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ABSTRACT 

 
OpenACC has been touted as a "high productivity" API designed to make GPGPU programming accessible 

to scientific programmers, but to date, no studies have attempted to verify this quantitatively. In this paper, 

we conduct an empirical investigation of program productivity comparisons between OpenACC and CUDA 

in the programming time, the execution time and the analysis of independence of OpenACC model in high 

performance problems. Our results show that, for our programs and our subject pool, this claim is true. We 

created two assignments called Machine Problem 3(MP3) and Machine Problem 4(MP4) in the classroom 

environment and instrumented the WebCode website developed by ourselves to record details of students’ 

coding process. Three hypotheses were supported by the statistical data: for the same parallelizable 

problem, (1) the OpenACC programming time is at least 37% shorter than CUDA; (2) the CUDA running 

speed is 9x faster than OpenACC; (3) the OpenACC development work is not significantly affected by 

previous CUDA experience 
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1. INTRODUCTION 
 
High-performance computing has been applied to more and more scientific research applications 

such as chemical reaction processes, explosion processes and fluid dynamic processes. When 

intensive computation needs to be applied to other research fields, other than image processing, 

the GPGPU [9] (General Purpose computing on GPU) was developed. Currently, the most popular 

high-performance computing device is the NVIDIA accelerator so CUDA (Compute Unified 

Device Architecture) [10], a mainstream parallel programming model, is widely used by 

programmers, developers and researchers to rapidly solve large problems with substantial inherent 

parallelism [11]. However, the CUDA programming framework requires programmers to fully 

grasp solid knowledge of software and hardware. It is an error-prone and time-consuming task if 

legacy code needs to be rewritten by CUDA. Furthermore, if these applications need to run on 

other platforms (i.e. ATI GPU, Intel GPU), the software developers need to learn new APIs and 

languages to rewrite all code. To overcome the above limitations of CUDA and reduce developers’ 

coding workload, the OpenACC programming model has been released. It provides simple 

directives to achieve similar functions in CUDA. Also, the OpenACC codes can be run under 

different platforms. It is important to compare OpenACC and CUDA based on the programming 

productivities especially for parallel programming beginners because OpenACC can extremely 

reduce programmers’ workload.  
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The time it takes to develop parallel solutions to the problems is one of the most important metrics 

in evaluating high performance APIs. To mentally and physically alleviate programmers’ 

workload and reduce the need of the amount of developers’ parallel knowledge, thousands of 

experts, engineers, and researchers are still using on OpenACC API although it has been released 

in 2011. So during the comparison of OpenACC and CUDA, we mainly investigate the question 

about whether the OpenACC model is more efficient than CUDA. Three research questions are 

proposed in this paper: (1) Is OpenACC programming time shorter than CUDA for the same 

parallelizable problem? (2) Is CUDA execution time shorter than OpenACC execution time? (3) Is 

OpenACC programming time affected by previous CUDA experience in the same problem?  

 

We conduct this empirical investigation between CUDA and OpenACC mainly considering the 

following two factors: (1) CUDA is one of the most popular parallel programming models and 

OpenACC is an easily learned and simplified high-level parallel language, especially for parallel 

programming beginners; (2) One motivation for OpenACC is to simplify low-level parallel 

language such as CUDA. 

 

Although other scientists did some research work on the performance comparison on OpenACC 

and CUDA in [22] [23] [24] [25], their work was based on the code, optimization technologies and 

the hardware platform. To our best knowledge, this is the first paper in evaluating productivity 

based on human subjects. Hence, we present the following three key contributions on this 

empirical investigation: 

 

(1) This paper investigates whether OpenACC programming time is shorter than CUDA for the 

same parallelization problem. A WebCode website is used to automatically record programmers’ 

work time so that a quantitative comparison can be analyzed statistically. 

 

(2) Although high level OpenACC provides simple directives to replace CUDA functions, the 

performance comparison also needs to be investigated because the fact that OpenACC users take 

less time to code might be offset by poorer execution time performance. 

