
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

DOI : 10.5121/ijcsea.2016.6301 1

COMPARISON OF COLLABORATIVE FILTERING

ALGORITHMS WITH VARIOUS SIMILARITY MEASURES

FOR MOVIE RECOMMENDATION

Taner Arsan, Efecan Köksal, Zeki Bozkuş

Department of Computer Engineering, Kadir Has University, Istanbul, Turkey

ABSTRACT

Collaborative Filtering is generally used as a recommender system. There is enormous growth in the

amount of data in web. These recommender systems help users to select products on the web, which is the

most suitable for them. Collaborative filtering-systems collect user’s previous information about an item

such as movies, music, ideas, and so on. For recommending the best item, there are many algorithms,

which are based on different approaches. The most known algorithms are User-based and Item-based

algorithms. Experiments show that Item-based algorithms give better results than User-based algorithms.

The aim of this paper isto compare User-based and Item-based Collaborative Filtering Algorithms with

many different similarity indexes with their accuracy and performance. We provide an approach to

determine the best algorithm, which give the most accurate recommendation by using statistical accuracy

metrics. The results are compared the User-based and Item-based algorithms with movie recommendation

data set.

KEYWORDS

Collaborative Filtering, Recommendation Systems, User-based Algorithms, Item-based Algorithms

1. INTRODUCTION

Collaborative Filtering (CF) is became most popular method for decreasing information conflicts.

Works Collaborative filtering is working like creating a database of preferences for users and

items. The system has significant success on the Internet and most big companies use CF. The

idea under this paper is about selecting right information to the right user in the given database.

Automated collaborative filtering systems aim that finding users who that the same tastes or

information according to the specific purpose. To build the database, users share information or

preferences with the system so the system can decide better choices for the other users. To

achieve that users should give their feedback truly [1, 2].

In this paper, database of Collaborative Filtering System includes the data of users and the movies

as shown in Table 1.

Table 1. Collaborative filtering System is about prediction of missing rate in User-Item matrix. Prediction

for theNathan’s rate for Titanic.

 Star Wars Hoop Dreams Contact Titanic

Joe 5 2 5 4

John 2 5 3

Al 2 2 4 2

Nathan 5 1 5 ?

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

2

Collaborative filtering algorithms are divided into two different recommender systems that are

User-based recommender system and Item-based recommender system as shown in Figure 1 and

Figure 2 respectively.

Figure 1. Collaborative filtering Systems applied in User-based Recommender System.

Figure 2. Collaborative filtering Systems applied in Item-based Recommender System.

2. FRAMEWORK

2.1. Introduction to Apache Mahout

In this paper, Apache Mahout is used as an implementation framework, whichallows developers

to generate strong and scalable recommender.These are publicly available sources machine

learning library. Apache Lucane Project pioneer to start Mahout as a by-product in 2008.Mahout

principally provides in content search and technologies of receiving information. When the

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

3

collection of data is too large, Mahout intends became the first choice as a library for

collaborative filtering. Mahout is coded as Java programming Language. Mahout doesn’t supply a

user interfaces or installer. After coding part it is the job to the developer to complete interfaces

for the algorithm. The Mahout library includes a lot of recommender systems. This studyalso

discusses how Mahout has adapted the User-based Recommender Systems and Item-based

Recommender Systems [3, 4].

2.1.1. Further Subsections

To build up the inputs for the purpose of the paper, first datasets need to be converted to csv

extension file. This file consists of some data, which are User ID, Item ID and the given

preferences (rates).Ids in Mahout are always number (integer) and the preference has the property

that is the larger number is positive strong preferences. According to the Movie Lens data sets,

these preferences are between 1 and 5 as an integer. After converting data file to the csv file, first

column shows user id, second column shows item id and the last column shows the rates [4].

2.1.2 Recommender Input File, Intro Csv

Csv file is shows the numbers separating with commas. To be more clear the table shows which

column shows which identity [3,4]. Table 2 shows what information includes csv file.

