecture or 

influence other areas of the cloud based architecture. This 

provides flexibility for future research to build upon

For components to be actively developed and supported, 

and will remain relevant for the foreseeable future. Existing 

implementations is desirable to show robustness and 

proven capabilities. 

e ROS (Robot Operating System) is ubiquitous when it comes to the 

research field of robotics. This platform is well established, actively supported, implemented 

upon basic robots right through to industrial implementations, and offers the greatest form of 

ny other robot middleware. Therefore, the robot component will not 

ESSAGE SYSTEM COMPONENT 

The messaging system must satisfy a range of requirements to ensure it is suitable for a cloud 

and compatible with its interfacing components as seen in Fig. 1

 

Messaging system framework between the ROS robot platform and Apache Spark big data 

platform. 

 

The three primary solutions as compared relative to these requirements as detailed in Table 2 

 

 

 

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

79 

The architecture is not restricted and readily available for a 

free or nominal amount. Such features reduce the access 

barrier for future research to build upon. Accessibility also 

Framework selection should not restrict the architecture or 

ased architecture. This 

flexibility for future research to build upon. 

supported, 

and will remain relevant for the foreseeable future. Existing 

implementations is desirable to show robustness and 

is ubiquitous when it comes to the 

research field of robotics. This platform is well established, actively supported, implemented 

upon basic robots right through to industrial implementations, and offers the greatest form of 

ny other robot middleware. Therefore, the robot component will not 

The messaging system must satisfy a range of requirements to ensure it is suitable for a cloud 

ing components as seen in Fig. 1.  

 

Messaging system framework between the ROS robot platform and Apache Spark big data 

iled in Table 2 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

80 

Table 2. Requirements for the messaging system and comparison between network implementations. 
 

# Requirement 

Standard 

Network 

Protocol 

Big 

Data 

Sensor 

Networks 
Description 

1 Event Driven - Y - 

For streaming systems, data 

must be the event which triggers 

data to be sent, and not utilise 

polling which introduces latency 

(i.e.publish/subscribe). 

2 Durability - Y - 

The recovery from faults, 

including writing messages to 

memory, and/or replicating 

across a distributed system. 

3 Versatility Y Y Y 
The message size and types 

supported. 

4 Scalability - Y - 

The resilience to performance 

degradation (i.e. throughput, 

latency) as the volume and 

velocity of data increases (i.e. 

distributed messaging systems). 

5 Availability - Y - 

Providing responsive recovery 

in the event of failure and/or 

system redundancy. 

6 
Cross-platform 

support 
- Y Y 

For the message system to work 

across multiple services, 

systems, platforms and 

enterprises. Multi-language 

support for clients. 

7 Decoupling - Y - 

The ability to sustain 

performance in the event of 

slow messaging 

sources/destinations, or the 

sudden surge in velocity of 

messages. 

8 Efficiency Y Y Y 

Efficiency includes the 

establishment of sessions, 

handshakes and 

acknowledgments (if required), 

and can extend to the use of 

compression. 

9 Security/Privacy Y Y - 

Use of authorisation, encryption, 

handshakes to ensure data is 

protected and sent to the 

intended destination. 
 

3.2.1 GATEWAY 
 

The IoT Cloud system [6] was first developed in 2012 as an open source cloud-compatible 

messaging system that utilises a combination of open source software that enables movement 

between sensor-centric devices and cloud-based system for data processing and storage. The 

system allows for both data and control messages to be sent between systems, and the handling of 

both block and streaming data in near real-time. The architecture includes Apache Zoo Keeper for 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

81 

device coordination, and a choice of supported message brokers (i.e. Active MQ, Rabbit MQ, 

Apache Kafka) to manage the movement of data into the cloud. 
 

3.2.2 MESSAGE BROKER 
 

In terms of middleware communications, there are four main options which are compared in 

Table 3 below.  
 

Table 3.Comparison of middleware communication options and their functionalities. 

  

Name Description 

Apache Flume 
Distributed and reliable system for the aggregation of large volume and 

velocity data (primarily log) from many sources to big data storage. 

Apache Kafka 

General purpose message system that supports high throughput, reliability 

and horizontal scalability. Able to ingest from and publish to multiple 

sources. 

Flakfa 

Combines both Apache Kafka and Storm, utilising the versatile 

architecture of Kafka, and taking advantage of Flume’s pre-built 

consumers/producers. 