 

(3) We investigate whether OpenACC programming work is affected by previous CUDA 

experience, whereby a programmer is required to accelerate the same section of serial code first 

with CUDA and then use OpenACC to do it again. 

 

The remainder of this paper is organized as follows. Section 2 presents the background of CUDA 

and OpenACC. Section 3 discusses related work on empirical studies of the productivity in high 

performance languages and performance comparisons of diverse parallel programming models. 

Section 4 shows our target population description, data collection procedure and data analysis 

procedure. Section 5 presents an overall result analysis and makes conclusions about our three 

hypotheses about CUDA and OpenACC. Section 6 concludes this paper and presents our future 

work. Section 7 shows our acknowledgement. 

 

 2. BACKGROUND 
 

The goal of high-performance parallel languages is to accelerate running time and to reduce the 

unnecessary waiting time of computing operations. The fully controllable parallel language CUDA 

is the most representative one among high performance parallel languages because it allows users 

to schedule resources by utilizing optimization technologies such as kernel parameters tuning, the 

use of local memory, data layout in memory, and CPU-GPU data transfer avoidance. However, 

this “controllability” advantage requires users to grasp solid hardware knowledge and debugging 

skills. To overcome the limitations above, OpenACC provides simple directives to accelerate code 
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without requiring much hardware knowledge. In this section, we simply introduce two parallel 

languages investigated in this paper: CUDA and OpenACC. 

 

CUDA is a parallel computing programming model that can be run only under NVIDIA’s GPUs. 

It fully utilizes hardware architecture and software algorithms to accelerate high-performance 

computation with architecture-specific directives such as shared, or global. But this utilization 

requires programmers to fully understand each detail of hardware and software. For example, in 

order to utilize memory-coalescing or tiling technology, the software-managed on-chip and off-

chip memory knowledge should be understood by users before programming, which is a big 

challenge, especially for novices who have little knowledge of software and hardware. Also, in 

order to successfully launch CUDA kernels, all configurations, such as Grid/Block dimensions, 

computing behaviors of each thread, and synchronization problems need to carefully be tuned. 

 

OpenACC is a cross-platform programming model and a new specification for compiler directives 

that allow for annotation of the compute region and data region that are offloaded to the 

accelerators [12] such as GPUs. The OpenACC Application Programming Interface [19] offers a 

directive-based approach for describing how to manage data and to execute sections of codes on 

the device, where parallelism often appears in regular repetition constructs such as Fortran “DO” 

loops and C “FOR” loops. In OpenACC, porting of legacy CPU-base code only requires 

programmers to add several lines of annotations before the sections where they need to be 

accelerated, without changing code structures [12]. However, over-simplified parallel 

programming model also brings to users limitations which may prevent full use of the available 

architectural resources, potentially resulting in greatly reduced performance when compared to 

highly manually tuned CUDA code [12]. For example, programmers can use synchronization to 

manage all threads of one block in CUDA while they cannot in OpenACC. Some architecture-

specific directives such as global, shared and private have been provided by CUDA while 

OpenACC does not provide them.  

 

3. RELATED WORK 
 
NVIDIA GPU devices are currently one of the most widely used accelerators so the CUDA 

programming language is used by most programmers. However, it requires professional software 

and hardware knowledge. To alleviate or avoid these limitations above, especially for beginners, 

OpenACC was released. One of the OpenACC motivations is to reduce programmers’ work time 

or workload in parallelizing serial code. On the other hand, several empirical studies of the 

productivity in high performance computing have been done. In this section we describe some of 

the classic work.  

 

A case study on the productivity of novice parallel programmers was conducted in [1]. A metric of 

time to solution was proposed, which is comprised of two main components: the human effort 

required for developing the software and the amount of machine time required to execute it. The 

results showed that LOC (Line of Code) alone is not a good metric for effort and code expansion 

rates highlight differences in the strategies imposed by different HPC approaches. 

 

The evaluation of development effort for high performance computing has been described and 

developed in [2]. In order to measure the development time, authors used two APIs (MPI and 

OpenMP) to collect the data of development time. The outputs of this paper are a set of 

experimental lessons learned.   