Table 2.Information includedby csv file

The following codes are how u.data can be converted to csv file in Java

publicclass MovieDataConvert {

 publicstaticvoid main(String[] args) throws IOException {

 BufferedReader br = new BufferedReader(new

FileReader("data/u.data"));

 BufferedWriter bw = new BufferedWriter(new

FileWriter("data/movies.csv"));

 String line;

 while((line = br.readLine()) != null) {

 System.out.println(line);

 String[] values = line.split("\\t", -1);

 bw.write(values[0] + "," + values[1] + "," + values[2] +

"\n");

 }

 br.close();

 bw.close();

 }

}

FileReader: Creates a new FileReader, given the name of the file to read from

User ID Movie ID Rates

1 102 3

2 35 2

2 75 5

91 102 3

101 54 3

101 102 4

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

4

FileWriter: Constructs a FileWriter object given a file name.

BufferedReader: Creates a buffering character-input stream that uses a default-sized input buffer.

BufferedWriter: Writes text to a character-output stream, buffering characters so as to provide for

the efficient writing of single characters, arrays, and strings.

readLine: Reads a line of text. A line is considered to be terminated by any one of a line feed

('\n'), a carriage return ('\r'), or a carriage return followed immediately by a linefeed.

2.1.3 Creating a Recommender

A little piece of code given as an example of how to create recommendation to users [3, 4].

class UserBasedPearsonCorrelationSimilarity {

Public static void main(String[]args) throws Exception{

DataModel model = new FileDataModel(new File("data/movies.csv"));

 ←Load Data files

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

 UserNeighborhood neighborhood = new

NearestNUserNeighborhood(50,

 similarity, model);

 Recommender recommender = new

GenericUserBasedRecommender(model,

 neighborhood, similarity);

←Create Recommender Engine

HashMap<String,

String>getMovieNameById=MovieItemConvert.getGetMovieNameById();

 List<RecommendedItem>recommendations =

recommender.recommend(2,5);

← For User 2,Recommend 5 items

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

 }

 }

}

With DataModel the program can reach all preferences which are user and item data and rates.

With UserSimilarity the program can find how similar the users.

With UserNeighborhood the program can find the most similar user for the selected user.

With Recommender the program can recommend items to the users.

2.1.4Analyzing the Output

When developer runs the code, output of this code should be like

RecommendedItem[Item:106, value:4.96451]

RecommendedItem[Item:205, value:4.36231]

RecommendedItem[Item:100, value:4.26752]

RecommendedItem[Item:12, value:4.13121]

RecommendedItem[Item:502, value:4.01531]

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

5

The components of User-based recommendation in Mahout is given in Figure 3. This figure also

shows interaction of the components.

Figure 3. Interaction of components in Mahout User-based recommendation.

3. SIMILARITY MEASURES

Recommender systems contain many similarity metrics that come from machine learning. They

are important for recommender systems. Each similarity metrics are related with vector space

methods; but there are various ways for defining the similarity. They can be categorized in a way

that distance and degree measurement. There are different similarity calculation techniques for

computing similarity between users. Since each similarity have different formulas, they give

different measures from each other. Some similarity computation techniques are explained in the

following sub headings [5].

In the Collaborative Filtering Systems, there is a mutual point that is establishment of similarity

between users and items. The Mahout library has concerted a lot of similarity algorithms and

gives permission to the developers for integrating them into collaborative Filtering Recommender

Systems for the purpose of clarifying similar neighborhoods to the users or computing similarities

between items. Mahout has concerted similarity algorithms, which are,

1. Euclidean Distance Similarity

2. Log Likelihood Ratio Similarity algorithms

3. Pearson Correlation Coefficient Similarity

4. Tanimoto Coefficient Similarity

5. Uncentered Cosine Similarity

6. Spearman Correlation Coefficient Similarity

3.1 Euclidean Distance Similarity

In the code implementing EuclideanDistanceSimilarity (model) to UserSimilarity will work for

this method. The method based on distance between users.