Qpid 
Implements the Advanced Messaging Queuing Protocol (AMQP) standard, 

on top of a reliable, fault-tolerant and scalable platform. 
 

 

From these options, Apache Flume and Apache Kafka were exposed to a deeper analysis as they 

are the most viable options for the messaging component of the architecture. This is detailed in 

Table 4 and the analysis below. 
 

Table 4. Deeper comparison between Apache Flume and Apache Kafka. 
 

 Apache Flume Apache Kafka 

Throughput XXXX XXXX 

Integration  

XXXX 

Offers many built-in sources 

and sinks 

XX 

Does possess many multi-language 

clients, however more coding required 

Versatility XX 

XXXX 

Allows multiple producers and 

consumers to share topics. 

Advantageous when data is to be 

consumed by multiple applications 

Processing 

Capabilities 

Simple 

filtering/transformation 
None 

Scalability 

XXX 

Downtime required when 

adding new consumers 

XXXX 

New consumers without affecting 

performance or downtime 

Reliability & 

Durability 

No 

Data is not persisted, and lost 

upon failure 

Yes 

Data is persisted on Kafka cluster, and 

replicated across the cluster. Supports 

synchronous & asynchronous replication 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

Spike 

Handling 

No 

Cannot vary speed at which 

data is consumed from 

different sources

Community 

Development 

and Support 

XXXX 

Maturity XXX 

Embedded 

Hadoop 

Distributions 

Hortonworks, Cloudera

Applications 

Application logs, sensor and 

machine data, geo

data and social media
 

 

Apache Flume is a more mature system with greater development, support, built

sources and sinks, and basic in-stream processing, however the system is geared towards one

ingestion to a Highly Distributed File System (HDFS) datastore. This results in a lack of 

reliability, durability and spike handling capabilities compared to Apache Kafka, which creates a 

robust and versatile messaging system. The variable speed of Apache Kafka’s

ease at which data can be consumed by multiple applications creates a flexible architecture in 

which sensor data of varying sizes and velocities can be saved or processed in different ways.

One limitation of Kafka as a general purpose mess

messages without any headers. Metadata about messages can

therefore when such metadata is r

Thrift. 
 

Figure 2.Updated message broker diagram demonstrating

3.3  BIG DATA PROCESSING C
 

3.3.1 PROCESSING ENGINE 
 

For the last few years, debate in stream processing has been greatly contested between 

Storm and Apache Spark Streaming. These two processin

are also offered as services in the cloud, and contained within big data distributions, with both 

possessing their strengths and limitations. Storm and Spark 

processing engine are compared in Table 4 below.

 

 

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

Cannot vary speed at which 

data is consumed from 

different sources 

Yes 

Pulls data from the topic and supports 

varied consumption by consumers 

XX 

XX 

Hortonworks, Cloudera Hortonworks, Cloudera 

Application logs, sensor and 

machine data, geo-location 

and social media 

Generic publish-subscribe messaging

Apache Flume is a more mature system with greater development, support, built-in integration to 

stream processing, however the system is geared towards one

on to a Highly Distributed File System (HDFS) datastore. This results in a lack of 

reliability, durability and spike handling capabilities compared to Apache Kafka, which creates a 

robust and versatile messaging system. The variable speed of Apache Kafka’s streams and the 

ease at which data can be consumed by multiple applications creates a flexible architecture in 

which sensor data of varying sizes and velocities can be saved or processed in different ways.

One limitation of Kafka as a general purpose messaging system is its support of only byte 

rs. Metadata about messages cannot be added as a header, and 

therefore when such metadata is required to be sent, a wrapper must beutilised such as Apache 

 

age broker diagram demonstrating the use of IoTCloud and Apache Kafka in both 

client and cloud forms. 
 

COMPONENT 

For the last few years, debate in stream processing has been greatly contested between 

Storm and Apache Spark Streaming. These two processing engines within the Apache eco

are also offered as services in the cloud, and contained within big data distributions, with both 

possessing their strengths and limitations. Storm and Spark among other competitors for the 

processing engine are compared in Table 4 below. 