 

In the area of productivity measurement on high performance computers, Marvin et al. [3] 

discussed the problems of defining and measuring productivity and developed a model based on 

program size, speedup and development cost, and a formula of measuring the productivity. 
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Although this work can quantitatively measure the productivity, the author mentioned that the 

major impact of this work is the realization that productivity may have different meanings in 

different application domains.  

 

Lorin et al. [17] measured the programming effort with a combination of self-reported and 

automatic data. The students were required to keep an effort log to report how much time they 

spent in different activities. For automatic collection data, authors instrumented the compiler so 

that the timestamp was recorded and a copy of the submitted source code was captured. Through 

this pilot study, some lessons were learned such as the work time varies considerably across 

subjects and underreporting and over reporting are significant issues. 

 

Besides, some research studies also worked on the performance comparison of high performance 

parallel language such as CUDA, OpenACC, and OpenCL. Tetsuya et al. [4] used two micro 

benchmarks and one real-world application to compare CUDA and OpenACC. The performance 

was compared among four different compilers: PGI, Cray, HMPP and CUDA with different 

optimization technologies, i.e. (1) thread mapping and shared memory were applied in Matrix 

Multiplication micro benchmark; (2) branch hoisting and register blocking were applied into 7-

Point stencil micro benchmark. Finally a performance relative to the CPU performance was 

compared in computational fluid dynamics application with kernel specification, loop fusion, and 

fine-grained parallelization in the matrix-free Gauss-Seidel method optimization. The results 

showed that OpenACC performance is 98% of CUDA’s with careful manual optimization, but in 

general it is slower than CUDA. 

 

Kei et al [20] presented an optimizer for a histogram computation based on OpenACC model. For 

the problem of rewriting multiple copies of histograms with OpenACC code, this optimizer can 

automatically detect and rewrite the blocks of multiple copies of histograms. In the experiment 

phase, author employed three applications to evaluate the performance of the optimizer under 

three parallel platforms: AMD, NVIDIA, Intel. The results showed the achieved speedup was from 

0.7x to 3.6x compared to the naive method. 

 

In [5], the authors evaluated OpenACC, OpenCL, and CUDA based on programmer productivity, 

performance, and portability using Lagrangian-Eulerian explicit hydrodynamics mini-application. 

Through the comparison of kernel times, words of code (WOC), and portability analysis, a 

conclusion was made that OpenACC is an viable programming model for accelerator devices, 

improving programmer productivity and achieving better performance than OpenCL and CUDA.  

In [21] the OpenACC performance portability was evaluated with four kernels from Rodinia 

benchmark. The results show the optimized OpenACC code outperforms OpenCL code in the 

performance portability ratio. 

 

An overview and comparison of OpenCL and CUDA was also presented in [6]. Five application 

benchmarks—Sobel filter, Gaussian filter, Median filter, Motion Estimation, and Disparity 

Estimation—were tested under NVIDIA Quadro 4000. This paper compared and analyzed C, 

OpenCL, and CUDA and the two kinds of APIs—CUDA runtime API and CUDA driver API. 

Detailed data comparison generated by different benchmarks generally showed that CUDA had a 

better performance compared with OpenCL. 

 

Christgau et al. [18] presented a very interesting application--Tsunami Simulation EasyWave—for 

comparing CUDA and OpenACC using two different GPU generations (NVIDIA Tesla and 

Fermi). Through listing runtime values under different hardware-specific optimizations—memory 

alignment, call by value and shared memory, three key points were revealed: (1) even the most 

tuned code on Tesla does not reach the performance of the unoptimized code on the Fermi GPU; 
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(2) the platform independent approach does not reach the speed of the native CUDA code; (3) 

memory access patterns have a critical impact on the compute kernel’s performance. 