This method is working as users is a point in many items. The table has the rates of the each user

to the each item. This metric converts Euclidean distance d between 2 such users. Distance value

is smaller when these users are more similar. This method gives the value of 1/ (1+d).It never

gives negative value as a similarity and when the value increases it means that they are more

similar [3].

The equation is given in (1) as

Recommender

UserSimilarity

UserNeighborhood

DataModel Application

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

6

��	(x, y)=�(�� − 	�)� + (�� − 	�)�=�∑ (�� − 	�)����� (1)

Table 3. Similarities between user 1 and the other users.

Euclidean Item 1 Item 2 Item 3 Distance Similarity to User 1

User 1 5.0 3.0 2.0 0.000 1.000

User 2 3.0 2.0 5.0 3.937 0.203

User 3 2.0 - - 2.500 0.286

User 4 5.0 - 3.0 0.500 0.667

User 5 4.0 3.0 2.0 1.118 0.472

In the code implementing EuclideanDistanceSimilarity (model) to ItemSimilarity will work for

this method.

As shown in Table 3, this method compares rates of the items for one item not for one user to

items. Item similarity gives better results because user based similarity affected by mood of user

or tastes of user can change over time. Item similarities are more fixed and better for

precomputation. It speeds up computation as runtime.

3.2 Log Likelihood Similarity

In the “Accurate Methods for the Statistics of Surprise and Coincidence” paper Ted Dunning

created Log Likelihood Ratio Similarity. Log Likelihood similarity is similar to Tanimoto

similarity, but it is more complex to understand. It can explain with Math and it doesnot take

individual preference. The value gives how unlikely the user to have so much conflicts and also it

is based on total number of items out and total number of each user has preferences. It means to

dissimilar user will have some common items, but two similar user will conflict. For example, if

two users have 4 preferences in common, but have both only taken 10 preferences into the data

model, they will be considered more similar than two users who have 4 preferences in common

but have both taken over 50 preferences into the data model[3]. Table 4 shows the similarity

between users according to the Log Likelihood Similarity Measurement.

Table 4. Example for Log Likelihood Similarity Measurement.

 Item1 Item2 Item3 Item4 Item5 Item6 Item7
Similarity to

the user1

User 1 X X X 0.90

User 2 X X X X 0.84

User 3 0.55

User 4 X X X X 0.16

User 5 X X X X X X 0.55

3.3 Pearson Correlation Similarity

It is used for converting similarity between two users or items by measuring obliquity of two

series of preferences to act together in a comparative and linear manner. It considers preferences

of conflicting users and items. It tries to find each users’ or items’ derivations from their average

rates while recognizing linear adjustment between two items or users.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

7

 P, C(w,u)=
∑ (��,�� ���)(��,��	��)

�∑ (��,����)� ∑ (��,��	��)���
 (2)

w and u shows the two users or items for which the coefficient is calculated, i is an item, ��,�and

��,� are individual ratings from w and u for i, and average ratings of ��and ��are ,for user (or

item) w and u [3, 4]. Table 5 shows Pearson Correlation Similarity of user1 and the others based

on three items common.

Table 5.Pearson Correlation Similarity.

 Item1 Item2 Item3 Correlation with user1

User 1 5.0 3.0 2.0 1.000

User 2 2.0 2.0 5.0 -0.764

User 3 2.0 - - -

User 4 5.0 - 3.0 1.000

User 5 4.0 3.0 2.0 0.945

3.4 Tanimoto Coefficient Similarity

As shown in Figure 4 and Table 6, this is a similarity that ignores the preference values so that it

does focus on the value that the user given for the item. It only checks that the user expressed a

preference or not. It is also known as Jaccard coefficient. Its formula is the number of items that

both users showed their interest, divided by the number of items that either usershows some

interest. When they do not have any similar preference, the result will be zero. The similarity

value cannot be greater than one [4]. The equation for Tanimoto Coefficient Similarity is given in

