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ABSTRACT 

 
With the sharp rise in software dependability and failure cost, high quality has been in great demand. 

However, guaranteeing high quality in software systems which have grown in size and complexity coupled 

with the constraints imposed on their development has become increasingly difficult, time and resource 

consuming activity. Consequently, it becomes inevitable to deliver software that have no serious faults. In 

this case, object-oriented (OO) products being the de facto standard of software development with their 

unique features could have some faults that are hard to find or pinpoint the impacts of changes. The earlier 

faults are identified, found and fixed, the lesser the costs and the higher the quality. To assess product 

quality, software metrics are used. Many OO metrics have been proposed and developed. Furthermore, 

many empirical studies have validated metrics and class fault proneness (FP) relationship. The challenge is 

which metrics are related to class FP and what activities are performed. Therefore, this study bring 

together the state-of-the-art in fault prediction of FP that utilizes CK and size metrics. We conducted a 

systematic literature review over relevant published empirical validation articles. The results obtained are 

analysed and presented. It indicates that 29 relevant empirical studies exist and measures such as 

complexity, coupling and size were found to be strongly related to FP.   
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1. INTRODUCTION 

 
In today’s e-world, the importance of software technologies have been seen in different kinds of 

productsand services used in everyday life. The exponential growth of software dependability 

poses the demand for high quality from users and to meet this demand, today software has grown 

in size and complexity [1][2][3][4]. This is because quality of software is the key determinant of 

the success or failure of an organization [5]. However, guaranteeing high quality in this modern 

age of large software systems development, increased difficulty, time and resource consumption 

has become the order of the activity [4][5][6]. Given the size, the complexity and the constraints 

imposed on the development, it is inevitable to deliver to customers software that have no faults 

[1][3][4]. In particular, object-oriented (OO) products with its unique features could introduced 

some faults that are hard if not impossible to find or pinpoint change impacts during maintenance. 

Faults in software are errors introduced during the software development activity that can lead 

software to fail or not meeting customers’ expectations. Though, it is difficult to find and fix 

faults before product release, the earlier this is done the, lower the costs and the higher the 

product quality would be [1][5][7][8][9][10][11] [12][13][14][15]. In software engineering, one 

way to assure software quality cost-effectively is the use of software metrics.  
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Software metrics usage during development process, especially at the early phases is critical to 

ensuring high quality in the software systems. There are used as a tool in software organizations 

to assess software quality, monitor, control and take useful managerial and technical decisions 

aimed at improving the software [16][17][18]. Existing software metrics are broadly classified 

into traditional metrics and OO metrics [18]. Moreover, many OO metrics have been proposed 

and developed for assessing OO design and codes quality [1][2][3][6][7][8][17][19][22]. OO 

product metrics capture different software attributes such as class complexity, inheritance, 

couplings and cohesions [10][16]. These structural properties are used to determine products 

quality and complexity [10][19]. One of such OO metrics is the CK metric suit [16].  

 

Albeit a greater amount of software faults found in software applications today are believed to 

concentrate only on few classes of the system [10][20], what is more important is when such 

faults are identified. In the world of OO systems, one viable approach used by engineers is to 

identify faulty OO classes during the software development early stage through the construction 

of quality models for prediction utilizing OO metrics and historical measures 

[1][3][4][6][10][11][22][31]. The construction of these models can be used by organizations in 

the identification of possible classes which are faulty either in the future applications or release 

and to identify where resources are needed most [10]. Thus, it assist organizations to focus quality 

improvement activities, make decisions, plan and schedule development activities in order to 

produce high quality product within time and budget [10][19][21]. For instance, testing large 

systems today is complex and time-consuming activity [5][6][10]. Therefore, predicting faulty 

components early would allow organizations to take actions aim at mitigating against the high 

risk posed by the faults which are likely to cause failure in the field. Such activities include 

focusing testing and verification resources on such classes to avoid rework that could be costly 

[10]. 