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

82 

and supports 

varied consumption by consumers  

subscribe messaging 

in integration to 

stream processing, however the system is geared towards one-way 

on to a Highly Distributed File System (HDFS) datastore. This results in a lack of 

reliability, durability and spike handling capabilities compared to Apache Kafka, which creates a 

streams and the 

ease at which data can be consumed by multiple applications creates a flexible architecture in 

which sensor data of varying sizes and velocities can be saved or processed in different ways. 

aging system is its support of only byte 

not be added as a header, and 

utilised such as Apache 

 

the use of IoTCloud and Apache Kafka in both 

For the last few years, debate in stream processing has been greatly contested between Apache 

g engines within the Apache ecosystem 

are also offered as services in the cloud, and contained within big data distributions, with both 

among other competitors for the 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

83 

 Table 4. Suitability of Apache products to serve as a cloud robotics engine. 

 

# Requirement 
Cloud 

Robotics 

Apache 

Spark 

Streaming 

Apache 

Storm 

Core 

Apache 

Storm 

Trident 

Apache 

Samza 

1 Data Mobility Medium XX XXXX XXXX XXXX 

2 Data Querying Medium XXXX XX XX X 

3 

Handling 

Stream 

Imperfections 

Low XX - - - 

4 
Predictable 

Outcomes 
High XX XXXX XX XX 

5 
State and 

Stored Data 
High XXX - XX XXXX 

6 

Data Safety 

and 

Availability 

High XXXX XXXX XXXX XXXX 

7 

Partition and 

Scale 

(automatic) 

Medium XXX XXX XXX XXX 

8 Responsiveness High XXX XXXX XXX XXX 

 

Storm possesses superior processing speed, with sub-second latency. Spark Streaming can only 

offer latency measured in seconds, however, the inherent latency with network communications 

reduces the importance of latency for cloud robotics. 
 

Stateful operations are the ability for an engine to possess persistent memory and utilise this 

within stream processing for dynamic decision making. Spark Streaming possesses stateful 

operations by default, however Storm requires the use of third-party components or the use of 

Storm Trident in order to provide statefulness. Since statefulness is not built into the Storm 

architecture, such customisations may not be covered by Storm’s reliability and durability 

measures.Both Apache projects possess some of the most active Apache development 

communities, indicating both their popularity and relevance. Both projects are also offered in 

common big data distributions and are available as services by cloud service providers. 
 

Lastly, the requirement for a consistent code-base for both batch and stream processing is 

becoming an important factor when selecting big data frameworks. The individual benefits that 

batch and stream processing provide have led to an acknowledgement that both forms of 

processing must exist. A single framework for query implementation and maintenance reduces 

the time and cost involved with development and support. Whilst this research has a focus on 

stream processing for initial cloud robotic processing, it is acknowledged that other forms of 

processing (i.e. batch, machine learning) will have their place. Storm requires development quite 

different from batch processing, whereas Spark provides a consistent development platform for 

multiple processing paradigms. 

 

Due to Apache Spark Streaming’s stateful operation, single code-base and reduced importance 

placed on latency, this distributed stream processing engine will be chosen as the engine for use 

by the cloud robotics general architecture. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

84 

3.4 CLOUD INFRASTRUCTURE 
 

The chosen big data platform must address the shortcomings of prior cloud robotic architectures 

utilising big data software, which include: 
 

• The ability of their implementation to be repeated and verified; 

• Support for a single processing paradigm; 

• Evolving with recent developments and improvements in the big dataecosystem. 
 

The use of a big data distribution over individual pieces of software has many benefits for the 

field of cloud robotics: 
 

• Reduces the expertise required to use big data platforms; 

• Allows for rapid deployment by reducing the time required to deploy andconfigure a 

cluster; 

• Provides enormous flexibility in terms of supporting multiple processingparadigms, and 

the many plugins and frameworks which aid in writing queriesand algorithms; 

• Allows for deployments to be easily re-created and results verified; 

• The enterprise grade stability, quality and support provides legitimacy to the architecture. 
 

Big Data distributions also possess advantages over cloud providers, as distributions offer greater 

flexibility in where they can be deployed (i.e. onsite hardware, or using software such as Cloud 

Break to deploy on cloud providers if additional resources are required). Cloud providers also 

incur a cost, which would increase the barriers to a general cloud robotics architecture. 
 

3.4.1 BIG DATA DISTRIBUTION 
 

Of the big data distributions investigated, only Cloudera and Hortonworks offer their distributions 

for free. Cloudera’s free distribution however is a cut-down version of the enterprise distribution, 

charged annually on a per node basis [7]. The free Cloudera distribution (Cloudera Express) also 

does not offer stream processing support, and is only supported by Amazon’s AWS platform [8]. 
 