(3):

�(�, �) = �.�
|�|�!|"|��#." = ∑ #�$�%& '"�

∑ #��$�%& !∑ "��$�%& �∑ #�$�%& '"� (3)

Figure 4. The Tanimoto coefficient is the ratio of the intersection that means both users express their

feelings about the same items, to the union of the users preferred items.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

8

Table 6. By using Tanimoto Coefficient similarity, the similarity values are calculated between

user one and the other users.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Similarity

to User 1

User 1 √ √ √ 1.0

User 2 √ √ √ √ 0.75

User 3 √ √ √ √ 1.17

User 4 √ √ √ √ 0.4

User 5 √ √ √ √ √ √ 0.5

3.5 Uncentered Cosine Similarity

It is a similarity that measures cosine of the angle created from the two vectors in the coordinate

system. The result changes from -1 and 1. This similarity does not center the data, it moves the

user's preference values, it makes their means is 0. Also it does not adjust the preference values,

therefore it is called uncentered cosine similarity. The equation for Uncentered Cosine Similarity

is given in equation (4):

()*(+) = ∑ #�$�%& '"�
�∑ #��$�%& �∑ "��$�%&

 (4)

3.6 Spearman Correlation Similarity

As shown in Table 7, Spearman Correlation Similarity is similar to Pearson Correlation Similarity

but instead of preference values, it uses ranks. For each user, the preference item’s preference

values are ordered from the least-preferred to the most-preferred. Then this value modify with

starting from 1. Now if Pearson correlation is computed with these values, it will give the

Spearman Correlation Similarity. This similarity is better for smaller data sets because computing

and storing the ranks take long time [5, 6, 7]. The equation for Spearman Correlation Similarity is

given in equation (5):

,(-,�) = ∑ (�-./(0,�)��-./0111111111)$�%& ∗(�-./(�,�)��-./�111111111)
30∗3� (5)

Table 7. After changing the values of the preferences into the ranks, the results are found by using (2.5).

 Item 101 Item 102 Item 103 Correlation to User 1

User 1 3.0 2.0 1.0 1.0

User 2 1.0 2.0 3.0 -1.0

User 3 1.0 - - -

User 4 2.0 - 1.0 1.0

User 5 3.0 2.0 1.0 1.0

4. IMPLEMENTATION

Item based collaborative Filtering Algorithm is chosen for this part of the paper. To recommend

something to the user Adjusted Cosine Similarity Method is chosen.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

9

4.1 Adjusted Cosine Similarity

The difference between the User Based Collaborative Filtering and the Item Based Collaborative

Filtering is that User based takes the rows and Item based takes the columns for similarity

measurement. Basic Cosine similarity computation has important disadvantage which is rating

scale between different users are ignored. By subtracting the selected user mean from every co-

rated place, Adjusted Cosine Similarity takes advantage. The equation for Adjusted Cosine

Similarity is given in equation (6),

Sim(i,j)=
∑ (4�,��4�1111�∈6)(4�,7�41�)

�∑ (4�,��4�1111)��∈6 �∑ (4�,7�41�)��∈6
 (6)

This equation shows similarity between i and j items, and 81�is average of the ratings of the u

th

user.

4.2 Prediction Computation

The significant part of the collaborative filtering system is output of the recommendation. The

items found with adjusted cosine similarity will be used for target users rates and finally

recommend something to the user.

4.2.1 Weighted Sum

For item i to useru, finding sum of the rates to user u on the items similar to ithis method is used.

Every rates are weighted by adjusted cosine similarity 9:;�,< between items i and j. Weighted

Sum equation is

=�,�=
∑ (>�.?∗4�,?)0@@	A�B�@0C	�DEBA,?