 

However, for OO design metrics to accurately predict faults in OO classes there have to be 

empirically validated. That is, establishing which metrics are related to important external quality 

attributes like class fault-proneness (FP). The essence is that, OO metrics are of no or little value 

if such relationship is not empirically validated [10]. Nevertheless, few empirical validation 

studies exist that have validated or re-validated OO metrics with respect to FP 

[2][3][6][7][8][17][19][22][23][24]. In addition, these studies proposed and developed several 

prediction models that make use of FP and OO metrics as dependent and independent variables 

respectively. Among such validated OO metrics is the CK metric suite and size metric. Several 

empirical studies in the literature has shown that some metrics are significantly or insignificantly 

related to FP [2][3][6][7][8][17][19][22]. Furthermore, their findings appeared not to be 

consistent [2]. For example, in one study a metric is considered related FP but insignificant 

related to FP in another study. However, this could affect decision making in choosing directly 

metrics that are associated with FP of a class. Hence, which of these metrics are actually related 

to the FP of a class?  

 

To establish OO design metrics that are related FP and are generic, this paper performed a 

systematic literature review (SLR) using published empirical validation studies of CK +SLOC 

metrics. The basis for this SLR is that the authors lack resources to perform empirical study on 

real-world software systems, only few SLR on the CK + SLOC point of view exist within periods 

considered and lastly, to bring together the state-of-the-art in fault prediction using FP and CK + 

SLOC metrics. The study is specifically designed to assist software engineers take quick decision 

regarding generic metrics that are suitable for fault prediction in a class when CK+SLOC metrics 

are used. 

 

The remaining part of the paper is organized as follows: Section 2 is the description of the metrics 

used in this study, Section 3 is the research method used, Section 4 is analysis, Section 5 is the 

study discussions and Section 6 is the conclusions. 
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2. METRICS STUDIED 

 
The metrics considered in this study is the CK metric suit and the studies that have empirically 

validated them. Moreover, the study also consider product size metric known as SLOC due to its 

strong relationship with FP [1][17][22][25]. These metrics are shown on Table 1 alongside their 

descriptions. They consist of six (6)OO design metrics and one size metric from the traditional 

product metric. 
 

Table 1. Metrics studied [16] 

 

 Metric     Definition 

CK: 

Weighted Methods per Class (WMC)A count of methods implemented within a given class. 

Coupling between Objects (CBO)  CBO for a class is count of the number of other classes to which it is coupled and vice 

versa. 

Response for a Class (RFC)  The count of methods implemented within a class plus the number of methods 

accessible to an object class due to inheritance. 

Lack of Cohesion (LCOM)  For each data field in a class, the percentage of the methods in the class using that data 

field; the %s are averaged then subtracted from 100 %. 

Depth of Inheritance (DIT)  The length of the longest path from a given class to the root in the inheritance 

hierarchy 

Number of Children (NOC) The NOC is the number of immediate subclasses of a class in a hierarchy. 

Size: 

Source Lines Of Code (SLOC) It counts the lines of code (nonblank and non-commented) in the body of a given class 

and all its methods 

 

3. RESEARCH METHODOLOGY 

 
This study has been conducted by strictly following the guidelines for performing SLR offered by 

Kitchenham et al [26][39]. SLR is a secondary study which provides the means to gather and 

analyse a collection of published research findings that assist in answering stated research 

questions. This SLR results will be useful in identifying the current state-of-the-art of the 

empirical validation of the relationship between CK metrics, size measure and class FP. The steps 

involve are discussed as follows. 

 
 

3.1. Research Questions 

 
This study is aim at providing empirical evidences from published studies in the literature to 

identify which of the CK and SLOC metrics are strongly associated with class FP in terms of 

significance level. Thus, the research questions intended to be answered are as follows: 
 

RQ1: Which metric (s) within the CK metric suite and SLOC is related to the FP of a class?  

This question is designed to provide answers on which metrics are significant or not significant 

with FP of OO classes. This study will limit its findings to significance and insignificance 

relationship regardless of if the relationship is positive, negative, weak, strong or severe.  
 

RQ2: What techniques are being used to empirically validate the metrics in RQ1 and which is the 

best?  

This question will be used to explore the state-of-the-art in fault prediction using FP and CK and 

SLOC with respect to the statistical techniques, models and variables used. 
 

RQ3: To what extent have the metrics in RQ1 been validated? 
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This question is designed to elicit information about the state-of-the-art in fault prediction using 

FP and CK and SLOC metrics with respect to the programming language used, the settings of the 

validation, the type of systems used and the product release used. 
 

RQ4: Of what relevance are the empirical validations of software metrics? 