 

4. INVESTIGATION DESIGN 
 

We empirically conducted the investigation with undergraduate-level and graduate-level students 

at Auburn University during the Spring semester, 2016. The goal of this research is to investigate 

that in terms of the programming time, which API is more efficient in parallel programming work 

between OpenACC and CUDA. Besides, the following hypotheses were also investigated: (1) the 

execution time comparison (2) whether OpenACC programming work is subjectively affected by 

previous CUDA experience.  

 

Three considerations of our empirical investigation are described in the following: (1) in order to 

simply parallelize programming work especially for novices, OpenACC provides high-level 

parallel directives which implement similar CUDA functions; (2) OpenACC simplifies the CUDA 

programming work, but this kind of simplification might be offset by poorer performance because 

OpenACC directives need to be converted into CUDA code before they can be executed; (3) the 

parallel work with OpenACC is based on serial code such as C/C++/Fortran, so the parallel style 

highly depends on the original coding structures and parallel directives selection. We propose the 

following three hypotheses: 

 

H1: The programming time in OpenACC is shorter than CUDA. 

H2: The execution time of the OpenACC solutions is longer than the execution time of the CUDA 

solutions. 

H3: The OpenACC programming time cannot be affected by CUDA language if OpenACC 

implementation is followed by CUDA implementation in the same problem. 

 
Table 1. The participants background 

*novice: little/no experience 

 

In order to obtain students’ programming time, we created four Machine Problems(MPs) in this 

empirical experiment: MP1, MP2, MP3 and MP4. Before the MP3 assignment distribution, our 

WebCod website was still on the progress, which mainly recorded students’ coding behaviors 

including timestamps. So the data from MP3 and MP4 were captured but the results from MP1 

and MP2 cannot be obtained. Details of valid Machine Problems are described in section 4.3. Each 

student was required to finish each assignment with CUDA and OpenACC. For each project 

students are divided into two groups: in group 1 participants were required to finish the project 

with CUDA firstly and do it again with OpenACC while in group 2 participants were required to 

parallelize the project with OpenACC firstly and then do it again with CUDA. In this way we can 

investigate whether the OpenACC programming work is affected by previous CUDA experience. 
 

4.1 TARGET POPULATION 
 

The target population for this investigation is comprised of students in the computer science and 

software engineering department enrolled in COMP 7930/4960, GPU Programming, a one-hour, 

Background Education Level Years of programming 

experiencing (any 

language) 

Experience in CUDA and 

OpenACC 

under-

graduate 

graduate <5 yrs 5-10 

yrs 

>10 

yrs 

novice* can write 

simple 

code 

skille

d 

Population 14 14 15 11 2 3 25 0 
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semester-long course covering the basics of CUDA, OpenACC, and parallel algorithm design. In 

total 28 students are involved in our empirical investigation. Table 1 describes the participants’ 

academic backgrounds. We can see that although 2 students have more than 10 years of 

programming experience (what language is unknown) in this empirical investigation, they are still 

novices in learning OpenACC and CUDA. Their data do not affect our conclusions in OpenACC 

and CUDA. 

 

From the perspective of years of programming experience, 53.6% participants (15 out of 28) have 

less than 5 years of programming experience and the programming experience of 39.2% 

participants (11 out of 28) is greater than 5 years but less than 10 years. So the experimental 

results are in a fair condition. 

 

For specific experience in our target programming languages: OpenACC and CUDA, there are 

only 3 novices (little or no experience) and the rest of students can write some simple OpenACC 

or CUDA code. So the target population is in a relatively “balanced” environment. 

Finally, the number of undergraduate students is equal to the number of graduate students in 

educational level (i.e.14 undergraduate students and 14 graduate students). All of the students met 

the entrance criteria of not being experts in parallel programming and are all novices in this area. 

The difference in their educational level (graduate vs undergraduate student) did not significantly 

affect our conclusions. 

 

4.2 DATA COLLECTION PROCEDURE 

 
For data collection purposes, we develop the WebCode website (the source code is available at 

https://github.com/joverbey/webcode) to automatically record programmers’ coding behaviors 

including programming timestamps. The participants were required to parallelize two projects 

(MP3 and MP4) on WebCode so that programming information can be stored in the database.  