∑ (|>�,?|0@@	A�B�@0C	�DEBA,?) (7)

This equation simply achieves to find how the active user rates the similar items.

4.3 Creating Database

First ‘Movierecommender’ database is created. Then tables has to be created.

Movies table added and this table includes data of id, movie titles, movie genres are available.

Rates table are built. This table includes data of id, movie, user_ and rates. Also in movie and

user_section primary keys are added so conflicts are blocked.

Finally, Users table added and this table includes information about user id, name, last name, age,

sex and email. Also into the email part primary key added. So when users come to the system

each user can enter the system with their own email addresses.

Flowchart of the Proposed Algorithm is given in Figure 5. On the other hand, flowchart of

Mahout Library used in algorithm is given in Figure 6.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

10

Figure 5. Flowchart of the Proposed Algorithm.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

11

Figure 6. Flowchart of Mahout Library Used Algorithm.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

12

5. EXPERIMENTAL EVALUATION

5.1 Data Set

In this paper, algorithms applied to the MovieLens-100K data sets. It contains 100,000 ratings

from 943 users on 1682 movies. All users in the data sets rated at least 20 movies. There are 2

types of data file. In u.data set, it has user id, item id, rating, timestamp sections. In the u.item

data set, it contains information about movies such as movie id, movie title, release date, genres.

Since movie ids are the same in the both data sets, we connected these data sets in our

experiments.

5.1.1 Rating Distribution

As shown in Figure 7, the ratings in the Movie Lens data sets are integers. Ratings are between 1

and 5. Histogram is provided in the following section.

5.1.2 User and Movie Statistics

In this section, rating distributions are displayed. Mean of the ratings is calculated as 3,52986.

Standard deviation of the ratings is 1,125674.

Figure 7. Rating frequency in the Movie Lens data sets.

5.2 Evaluation Metric

After many years of researches on Collaborative filtering algorithms, many researchers found

different evaluation metrics in order to evaluate the quality of the prediction. Prediction accuracy

metrics find values that show how much the prediction is close to the real preference. There are

many prediction accuracy metrics are used by researchers for testing the prediction accuracy of

their used algorithms, are Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)

which are also implemented in Mahout. We selected Mean Absolute Error and Root Mean

Squared Error as our choice of evaluation metrics for showing our experiment results.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

13

5.2.1 Mean Absolute Error

This evaluation metric evaluates accuracy of an algorithm by comparing value of predictions

against the actual user’s ratings for the user-item pairs in the test dataset. For each rating-

prediction pair, their absolute error is calculated. After summing up these pairs and dividing them

by the total number of rating-prediction pairs, Mean Absolute Error can be found. It is the most

commonly used and can be interpret easily. The equation of Mean Absolute Error is given in

equation (8):

F�G = ∑ |H����|$�%&
. (8)

5.2.2 Root Mean Square Error

This is a statistical accuracy metric that is slightly different from Mean Absolute Error. Once

rating-prediction difference is calculated, its power of 2 is taken. After summing them up and

dividing them by the total number of rating-prediction pairs and taking square root of it, Root

Mean Square Error can be found. Equation of Root Mean Square Error is given in equation (9):

8F9G = �∑ (H����)�$�%&
. (9)

Where,

I� is the prediction of user i

��is the real or true rating of user i

Jis the number of ratings-prediction pairs

By using evaluation metrics, prediction accuracy and efficiency of the collaborative filtering

methods can be calculated and compared. Therefore the results will show which algorithm should

be used for given datasets.

5.3 Experimental Procedure

In this section experimental procedures are explained:

5.3.1 Experimental Steps

The data set has divided into a training and test portions. In the experiments, from 0.2 to 0.9

training test ratios are used in order to calculate and compare the prediction accuracy. For each

similarity measures and collaborative filtering techniques, evaluation has been coded to find

Mean Absolute Error and Root Mean Square Error.