This question is designed to provide the relevance of empirically validating the relationship 

between FP and CK and SLOC metrics 
 

RQ5: Are there generic software metrics for predicting faulty classes? 

This question is designed to provide answers on whether there exist validated OO metrics which 

are generic in the prediction of FP of OO software systems. This is important to help developers 

or managers make quick decisions during software development. 
 

3.2. Search Strategy, Terms, Resources and Selection 
 

Search strategy has the goal of ensuring that only relevant studies or articles appears in the search 

results. In this study, we considered the review of 17-years’ efforts in empirical validation of CK 

and SLOC metrics, between the period of January 1995 to December 2012. These periods were 

strategically chosen with respect to the birth of CK metric suite and to sufficiently explore the 

information provided within these periods. To this end, all studies published after the December, 

2012 are not included. Another review will be carry out to cover the years after December 2012 

in order to enable us perform comparisons on the state-of-the-art in fault predictions with those 

periods.  

 

However, search results are well documented to enhance the clarity of the search process and 

avoid duplications. Search terms or strings were formulated and applied manually during the 

process by following the steps suggested in [26]. For more details, refer to Isong and Ekabua [43]. 

Furthermore, we limited the search for relevant studies to electronic databases such as Google 

Scholar, Compendex, Inspec and Scopus. There are subsets of databases largely recognized by 

researchers worldwide and known to contain relevant journals and conferences articles within 

computer science and software engineering. Databases such as IEEE Xplorer, Springer Link and 

ACM were not searched directly since they were indexed or linked to the Engineering Village 

database (Compendex and Inspec). Based on the study selection criteria designed, relevant studies 

were selected during the review process to be used for data extraction. This is accomplished by 

defining basic and detailed inclusion and exclusion criteria in accordance with the research 

questions. In addition, quality assessment criteria was used to assess the quality of all included 

studies. This is important to understanding the state of empirical validation of each included 

study. In this case, each selected study is assessed against a number of checklist questions and 

each question answered with Yes or No. 
 

3.3. Data Extraction and Execution  

 
This study designed data extraction form or template and used for information extraction. All 

inconsistencies and difficulties encountered were resolved. Moreover, the extracted data was 

checked at least twice by the authors. To achieve this, the authors independently carry out the 

process involves in searching for articles that satisfied the defined inclusion and exclusion criteria 

in the data extraction phase. The databases were scanned using the search terms/strings and the 

basic defined inclusion and exclusion criterion on the articles to select relevant articles.  

 

With the data extraction forms, each author performed validation on the extracted data in order to 

accomplish inter-study consistency. All the information about the total number of results obtained 

(selected and rejected articles) from each database were recorded in the search record.  A total of 

4683 articles that cited CK and SLOC metrics were retrieved after applying all search terms. At 

first, studies were excluded after reading their title and abstracts. Furthermore, the remaining 
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studies were selected by applying thorough exclusion and inclusion criteria. More so, the 

extracted data was compiled and organized quantitatively to answer the stated research questions. 

Table 2 shows the list of selected Journals and Conferences papers considered in this SLR. Only 

author’s first name was included due to space constraint. For more information, out of the 29 

studies selected, 5 are from conference proceedings and 24 are from journals.  
 

Table 2. Selected Articles 

 

Id Ref. Year Author Title 

1 [10] 2001 Emam et al            The prediction of faulty classes using object-oriented design metrics 

2 [19] 1998 Briand et al            A Comprehensive Empirical Validation of Design Measures for OO Systems 

3 [21] 2001 Emam et al            The Confounding Effect of Class Size on the Validity of OO Metrics 

4 [17] 2002 Yu et al Predicting FP using OO Metrics: An Industrial Case Study 

5 [1] 2008 Zu et al An Empirical Validation of Object-Oriented Design Metrics for Fault Prediction 

6 [22] 2000 Briand et al Exploring the relationships between design measures and software quality in OO systems 

7 [6] 1996 Basili et al A Validation of Object-Oriented Design Metrics as Quality Indicators 

8 [25] 2005 
 

Gyimothy et al      

Empirical Validation of OO Metrics on Open Source Software for Fault                                                         

Prediction 

9 [23] 2007 
 

Olague et al 

Empirical Validation of Three Software Metrics Suites to Predict FP of OO Classes 

Developed Using Highly Iterative or Agile Software Development Processes 

10 [3] 2006 
Zhou et al              Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low 