 
 

 
 

Figure 1. A snapshot of our WebCode website 
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As Figure 1 illustrates, students were allowed to write the code in the main window and all 

compilation information was displayed in the lower window so that students can easily debug their 

code as they do the coding work in other compiling environment such as Ubuntu. The only 

difference of coding on this website from other environments was that all coding behaviors with 

timestamps are stored in the database so that the data can be collected and analyzed for our 

empirical study. 

 

To precisely measure users’ programming time of each project under either OpenACC or CUDA, 

we use the “Project ID” primary key as a keyword to track the programming time of the same 

project among different tables in our database. Because we did not require students to code the 

projects in a particular time range and specific work place such as classrooms, most of students 

did their coding work intermittently instead of continuously. This situation brings us a challenge in 

accurately counting programming time because once the coding work pauses, there are two 

possibilities: (1) the programmer may be thinking about coding questions, so the coding work is in 

progress; (2) the programmer would do something else instead of coding. After reviewing the data 

in the database, we set up a time threshold of 10 minutes to properly measure the programming 

time. That is, if the pausing interval of coding behaviors is less than 10 minutes, we assume that 

this programmer was thinking and still worked on the coding so the pausing time was counted into 

the programming time. Otherwise if the pausing interval is greater than 10 minutes, we assume 

that this programmer would not continue to code so this pausing time was not counted into the 

programming time.  

 

In order to collect participants’ academic background, we distributed a programming experience 

questionnaire to each student in the classroom environment and they voluntarily returned it after 

filling it out. 

 

4.3 PROJECTS DESCRIPTION 
 
In order to truly estimate students’ programming efficiency in OpenACC and CUDA, we did not 

intentionally select hard or easy projects to be the test samples. In this way the impact from the 

difficulty level of test samples on efficiency can be avoided. The nature of two Machine 

Problems(MPs) in this experiment is described in the following way: 

 

MP3: A program simulates the heat transfer across a long, thin rod. Initially the temperature is 0 at 

every point of a rod. When the left-hand side of a rod is heated, the temperature at each point will 

raise, which can be calculated by 

 

Tnew[i] = told[i] + α(told[i-1] + told[i+1] – 2told[i]) 

 

Where told[i] denotes the temperature of the i-th points at a particular unit of time and α is a 

constant (the “thermal diffusivity”). 

 

The key part of serial code is showed in Figure 2 and the complexity is O(n
2
). 
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Figure 2. The key part of MP3 serial code 

 

MP4: To encrypt and decrypt the messages, both the sender and the intended recipient need to a 

secret key. A brute-force key search was used to figure out this key with Tiny Encryption 

Algorithm (TEA). Instead of 128-bit key, 28-bit key was used in this key search. The key part of 

serial code is showed in Figure 3 and the complexity is O(n
2
). 

 

 
 

Figure 3. The key part of MP3 serial code 

 

4.4 ANALYSIS PROCEDURE 

 
We use paired sample t-test [7] to analyze results of programming time comparison in order to see 

whether the OpenACC coding time is significantly less than CUDA. Similarly, in the comparison 

of the execution time between OpenACC and CUDA, we still use paired sample t-test to make our 

conclusion. To investigate whether OpenACC programming time is subjectively affected by 

previous CUDA experience, the independent t-test[7] was used in our third hypothesis because 
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whether the equal relationship of OpenACC programming time between two groups in each 

project was investigated. We will list reasons to select proper statistical index to analyze data in 

different hypotheses. Finally, in all analyses above, we use a significant level of 0.05 to make 

conclusions. 

 

5. HYPOTHESES INVESTIGATED 
 

The data collected from two projects (MP3 and MP4) give us a way to address issues about what 

are the differences between two API models (CUDA and OpenACC) in programming time, 

OpenACC model independence and the dispersion of the programming time. In total 28 students 

in the computer science and software engineering department of Auburn University participated in 

this empirical study. Because we only use the data from students who correctly solve projects with 

both OpenACC and CUDA, the valid population is, respectively, 18 in MP3 and 16 in MP4. For 

example, some students correctly solved MP3 with OpenACC but failed it with CUDA or some 

students solved MP3 with both OpenACC and CUDA, but the results are not correct or partially 

correct. This kind of data is not counted in our valid population.   