5.3.2 Experimental Platform

All our experiments were implemented by using Java programming language. All the

experiments are run on windows based PC with Intel core i7 processor having a speed of 2.40

GHz and 16GB of ram.

5.3.3 Experiment Results

Experimental results of User-based and Item-based collaborative filtering techniques for creating

prediction are shown. There are some parameters that have to be determined. These parameters

are, the neighborhood size, training/test ratio and effects of different similarity measures. All the

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

14

classes that contains evaluation metric has been run separately. Then the results have been

recorded in order to compare them. By using these information, histograms have been created.

5.3.4 Experiment Results with Different Neighborhood Size

The size of the Neighbor affects the prediction quality. By changing the number of neighbors,

sensitivity of neighborhood is determined. As number of neighbors’ increases, the quality of

prediction is also increases.

Figure 8. Mean Absolute Error for all user-based similarities as Training/Test Ratio changes.

Figure 9. Root Mean Square Error for all user-based similarities as Training/Test Ratio changes.

0.70

0.75

0.80

0.85

0.90

0.95

10 20 30 60 90 120 150 180 210

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r

Number of neighbors

Sensitivity of the Neighborhood Size

(Training/Test ratio is 0.8)

User-Based Euclidean Distance Similarity User-Based Log Likelihood Distance Similarity

User-Based Pearson Correlation Similarity User-Based Spearman Correlation Similarity

User-Based Tanimoto Coefficient Similarity User-Based Uncentered Cosine Similarity

0.90

1.00

1.10

1.20

10 20 30 60 90 120 150 180 210

R
o

o
t

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Training/Test Ratio

Sensitivity of the Neighborhood Size

(Training/Test ratio is 0.8)

User-Based Euclidean Distance Similarity User-Based Log Likelihood Distance Similarity

User-Based Pearson Correlation Similarity User-Based Spearman Correlation Similarity

User-Based Tanimoto Coefficient Similarity User-Based Uncentered Cosine Similarity

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

15

5.3.5 Experiment Results with Different Training/Test Ratio

By changing the Training/Test Ratio, sensitivity of the Training/Test ratio is determined. For this

purpose, Training/Test ratio is changed from 0.1 to 0.9 by 0.1 for all similarity metrics. The

results show that the quality of the prediction is increasing as Training/Test ratio increases.

Moreover, User-Based Log likelihood Distance Similarity and Item-Based Tanimoto Coefficient

Similarity have the lowest Mean Absolute Error and Root Mean Square Error which means they

predict better. We picked 0.8 as an optimum value for the following experiments. The results are

given In Figure 10, Figure 11, Figure 12 and Figure 13 respectively.

Figure 10. Mean Absolute Error for all user-based similarities as Training/Test Ratio changes.

Figure 11. Root Mean Square Error for all user-based similarities as Training/Test Ratio changes.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r

Training/Test Ratio

Sensitivity of the Training/Test Ratio (neighborhood is 30)

User-Based Euclidean Distance Similarity User-Based Log Likelihood Distance Similarity

User-Based Pearson Correlation Similarity User-Based Spearman Correlation Similarity

User-Based Tanimoto Coefficient Similarity User-Based Uncentered Cosine Similarity

1.00

1.10

1.20

1.30

1.40

1.50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
o

o
t

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Training/Test Ratio

Sensitivity of the Training/Test Ratio (neighborhood is 30)

User-Based Euclidean Distance Similarity User-Based Log Likelihood Distance Similarity

User-Based Pearson Correlation Similarity User-Based Spearman Correlation Similarity

User-Based Tanimoto Coefficient Similarity User-Based Uncentered Cosine Similarity

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

16

Figure 12. Mean Absolute Error for all item-based similarities as Training/Test Ratio changes.

Figure 13. Root Mean Square Error for all item-based similarities as Training/Test Ratio changes.