Severity Faults 

11 [4] 2010 Singh et al              Empirical validation of object-oriented metrics for predicting FP models 

12 [8] 1999 Tang et al An Empirical Study on Object-Oriented Metrics 

13 [5] 2003 
 

Succi et al 

Practical assessment of the models for identification of defect-prone classes in OO 

commercial systems using design metrics 

14 [2] 2003 
Subramanyam et al Empirical Analysis of CK Metrics for OO Design Complexity: Implications for Software 

Defects 

15 [24] 2009 
Aggarwal et al      Empirical Analysis for Investigating the Effect of Object-Oriented Metrics on FP: A 

Replicated Case Study 

16 [27] 2001 Briand et al           Replicated Case Studies for Investigating Quality Factors in OO Designs 

17 [28] 2008 
Olague et al An empirical validation of OO class complexity metrics and their ability to predict error-

prone classes in highly iterative, or agile, software: a case study 

18 [11] 2010 
Malhotra et al       Empirical validation of OO metrics for predicting FP at different severity levels using 

support vector machines 

19 [29] 2012 
S. Singh et al Validating the Effectiveness of OO Metrics over Multiple Releases for                                                        

Predicting FP 

20 [12] 2008 
Shatnawi et al       The effectiveness of software metrics in identifying error-prone classes in post-release 

software evolution process 

21 [9] 2005 
Janes et al Identification of defect-prone classes in telecommunication software systems using design 

metrics 

22 [30] 2009 English et al         Fault Detection and Prediction in an Open-Source Software Project 

23 [31] 2008 Goel et al             Empirical Investigation of Metrics for Fault Prediction on OO Software 

24 [32] 2011 
Shaik et al            Investigate the Result of Object Oriented Design Software Metrics on FP in Object Oriented 

Systems: A Case Study 

25 [33] 2011 Dallal, J.A           Transitive-based object-oriented lack-of-cohesion metric 

26 [34] 2010 Dallal et al           An object-oriented high-level design-based class cohesion metric 

27 [35] 2010 
 

Zhou et al            

On the ability of complexity metrics to predict fault-prone classes in Object-Oriented 

systems 

28 [36] 2007 Pai et al               Empirical Analysis of Software Fault Content and FP Using Bayesian Methods 

29 [37] 2012 Johari et al          Validation of OO Metrics Using Open Source Software System: An Empirical Study 
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4. ANALYSIS AND RESULTS 

 
This section presents the analysis of the findings in the SLR by answering the above stated 

research questions. 

 

4.1. CK and SLOC Metrics Relationship with Fault Proneness 

 
RQ1: Which metric (s) within the CK metric suite and SLOC is related to the FP of a class? In 

this study, 29 studies are considered on the basis of empirical validation of software metrics. In 

these studies, 7 metrics (i.e. 6 CK metrics and 1 “traditional” metric) were empirically validated 

as related the FP of OO class. However, the analysis carried out shows that some metrics are 

significant, some strongly significant, some insignificant, while some are negatively significant 

across the studies. Additionally, some studies categorized their findings in terms of significance 

and insignificance based on the severity of the fault found such as high, medium, low and 

ungraded [18][38]. But in this study there is no distinction as to whether a significance is positive 

or negative and fault severity [3]. Nonetheless, analysis presented in Table 3, 4, 5, 6 and 7 

indicates that some metrics are considered to be significant in some studies, insignificant in others 

while few studies did not measured the metrics. The analysis of the finding is as follows: 

 

Complexity measure: For WMC, the validation based on the hypothesis constructed confirms that 

classes having more member functions or methods are more likely to have faults than classes with 

small or no member functions. However, 22 studies confirmed WMC significance relationship 

with the FP of OO classes, one study [2] found considered it to be insignificant while 6 others 

studies did not consider it their studies.This is captured in Table 3. 

 
Table 3. WMC Validation 

 

Metric Significant Insignificant N/A 

WMC [10],[40],[17],[1],[22],[6],[25], 

[23],[3],[4],[8],[2],[24],[27], 

[11],[29],[12],[31],[32],[35],[36],[37] 

 

[2] [5],[9],[34],[19],[30],[33] 

**N/A= not applicable 
 

Coupling measures: Analysis indicates that 23 of the studies found CBO to be having strong 

influence on class FP. The significance stems from the fact that a class that is highly coupled 

tends to be more fault-prone than class that is loosely coupled. To this end, one study found CBO 

to be insignificant but CBO was not measured in 5 studies.(See Table 4) Moreover, RFC was 

found to be strongly significant related to class FP in 24 studies. The findings confirms that a 

class with higher response sets tends to be more fault-prone than others with less response sets. 