 

In order to quantitatively compare OpenACC and CUDA to investigate whether our hypotheses 

were supported, different statistical methods were used to analyze data. Because the proper 

selection of statistical index highly depends on problem attributes, we specifically describe them 

in the following way.  In section5.1 each student correctly parallelizes the same problem with both 

OpenACC and CUDA, so we compared the programming time of OpenACC to the programming 

time of CUDA and analyzed the data with paired t-test to see whether or not there is statistically a 

significant difference in programming time users spend on their tasks. In section5.2 in order to 

investigate whether the fact that OpenACC takes less time to parallelize the serial code might be 

offset by the poorer performance, we compared the execution time of OpenACC and CUDA using 

paired sample t-test. In section5.3 the investigated question is OpenACC programming time is 

affected if CUDA are already used to solve the same problem and statistically we examine 

whether OpenACC programming time in group1 is equal to one in group2 so the independent t-

test[7] was selected. We use two scenarios to illustrate our second hypothesis: 

 

S1: users first parallelize serial code with CUDA and then do it again with OpenACC 

S2: users first parallelize serial code with OpenACC and then do it again with CUDA 

 

5.1.  PROGRAMMING TIME 
 

The programming time or efficiency of parallel APIs is one of the most important factors when 

users choose APIs to parallelize serial code. The CUDA requires programmers to understand 

details of software and hardware such as memory management to accelerate codes. Therefore, it is 

an error-prone and time-consuming work. To overcome those limitations, OpenACC provides 

simple directives to achieve similar functions in CUDA with less knowledge and effort. So the 

programmers’ programming time and workload can be extremely reduced. To our best knowledge, 

this is the first paper to investigate empirically our first hypothesis: 
 

H1: The programming time in OpenACC is shorter than CUDA 
 

To evaluate this hypothesis, the comparison of programming time is abstracted in a statistical way.  
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We use µOpenACC to denote the mean programing time in OpenACC and µCUDA to denote the mean 

programing time in CUDA. 
 

Table 2. The programming time data 

 

Project API Programming time (hours) P-value (one-tail) 

MP3 
CUDA Mean 3.622, Std. 1.905, n=18 

0.0465 
OpenACC Mean 2.597, Std. 1.816, n=18 

MP4 
CUDA Mean 3.640, Std.1.782, n=16 

0.0008 
OpenACC Mean 2.302, Std.1.539, n=16 

 

The data in table 2 have supported our hypothesis H1. In MP3 the mean programming time in 

OpenACC and CUDA, respectively, is 2.6 hours and 3.6 hours. Through the one-tail p-value of 

0.0465, we can see OpenACC programming time is significantly shorter than one in CUDA. 

Similarly, in MP4 on average, the students spent 2.3 hours on the parallelization work with 

OpenACC while 3.6 hours was spent with CUDA. The one-tail p-value is 0.0008, which means 

the OpenACC programming time is also significantly shorter than CUDA. The data above show 

us that in order to parallelize serial code, CUDA users generally spend 1.4x longer than OpenACC 

users. Therefore, we make a conclusion: The programming time in OpenACC is shorter than 

CUDA. 

 

5.2 EXECUTION TIME 
 

Through the analysis in section 5.1, the OpenACC programming efficiency is significantly higher 

than CUDA efficiency. But the fact that less time on OpenACC programming might bring the 

problem of the poorer performance, in terms of the execution time, also needs to be investigated. 

On the other hand, the execution time of parallel models is an important performance evaluation 

index so in this human-subject experiment toward novices we also investigate which API is faster 

in the acceleration.  

 

OpenACC is a high level compiler-directive parallel model, but the conversion process from 

directives to CUDA codes may consume more time compared to the low level CUDA. Based on 

this consideration, we proposed the second hypotheses. 