The Horton Distribution Platform (HDP) [9] is an Open Enterprise Hadoop platform, released 

entirely as a free and open distribution. As one of the largest contributors to the open source big 

data community, the company understands the core Apache big data ecosystem (i.e. Hadoop,  

Ambari, Storm, Spark etc), and combines these core projects into a stable platform with enterprise 

robustness and features. HDP is also the only distribution to currently support a non-Linux 

operating system in the form of the Windows platform. The distribution is available as a 

standalone sandbox distribution, which allows for a rapid implementation of a multi-node Hadoop 

cluster on a virtual machine, or as a standard distribution for custom deployments and 

configurations. 
 

HDP contains both Apache Spark Streaming and Apache Kafka, and includes Apache Ambari for 

rapid deployment and management of the cluster. Partnering with Microsoft Azure and 

Rackspace to provision cloud based HDP clusters, their Cloud break software provides great 

flexibility when a HDP deployment is required to be hosted by a cloud provider. The complete 

HDP ecosystem supports core data storage and access, but also offers components for 

governance, integration, security and operations.  
 

The landscape of big data has changed dramatically over the last four years, with the creation of 

an ecosystem of software, distributions, and cloud based providers offering big data as a service. 

The use of a big data distribution in a cloud robotic architecture is a novel approach, justified 

from the many benefits a stable, well supported and flexible platform brings to a big data 

deployment. HDP was selected as the most appropriate distribution for a general cloud robotics 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

architecture due to its distribution being free and open, created by active open source

contributors, and possesses flexible and unique deployment options.
 

3.4.2 CLOUD DEPLOYMENT AND 
 

Horton works released Cloud Break (assisted through the acquisition of Sequence

automatically provision and scale HDP clusters upon major cloud providers. Cloud

implements a policy-based auto

Platform, and providers using OpenStack, which allows HDP to elast

on demand. Cloud break achieves this functionality through the creation of cloud provider 

templates which integrate the auto

an Ambari blueprint which declares the

be scaled. 
 

The advantages of Cloud Break include
 

• Auto-scaling of a cluster;

• Flexibility of cloud provider to host a HDP cluster;

• Increased control of the settings of a cluster’s architecture to

and not embedded upon a c

 

4. COMPLETE ARCHITECTURE
 

The developed architecture is visualised in Fig. 3 and broken down into its functional 

components in Table 5 below.

 

Figure 3.Physical layout of the design

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017

distribution being free and open, created by active open source

xible and unique deployment options. 

ND INFRASTRUCTURE 

Break (assisted through the acquisition of Sequence IQ ) which can 

automatically provision and scale HDP clusters upon major cloud providers. Cloud

based auto-scaling system compatible with Azure, AWS, Google Cloud 

Platform, and providers using OpenStack, which allows HDP to elastically expand and contract 

break achieves this functionality through the creation of cloud provider 

templates which integrate the auto-scaling settings to the chosen provider, and also the creation of 

an Ambari blueprint which declares the cluster’s architecture, which defines how the cluster will 

Break include: 

scaling of a cluster; 

provider to host a HDP cluster; 

Increased control of the settings of a cluster’s architecture to a universalAmbari blueprint, 

and not embedded upon a cloud provider.  

RCHITECTURE 

The developed architecture is visualised in Fig. 3 and broken down into its functional 

components in Table 5 below. 

 
Physical layout of the designed architecture and the interfaces between the chosen components.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

85 

distribution being free and open, created by active open source 

IQ ) which can 

automatically provision and scale HDP clusters upon major cloud providers. Cloud break 

scaling system compatible with Azure, AWS, Google Cloud 

ically expand and contract 

break achieves this functionality through the creation of cloud provider 

scaling settings to the chosen provider, and also the creation of 

how the cluster will 

a universalAmbari blueprint, 

The developed architecture is visualised in Fig. 3 and broken down into its functional 

 

ed architecture and the interfaces between the chosen components. 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

86 

Table 5.Complete architecture breakdown with choices of each component and a description of the 

software's functionality. 
 

# Component Software Description 

1 Robot Middleware ROS 

An established, flexible, and heavily 

utilised robot platform used widely 

from research to complex and 

industrial purposes. 