Interestingly, none of the studies found RFC insignificant but 5 of the studies did not measure 

RFC.  
 

Table 4. CBO and RFC Validation 

 

Metric Significant Insignificant N/A 

CB0 [10],[19],[21],[17],[1],[22],[6],[25],[23], 

[3],[4],[2],[24],[27],[11],[29],[12],[9], 

[30],[31],[32],[36],[37] 

[8] [5],[28],[35],[34],[33] 

RFC [10],[19],[21],[17],[1],[22],[6],[11], 

[23],[3],[4],[8],[5],[24],[27],[11], 

[29],[12],[9],[30],[31],[32],[36],[37] 

 

- [2],[28],[35],[34],[33] 

**N/A= not applicable 
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Cohesion measure: Based on the analysis carried out in this study, it shows that 14 studies found 

LCOM to besignificantly related to class FP. Nevertheless, only 4 studies considered LCOM to 

be insignificant while 11 studies did not measure LCOM in their study. This is shown in Table 5. 

The overall results confirmed that a class with low cohesion value is more likely to have faults 

than class with high cohesion value. 

 
Table 5. LCOM Validation 

 

Metric Significant Insignificant N/A 

LCOM [19],[21],[17],[25],[23],[3],[4],[24], 

[27],[11],[9],[32],[35],[34],[37] 

 

[21],[6],[29],[31] 

 

[10],[1],[22],[8],[5],[2], 

[28],[12],[30],[33],[36] 

**N/A= not applicable 

 

Inheritance measures: In the perspective of inheritance measure of a class, results has it that only 

9 studies found DIT to be significantly (strong and weak) related to FP. However, about 15 

studies considered it to be insignificant while 5 studies did not measure it. With emphasis on the 

insignificance of DIT, it indicates that a class with higher number of inheritance hierarchy is not 

likely to have faults. Furthermore, only 3 studies found NOC to be significantly related to FP 

while 15 studies considered it insignificant. With the insignificance results, it show that a class 

having a higher number of children is not likely to be fault-prone than others with less number of 

children. The validation for both DIT and NOC are shown in Table 6 
 

Table 6. DIT and NOC Validation 

 

Metric Significant Insignificant N/A 

DIT [19],[22],[6],[25],[5],[2],[27], 

[9],[37] 

 

[10],[21],[17],[23],[3],[4], 

[8],[24],[11],[29],[12],[30], 

[31],[32],[36] 

[1],[28],[35],[34],[33] 

NOC [17],[22],[2] [19],[25],[23],[3],[4],[24], 

[27],[11],[29],[12],[30],[31], 

[32],[36],[37] 

[10],[21],[1],[6],[5],[2],[28],[9], 

[35],[34],[33] 

 

**N/A= not applicable 
 

Class Size measure: In this study, analysis indicates that SLOC of a class has a strong relationship 

with FP and even more than OO metrics [1][17][22][25]. Consequently, about 17 studies 

confirmed its significance on FP and no study considered it insignificant while 12 studies did not 

measure it. (See Table 7) The implication of the results is that a class having a larger number of 

lines of code is more likely to have faults than classes with small code lines.  
 

Table 7. SLOC Validation 

 

Metric Significant Insignificant N/A 

SLOC [17],[1],[22],[25],[3],[4],[2],[24],[27], 

[28],[11],[29],[30],[31],[32],[33],[36] 

 

- [10],[19],[21],[6],[23],[8],[5],[12], 

[35],[34],[37] 

 

**N/A= not applicable 

 

4.2. Empirical Validation Techniques 

 
RQ2: What techniques are being used to empirically validate the metrics in RQ1 and which is the 

best? From the results of the analysis conducted, this study found that all the 29 studies selected 

explicitly stated the techniques used in conducting their individual empirical validation. Table 8 

shows the techniques used, metrics studied, the variables employed (dependent and independent) 

and the tools employed for metric collection. However, different techniques were employed such 
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4.3. State of Metrics Validation 

 
RQ3: To what extent have the metrics in RQ1 been validated? In this section, the state of the 

metric validation are considered from different points of views: the study context, programming 

language used, product release time and the study type. Table 8 present details of the metric 

validation state. 