 

H2: The execution time in OpenACC is longer than the execution time in CUDA. 

The statistical formula is described in the following for these hypotheses. 
 

 
 

We use EOpenACC to denote the execution time of OpenACC solutions and ECUDA to denote the 

execution time of CUDA solutions. The hypotheses H0 assumes that the execution time of 

OpenACC solutions is equal to or greater than the execution time of CUDA solutions while The 

hypotheses H1 assumes that the execution time of OpenACC solutions is less than the execution 

time of CUDA solutions. 
 

Table 3. The execution time comparison of parallel solutions 
 

Project API Execution time (hours) P-value (one-tail) 

MP3 CUDA Mean 0.2158, Std. 0.0863, n=18 3.38E-11 
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OpenACC Mean 1.987, Std. 0.5064, n=18 

MP4 
CUDA Mean 0.1206, Std. 0.0987, n=16 

1.59E-09 
OpenACC Mean 30.40, Std. 9.90, n=16 

 

The data in Table 3 showed that in MP3 the mean execution time (0.2158) in CUDA is 

significantly shorter than OpenACC one (1.987) because one-tail p-value (3.38E-11) is less than 

0.05. Similarly, in MP4 the mean execution time (0.1206) in CUDA is significantly shorter than 

OpenACC one (30.40) because one-tail p-value (1.59E-09) is less than 0.05. Hence we make the 

conclusion that the execution time in OpenACC is longer than the execution time in CUDA. 

 

5.3 INDEPENDENCE OF OPENACC 
 
Because OpenACC is a high-level directive-based API, programmers need to add proper 

directives or annotations in original serial code such as C, C++, Fortune while CUDA requires 

users to rewrite the original code. Considering these different coding behaviors above, we need to 

know whether or not the programming time of OpenACC is affected if students use CUDA first 

and then use OpenACC second in parallelizing the same serial code. Therefore, we propose the 

third hypothesis: 

 

H3 The OpenACC programming time cannot be affected by CUDA language if OpenACC 

implementation is followed by CUDA implementation in the same problem. 

 

To evaluate the independence of OpenACC, the comparison is abstracted in the following 

statistical way: 

 
 

µOpenACC2denotes the mean programming time of OpenACC in group 2 while  µOpenACC1denotes the 

mean programming time of OpenACC in group 1. To achieve this evaluation, the students are 

divided into two groups to measure the independence of OpenACC: In group 1 students are 

required to parallelize code with CUDA first and then do it with OpenACC second while in group 

2 students do it with OpenACC first and then do it with CUDA second.  
 

Table 4. The data of OpenACC independence 
 

Project API Independence(hours) P-value (two-tail) 

MP3 

OpenACC1 
Mean 3.159, Std. 1.769,  

n=8 
0.2523 

OpenACC2 
Mean 2.148, Std. 1.814,  

n=10 

MP4 

OpenACC1 
Mean 1.856, Std.1.301,  

n=7 
0.3233 

OpenACC2 
Mean 2.649, Std.1.693,  

n=9 

 

In MP3 the p-value(two-tail) of table 4 is greater than 0.05, so we have no significant evidence to 

reject H0. Therefore, although students in group 1 first use CUDA to solve the problem and then 

use OpenACC to solve the same problem, the programming time of OpenACC is not affected by 

the previous CUDA experience. Similarly, in MP4 the p-value(two-tail) of 0.3233 is also greater 

than 0.05. That is, the programming time of OpenACC is also not affected by the previous CUDA 

coding.  
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Thus, H3 is supported in both problems (MP3 and MP4). That is the OpenACC programming time 

is not affected by previous CUDA coding experience. 

5.4 THREATS TO VALIDITY 
 

The fact that this empirical study was run in a classroom environment and that the place of the 

coded projects is unknown means that there are threats to validity of our conclusions that should 

be discussed in this section when interpreting the results. Here we discuss the following five 

threats to validity for this study. 