5.3.6 Experiment Results with Different CF Algorithms

Since in the previous experiment, Log Likelihood Distance similarity and Tanimoto Coefficient

similarity gave the lowest Mean Absolute Error and Root Mean Square Error, these similarities

are picked in this experiment in order to compare Item-Based and User-Based algorithms. These

similarities are tested with our data sets. As shown in Figure 14 and Figure 15, with different

Training/Test ratio, Mean Absolute Error and Root Mean Square Error has calculated.

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9M
e

a
n

 A
b

so
lu

te
 E

rr
o

r

Training/Test Ratio

Sensitivity of the Training/Test Ratio for Item Based Similarities

Item-Based Euclidean Distance Similarity Item-Based Log Likelihood Distance Similarity

Item-Based Pearson Correlation Similarity Item-Based Uncentered Cosine Similarity

Item-Based Tanimoto Coefficient Similarity

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
o

o
t

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Training/Test Ratio

Sensitivity of the Training/Test Ratio for Item Based Similarities

Item-Based Euclidean Distance Similarity Item-Based Log Likelihood Distance Similarity

Item-Based Pearson Correlation Similarity Item-Based Uncentered Cosine Similarity

Item-Based Tanimoto Coefficient Similarity

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

17

Figure 14. Impact of Training/Test Ratio on Item-Based and User Based algorithms by using Mean

Absolute Error.

Figure 15 Impact of Training/Test Ratio on Item-Based and User Based algorithms by using Root Mean

Square Error.

5.4 Performance Results

In this section performance results will be compared. Performance results are related with

recommendation times. Since each similarity have different way to recommend item, their

recommendation times are different. Recommendation times show that how fast the

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r

Training/Test Ratio

Item-Based and User-Based Performances

User-Based Log Likelihood Distance Similarity Item-Based Log Likelihood Distance Similarity

User-Based Tanimoto Coefficient Similarity Item-Based Tanimoto Coefficient Similarity

0.95

1.05

1.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
o

o
t

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Training/Test Ratio

Item-Based and User-Based Performances

User-Based Log Likelihood Distance Similarity Item-Based Log Likelihood Distance Similarity

User-Based Tanimoto Coefficient Similarity Item-Based Tanimoto Coefficient Similarity

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

18

recommendation is created. By taking average recommendation time, it can be observed that

which collaborative filtering technique gives the faster recommendations.

5.4.1 User-Based Similarities in Recommendation Times

In this section, the results for six User-Based similarities will be shown. Then by creating a

histogram graph, their recommendation times will be compared. In this experiment, ten movies

will be recommended to the selected user. For six User-based similarities, ten movies are

recommended to the selected user and it is repeated ten times as shown in Table 8.

Table 8. For each repeat, recommendation times and average recommendation time for six User-Based

similarities are shown as milliseconds.

USER BASED SIMILARITIES

EUCLIDEAN

DISTANCE

LOG

LIKELIHOOD

PEARSON

CORRELATION

TANIMOTO

COEFFICIENT

UNCENTERED

COSINE

SPEARMAN

CORRELATION

547 579 515 532 469 532

547 610 547 579 531 547

547 640 515 578 500 562

507 625 548 591 547 531

563 640 547 563 516 595

516 626 515 562 516 609

516 656 531 563 516 578

516 656 500 578 500 563

547 625 532 547 532 578

516 672 532 531 500 594

532,2 632,9 528,2 562,4 512,7 568,9

Figure 16. Impact of Item Based algorithms on recommendation times.

As shown in Table 8 and Figure 16, while Log Likelihood similarity is giving the slowest

recommendations, Uncentered Cosine gives the fastest recommendations.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

19

5.4.2 Item-Based Similarities in Recommendation Times

In this section, the results for five Item-Based similarities will be shown. Then by creating a

histogram graph, their recommendation times will be compared. In this experiment, the most

similar two items with the selected items will be displayed and it will be repeated ten times.

Table 9. For each repeat, recommendation times and average recommendation time for five Item-Based

similarities are shown as milliseconds.