 

4.3.1. Study Subjects and Context 

 
In this study based on the analysis conducted, it shows that the empirical validation studies of CK 

and SLOC metric’s relationship with FP have been carried out in both academia and non-

academia environments utilizing software products developed by either students or software 

professionals respectively. The academic environment used mainly systems developed by 

students while in the non-academia environment, either open source software (OSS) projects or 

industrial software systems developed by professionals were utilized. In most of the selected 

studies, product are either applications, components or middlewarethat ranges from OSS projects 

like Mozilla [23][25][28], eclipse [12][30][33], NASA project [1][3][4][11][31][36] to 

telecommunication systems [9][17][21]. Moreover, the systems have variable sizes ranging from 

small to large sized systems. 
 

Table 8. Validation details  

 

Paper 

Id Technique 

Dependent 

Variable 

Independent 

Variable 

 

Metric Collection Tool Prog. 

Language 

 

Study 

Type 

 

Release 

 

1 LR FP CK & Others (24 ) 

 

Java static analysis tool JAVA 

 

NR 

 

Pre 

2 LR FP CK  Metrics 
M-System based on GEN++ 

C++ 
NR Pre 

3 LR FP CK & Others 
commercial metrics collector 

C++ 
NR Pre 

4 OLS,LDA FP CK OTHERS 8 
Metric tool integrated with Rigi, 

JAVA 
NR Pre 

5 OLS,ANFIS F CK SLOC - C++ NR Pre 

6 LR FP CK & OTHERS 49 M-System based on GEN++ C++ NR Pre 

7 LR FP CK M-System based on GEN++ C++ NR Pre 

8 LR/ML FP CK SLOC Columbus C++ NR Pre 

9 LR FP CK OTHERS 
Software System Markup Language 

JAVA 
NR Pre 

10 LR/ML FP CK SLOC - C++ NR Pre 

11 LR/ML FP CK SLOC - C++ NR Pre 

12 LR FP CK-NOC - C++ NR Pre 

13 

PRM, 

NBRM,ZINBRM F CK LOC 

WebMetrics 

C++ 

NR Pre 

14 OLS F WMC,CBO,DIT,SIZE - C++, Java NR Pre 

15 LR FP CK & OTHERS 49 Manual Java R Pre 

16 LR FP CK & OTHERS 49 

A tool based on the FAST parser 

technology C++ 

R Pre 

17 LR FP 

WMC, LOC, 

Complexity 

Software System Markup Language 

JAVA 

NR Pre 

18 ML (SVM) FP CK SLOC - C++ NR Pre 

19 LR FP CK, LOC & OTHERS - C++ NR Pre 

20 LR FP CK & OTHERS 
Borland Together 

JAVA 
NR Post 

21 

PRM,NBRM, 

ZINBRM FP CK & Others 

- 

C++ 

NR Pre 

22 LR FP CK & Others - java NR Pre 
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23 LR FP 

24 LR FP CK, LOC & OTHERS

25 LR FP LCOM(CK) & others

26 LR FP LCOM(CK) & others

27 LR FP 

28 PRM, NBRM FP,FC 

29 LR FP 

*LR: Logistic Regression; *ML: Machine Learning; *OLS, Ordinary Least Square; *LDA: Linear Discriminant Analysis; 

*PRM: Poisson Regression Model;  *NBRM: Negative Binominal Regression Model; *ZINBRM: Zeros

Binominal Regression Model; *ANFIS: Adaptive Neuro

R: Replicated, NR: Non-replicated; Pre: Pre-release; Post: Post
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Information Technology (USIT) [24] and others (See Fig. 4). Furthermore, 21% of the sy

used were written by students and 79% by mainly software professional few studies were 

that utilizes same data sets from public repository such as eclipse, NASA, and 

). Also, the analysis shows that, 20% of the projects studied are student’s 

projects, 33% are OSS and 47% are non-OSS systems.(See Fig. 5) 