 

(1) The target population. Although 30 students are in our classroom, the valid data in MP3 are 

from 18 students and 16 students in MP4 respectively. The prerequisite of programming time 

comparison is that students can correctly finish each project with both OpenACC and CUDA. If 

the data only contain the programming time in either OpenACC or CUDA, the data of this student 

are excluded from our data pool. Thus the population size can impact our empirical results. 

 

(2) The population academic background. As well known the programming efficiency highly 

depends on programmers’ academic level. Generally, the programmers in a high educational level 

are more proficient. Although our empirical investigation was conducted in a classroom of 14 

undergraduate students and 14 graduate students and the programming experience of most 

students is less than 10 years, the data of 2 students who have more than 10 years’ experience still 

impact our conclusion, to some extent. 

 

(3) The programming skills. Due to the difference of participants’ academic background, the 

programming skills also need to be investigated. We reasonably believe that well-organized code 

structure improves the programming productivity. 

 

(4) The number of test samples. We used two projects (MP3 and MP4) to conduct this empirical 

study. Although more projects can make our empirical results more convincing, considering the 

teaching work, we do not have more time to accelerate more projects. So the number of test 

samples can also impact our conclusions. 

 

(5) The experiment configuration. Because our empirical investigation focuses on the 

programming time of accelerating serial code with both OpenACC and CUDA, the serial solutions 

to projects (MP3 and MP4) have been present before students did their assignments. If the serial 

code still needed to be finished by students, our data would vary. Besides, the number of 

parallelizable sections in serial code can impact the empirical conclusion. There is only one 

parallelizable section in each project so the easy identification of these sections can shorten their 

programming time. 

 

(6) The process of data collection. The WebCode website automatically records students’ coding 

behaviors with the timestamps. The time data in the database showed that most students did not 

continuously finish projects. So we assume that if there is no coding action within 10 minutes, the 

programming time was terminated. For example, if a student did not do anything for more than 10 

minutes, we assume this student temporarily paused the coding work. But if a student did not code 

within 9 minutes, we assume that this student was thinking. The “10-minute” threshold may 

impact our conclusions. 
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6. CONCLUSION AND FUTURE WORK 
 

In this paper, we conducted a programming productivity comparison of OpenACC and CUDA in 

the programming time, the independence of OpenACC and the dispersion discussion of the 

programming time. Through all of the discussion and analysis above, we can see the following 

empirical conclusions. 

(1) OpenACC enables users to finish a parallel solution in a shorter time than CUDA. During the 

test of MP3 and MP4 projects, this conclusion can be clearly seen. In MP3, the CUDA mean time 

(3.6 hours) is significantly longer than the OpenACC one (2.6 hours) with one-tail p-value of 

0.0465. In MP4, the CUDA mean time (3.6 hours) is significantly longer than the OpenACC one 

(2.3 hours) with one-tail p-value of 0.0008. 

 

(2) Although in the comparison of the programming time the programming productivity of 

OpenACC model is higher than CUDA model, the performance of CUDA is better than OpenACC 

model in terms of the execution time. On the average, the execution time in CUDA is 9x shorter 

than execution time in OpenACC. 

 

(3) The OpenACC programming work is not affected by previous CUDA experience. In the 

experiment configuration, students in the classroom were divided into two groups to parallelize the 

same serial project. In order to investigate whether the OpenACC programming time is 

significantly affected by CUDA programming experience, in group 1 the OpenACC solution was 

required to be done first while in group 2 the CUDA solution was required to be done first. With 

two-tail p-value of 0.2532(MP3) and 0.3233(MP4), there is no significant change in the OpenACC 

programming time with or without previous CUDA experience. 

 

In future work, we plan to invite expert programmers to solve the same problems that were 

involved in this paper. It would allow us to see how different students are from experts. Besides, 

another change on measuring programming time is that the original serial code will not be 

provided so the time may vary in a longer time. Finally in both MP3 and MP4 there are 28 

participants who finish each project with OpenACC and CUDA, so in total we have 114 coding 

samples to be analyzed to see whether we can extract the common programming styles as 

described in [13][14][15]. Finally, we will investigate the influence of the programming styles on 

the programming productivity. 
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