2 Gateway 

IoTCloud2 

• IoTrobots 

• Sensorstream 

• ZooKeeper 

Message translation that serves the 

robot messages to/from the message 

broker. Is composed of (3) components 

due to the complexities associated with 

passing data across a ROS boundary 

3 Message Broker Apache Kafka 

A reliable, scalable, and fast message 

broker passes messages between a 

ROS enabled robot, and the big data 

stream processor and cloud storage. 

4 Big Data Distribution 

HDP 

(Hortonworks 

Distribution 

Platform) 

The open enterprise big Data 

distribution created and supported by 

Hortonworks. Assembles a full big data 

stack into a stable and flexible platform 

for rapid deployment with enterprise 

grade features. 

4.1 Data Storage HDFS HDP’s default big data storage system 

4.2 Cluster Management Apache Ambari 

HDP’s cluster deployment and 

management tool which provides a 

simple web-based interface to deploy 

and manage a HDP cluster and all its 

features and services. 

5 Processing Engine 
Apache Spark 

Streaming 

A big data stream processing engine 

that is packaged within HDP 

6 
Cloud 

Deployment/Scaling 
Cloud break 

Allows the provisioning, managing and 

monitoring of cloud-based Big Data 

clusters. 

7 
Cloud 

Infrastructure/Supplier 

Flexible: 

•  Own hardware 

•  Cloud Provider 

The architecture is independent of a 

cloud provider and can be deployed on 

major cloud providers (i.e. Azure, 

AWS, Google), or on bare metal 

internet connected infrastructure. 
 

 

5. CONCLUSION 
 

The use of mature big data technologies in the emerging field of cloud robotics is an area of 

research in its infancy. The field of cloud computing offers enormous potential to robotics by 

leveraging the prodigious processing resources, information and services available in the cloud, 

making more complex sensing and decision making accessible to low cost robots. Big data is a 

more mature technology that has already developed the ability to leverage the power of the cloud, 

and the abilities that the field of cloud robotics can benefit from. 
 

Whilst prior research has implemented cloud robotic and architectures which utilise big data 

components, the architectures of instances which yielded positive results were found to be: 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

87 

• Out of date; 

• Non-replicable; 

• Did not justify the choice of component or architecture; or 

• Have not taken full advantages of changes in the big data ecosystem. 
 

This research has examined the major components of cloud robotics and conducted a thorough 

analysis of available technologies, and determined the most suitable for the purposes of cloud 

robotics. These components were then assembled to produce general cloud robotics architecture. 
 

The contributions made by this research include: 
 

• Critical analysis and justification of components within a cloud robotic architecture; 

• Introduction and justification of the use and benefits of an enterprise grade big data 

distribution for the purposes of cloud robotics; 

• Composing a generic cloud robotic architecture from open source and freely distributed 

software, capable of running on standalone or cloud provider infrastructure; 
 

By critically evaluating and justifying the composition and developing an easily replicable cloud 

robotic architecture, it is hoped that this research will modernise the existing approaches. Cloud 

robotics has taken with regards to big data technologies, and facilitate collaboration and 

verification to see this area of research mature. 
 

6. FUTURE WORK 
 

The development of generic cloud robotics architecture creates many avenues in which future 

work can be taken, in addition to emphasise the existing areas of cloud robotics which could be 

explored. 
 

• Validation of the proposed cloud robotics architecture through the deployment onto 

hardware, implementation of a robotic processing algorithm in Apache Spark Streaming 

(i.e. SLAM), and comparing the performance and results achieved from SLAM 

implemented within ROS. 

• Implementing multiple message systems and comparing performance to validate a claim 

by previous research that Apache Kafka may possess latency in comparison to other 

messaging systems (i.e. Rabbit MQ). Validating this claim may reduce the suitability of 

using big data technologies for cloud robotic purposes.  

• Implementing different ingestion tools (Apache Flume, Apache Kafka, and Apache NiFi) 

for real-time and high volume data collection and streaming [10]. Evaluating limitations, 

identifying use cases, and comparing ease-of-use and performances of these technologies.  

• Utilising the Hortonworks Sandbox distribution virtual machine image and creating a 

custom image is pre-configured for the purposes of cloud robotics. Much in the way that 

Hortonworks have created this Sandbox environment to instantly deploy a small cluster 

for testing purposes, A custom image for cloud robotics would instantly place a powerful 

big data stream processing platform at the fingertips of ROS enabled robots by just 

running the image in a virtual machine.  