Figure 4. Validation environments 
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From the analysis carried out in this study, it indicates that only applications written with 
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analysis has shown that empirical validations is higher, about 

only 21% of the validation occurred in the academia 

University of Maryland (UMLD) [3][19][22] and University School of 

21% of the systems 

used were written by students and 79% by mainly software professional few studies were 

that utilizes same data sets from public repository such as eclipse, NASA, and 

projects studied are student’s 

From the analysis carried out in this study, it indicates that only applications written with 

used in the validation of the relationship 

O languages have 
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dominated the world of software applications. However, analysis indicate that about 54% of the 

applications were written in C++ in both the industry and the academia while applications written 

in Java is about 43% and 3% of the studies did

(See Fig. 6) 
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dominated the world of software applications. However, analysis indicate that about 54% of the 

applications were written in C++ in both the industry and the academia while applications written 

in Java is about 43% and 3% of the studies did not mentioned the language of their application. 

 

Figure 6.Programming languages used 

 

4.3.3. Study Type and Product Release 

In the context of this study, study type refers to whether the study is a replicated

Replicated studies were considered in this study because only few studies exist on empirical 

validation of OO design metrics with respect to CK and SLOC while other 

replicated. Basili et al [6] has stressed the need for replicated work as it assist to re

metrics, provide understanding and usefulness of the metrics with regard to different types of 

However, analysis shows that only 14% are replicated studies while 86% are non

. This is captured in Fig. 7. Furthermore, Briand et al [22][27] replicated Basili et al[6], 

Aggarwal et al [24] replicated Briand et al [22][27] and Zhou et al [33] replicated Olague et al 

[23]. Other studies were also found reusing datasets of previous studies. 
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dominated the world of software applications. However, analysis indicate that about 54% of the 

applications were written in C++ in both the industry and the academia while applications written 

not mentioned the language of their application. 

replicated one or not. 

Replicated studies were considered in this study because only few studies exist on empirical 

 studies were 

k as it assist to re-validate the 

d to different types of 

However, analysis shows that only 14% are replicated studies while 86% are non-

Furthermore, Briand et al [22][27] replicated Basili et al[6], 

Aggarwal et al [24] replicated Briand et al [22][27] and Zhou et al [33] replicated Olague et al 
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ts during development and testing, while those faults measured after the system 

has been released to the users is the post-release. However, analysis indicates that about 97% of 
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OO design metrics in evaluating the structural properties of OO classes. In 

addition, only 3% of the studies used post-release application (maintenance) by categorizing 

faults at different levels of severity (High, Medium and Low-impact errors) [12]. (See

4.4.Metrics Empirical Validation Usefulness 

RQ4: Of what relevance are the empirical validations of software metrics?In all the studies 

considered, it has been shown that empirical evidences is a vital step towards ensuring the 

practical relevance of software metrics in software organizations. It indicates 

empirical evidence that product metrics are related to important external attributes like FP, 

metrics will remain little or of no value. In particular, studies by [2][10][16][21] provided an 

expression that depicts the theoretical basis for developing  prediction models for relating OO 

metrics and FP. The studies hypothesized that the relationship is due to the effects it has on 

cognitive complexity. (See Fig. 9) The indication is that the structural properties of classes have 

impact on cognitive complexity which in turn, relates to FP. More so, high cognitive complexity 

can lead OO classes exhibiting unwanted external qualities like FP, reduced understandability an

maintainability [10]. Thus, metrics that having the ability to measure these structural properties 

are considered as good predictors of FP. 

 

ure 9. Theoretical basis of OO product metrics [10] 
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we mean the state of the system studied when its structural properties 

release means 

ts during development and testing, while those faults measured after the system 

release. However, analysis indicates that about 97% of 

findings confirmed 

evaluating the structural properties of OO classes. In 

release application (maintenance) by categorizing 

See Fig. 8) 

In all the studies 

towards ensuring the 

 that, without 

empirical evidence that product metrics are related to important external attributes like FP, 

[2][10][16][21] provided an 

expression that depicts the theoretical basis for developing  prediction models for relating OO 

metrics and FP. The studies hypothesized that the relationship is due to the effects it has on 

he indication is that the structural properties of classes have 

, high cognitive complexity 

reduced understandability and 

maintainability [10]. Thus, metrics that having the ability to measure these structural properties 
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The studies went further to explain that the expression of such a relationship can be used for early 

prediction and identification of risky software classes or the construction of preventative (e.g. 

design, programming) strategies [10]. To this end, using OO design metrics such as CK and 

SLOC metrics can assist organizations to assess software development of any size swiftly at a 

reduced cost, take solution actions early and thus, avoid costly rework [10][11][19][24]. 
 