ITEM BASED SIMILARITIES

EUCLIDEAN

DISTANCE
LOG LIKELIHOOD

PEARSON

CORRELATION

TANIMOTO

COEFFICIENT
UNCENTERED COSINE

500 531 501 500 500

500 563 578 485 531

536 578 531 537 536

516 562 516 500 548

532 563 547 500 539

562 547 516 516 531

563 547 531 524 532

534 563 547 516 581

547 562 547 516 575

547 531 531 522 532

533,7 554,7 534,5 511,6 540,5

Figure 17. Impact of Item Based algorithms on recommendation times.

As shown in Table 9 and Figure 17, while Log Likelihood similarity is the slowest item-based

recommendation algorithm and Tanimoto Coefficient Similarity is the fastest item-based

recommendation algorithm.

International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.6, No.3, June 2016

20

6. CONCLUSION

Recommender systems offer users some items that they may desire to buy from a business. These

system use user databases for taking supplement value for business. Recommender systems help

user items that they would like to buy from business. Likewise these systems help the business by

occurring more sales. Recommender systems are becoming an essential tool in e-commerce on

the Web. New technologies are required that can develop the scalability of recommender systems

which are being underlined by the huge volume of user data in current databases. Collaborative

filtering is a new way to filtering data that can select from database. Collaborative filtering

systems collect user’s previous data about an item such as movies, book, music, ideas, feeling,

and products. For recommending the best item, there are many algorithms that are based on

different approaches. According to Collaborative Filtering Systems, there is a mutual point that is

establishment of similarity between users and items. Collaborative-basedalgorithm extends to big

data sets also support high quality recommendations.

In this paper, collaborative filtering algorithms are discussed, and showed the difference of these

algorithms. We compare User-based and Item-based algorithms with different similarity index.

By using these algorithms, we implemented them to the movie recommender system. These

algorithms can be used in any other data sets in order to recommend items. There are much more

work to be done in collaborative filtering algorithms. Our most important suggestions for

improvements are below:

As we implemented the algorithms for making a movie recommender, these implemented

algorithms can be used in many movie web pages for providing an option for their users.

Furthermore, these algorithms can also be implemented in any other areas such as in a marketing

department, looking the previous production tastes of the customers, and recommending them the

best product. Also these algorithms can be used in web streaming areas such as music

recommendation and also online bookstores and so on.

One challenge is that in the large amount of data sets, performance is not fast enough.

Performance improvements must be done in the large data sets in order to recommend items as

quick as possible.

REFERENCES

[1] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, “Item-Based Collaborative Filtering

Recommendation Algorithms”, Tenth International World Wide Web Conference (WWW10), May 1-

5, 2001, Hong Kong.

[2] Jonathan L. Herlocker, Joseph A. Konstan, Alborchers, and John Riedl, “An Algorithmic Framework

for Performing Collaborative Filtering”, Proceedings of the 22nd Annual International ACM

SIGIR’99 Conference on Research and Development in Information Retrieval, Pages 230-237, New

York, NY, USA.

[3] Keshav R, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies,

Vol. 5 (3), 2014, 4782-4787.

[4] Sean Owen, Robin Anil, Ted Dunning, Ellen Friedman,“Mahout in Action”, ISBN: 978-1935-18-2-

689, Manning Publications Co., U.S America, 2012.

[5] Shuhang Guo (2014), Lapland University of Applied Sciences, “Analysis and Evaluation of Similarity

Metrics in Collaborative Filtering Recommender System”, Thesis of the Degree Programme in

Business Information Technology, Tornio 2014.

[6] Hiroshi Shimodaira, Similarity and recommender systems School ofInformatics,The University of

Edinburgh, 2014.

[7] Peter Casinelli, Advisor: Sergio Alvarez, “Evaluating and Implementing Recommender Systems As

Web Services Using Apache Mahout”, Boston College Honour Thesis, 2014.