• Extending the architecture to support both Apache Spark Streaming and Apache Storm, 

and compare their performance for completing cloud robotic based processing. Despite 

the competition between these two streams processing engines, very few valid 

experiments exist which directly compares their performance in any field. 

• A review of the key robotic based algorithms is suitable for implementation in the cloud, 

and comparing the suitability to existing and emerging big data processing paradigms, 

(i.e. Kappa and Lambda). Such research could indicate the most suitable distributed 

processing engine which the field of cloud robotics should adopt. 



International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.6, November 2017 

88 

• Utilising the existing integration of IoT Cloud and its robotic libraries for Turtle bots and 

Parrot drones, to create a general integration package that facilitates the real-time 

movement of data across the boundaries of the ROS platform. A review of ROS 

integration found a lack of packages with this capability, with a general integration 

package benefitting many areas of robotics. 

• Reviewing the enterprise features gained through the use of a big data distribution (i.e. 

authorisation, security, data life-cycle management, and assessing the relevance and 

possible use in the field of cloud robotics.  
 

As the big data ecosystem continues to expand and grow with additional capabilities and 

processing power, the future of cloud robotics is going to be very exciting. The merging of 

artificial intelligence, big data, and cloud computing provides us a foundation with intelligence 

and computing power and resources in demand to tackle virtually any creative and unforeseen 

applications. 
 

REFERENCES 
 

[1] R.Arumugam et al., “DAvinCi: A Cloud Computing Framework for Service Robots” IEEE 

International Conference on Robotics and Automation, Anchorage, A.K., 2010, pp. 3084–3089, IEEE, 

doi [10.1109/ROBOT.2010.5509469]   
 

[2] M. Waibel et al., “RoboEarth – a World Wide Web for Robots” IEEE Robotics and Automation 

Magazine, vol.18, issue: 2, June 2011. [10.1109/MRA.2011.941632]   
 

[3] D. Hunziker et al., “Rapyuta: The RoboEarth Cloud Engine”, IEEE International Conference on 

Robotics and Automation Karlsruhe, pp. 438–444, 2013, IEEE, doi [10.1109/ICRA.2013.6630612]   
 

[4] B. Kehoe et al. “Cloud Based Robot Grasping with the Google Object Recognition Engine”, IEEE 

International Conference on Robotics and Automation,Karlsruhe, pp. 21–28, 2013, IEEE 
 

[5] G. Mohanarajah, D. Hunziker, M. Waibel, and R. D'Andrea, “Rapyuta: A Cloud Robotics Platform,” 

IEEE Trans. Autom. Sci. Eng., pp. 1–13, Jul. 2014. doi [10.1109/TASE.2014.2329556] 
 

[6] A.J. Fiannaca and J. Huang. "Benchmarking of Relational and NoSQL Databases to Determine 

Constraints for Querying Robot Execution Logs." Report, 2015, University of Washington [online] 

available http://courses.cs.washington.edu/courses/cse544/15wi/projects/Fiannaca_Huang.pdf 
 

[7] Cloudera Enterprise (2015) Cloudera Data Sheet [online] available  

 http://www.cloudera.com/content/dam/cloudera/Resources/PDF/Datasheet/datasheet-cloudera-

enterprise.pdf 
 

[8] Cloudera and Amazon Web Services, Cloudera, [online] available  

 http://www.cloudera.com/content/www/en-us/partners/solutions/amazon-web- services.html   
 

[9] Hortonworks homepage (2011–) [online] available http://hortonworks.com/ 
 

[10] T. Siciliani (2017) Dig Data Ingestion: Flume, Kafka, and NiFi [online] available  

 https://dzone.com/articles/big-data-ingestion-flume-kafka-and-nifi 
 

[11] K. Lim, J. Katupitiya, K. C. Chan, and M. Martin, “Design of an IT Capstone Subject–Cloud 

Robotics,” Information Technology in Industry, vol. 2, no. 3, pp. 104–110, 2014.  
 

[12] K. Lim, J. R. Carthew, L. R. Savy, J. Katupitiya, K. C. Chan, and M. Martin, “Development of a 

Cloud Robotic Testbed for IT Capstone Projects,” Proceedings of the 9th International Conference on 

Information Technology and Applications (ICITA), Sydney, NSW, Australia, July 2014. 

 