4.5. Generic Metric for Fault Proneness Prediction 

 
RQ5: Are there generic software metrics for predicting faulty classes?In this SLR, analysis have 

shown that CK or CK and SLOC metrics have impact on class FP. Nonetheless, some studies did 

not consider some of the metrics. Moreover, the results are contradicting even when same dataset 

was used. For instance, in the study performed by [2] that utilized two systems written in C++ 

and Java, the results obtained indicates that WMC was significant with C++ but was not 

significant with Java. Also, DIT was significant in few studies but insignificant in most studies. 

This also applicable to other metrics. Fig. 10 presents the significance and insignificance 

distribution of CK and SLOC metrics on FP of OO classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 10. Validation of CK + SLOC relationship with FP 

 

From the results obtained in this analysis, it is clear that there is no generic metric for FP, rather 

best predictors of FP varies according to the type of applications used, the language used in 

coding and the target application domain. In addition, SLOC, CBO, RFC, and WMC are the 

metrics mostly reported as having strong significant relationship with FP in all the studies 

followed by LCOM. This confirms the findings in [40][41]. In this case, the results were based on 

the value of each metrics. Consequently, the higher the value, the higher the FP of the class. 

Moreover, DIT and NOC were the metrics found to be mostly insignificant in all the studies 

considered.  
 

5. DISCUSSIONS 

 
As OO programming has becomes the mainstream in software development today, several OO 

metrics have been proposed and developed to assess the quality of OO software systems. By 

assessing the quality of software during software development, quick design decisions at a 

reduced cost can be ensured. With the 29 studies considered in this SLR, it shows that only few 

empirical validation studies exist in the perspective of CK and SLOC metrics and FP prediction. 

However, the studies considered used different OO measures such as coupling, cohesion, 

inheritance and size measures to construct quality models that predicts the FP based on the 

statistical techniques of LR, machine learning and so on. In addition, the predictive accuracy of 

such models were reported based on either cross validation or goodness of fit [42]. Based on the 
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analysis conducted, LR is the most widely used model with high predictive accuracy as well as 

the best in predicting faulty classes. These models utilizes FP as the dependent variable obtained 

during the testing phase, while the OO metrics are the independent variables obtained during 

design and coding phases. However, the statistical technique like LR can only predict the FP of a 

class without giving information regarding the possible number of faults in that class.  

 

Also, the study found that size, complexity, coupling measures were the metrics found to be 

strongly related to FP followed by cohesion in the studies that considered CK+SLOC metrics. 

Inheritance measures were found to be insignificant in several studies. This led some authors to 

argued that DIT has an impact on the understandability of OO application and does not support 

reusability, while others argued that the number of methods in the classes is the factor that affects 

understandability [10][29]. With replicated studies, analysis shows that only few studies exist and 

most of the studies were based on shared or reused dataset of previous studies obtained from 

NASA, OSS (Mozilla, eclipse projects) and so on. Furthermore, results obtained from these 

studies were not consistent in terms of significance level. Some metrics appears to be 

significantly (positively or negatively) related to FP and some were not. Consequently, the best 

predictors of FP depends on the type of language, applications and the targeted domain.This study 

also found that the systems used in the empirical validation circled within the sphere of students, 

OSS, and non-OSS projects which is the dominant of all. In addition, majority of the systems 

were developed by professionals (79%). Also, validation were performed on only pre-release 

products (97%) and only one (4%) study actually performed it on post-release product. However, 

the study by [29] recommend that as a system evolves, it becomes more cumbersome to use OO 

metrics to accurately identify the FP of classes in post-release products. To this end, alternative 

methods needs to be applied if high accuracy is to be achieved. More so, only applications written 

in C++ and Java were used to validate the relationship between OO metrics and FP. 
 

The implication of this study is that empirical validation of OO metrics relationship with FP is 

crucial to preserving the practical relevance of OO metrics in organizations. It can assist in the 

quick allocation of resources to where they are needed most, avoid the costly rework and 

facilitate other development activities such as change impact analysis, testing and so on. 

Therefore, during development strong efforts have to be technically channelled to keeping all 

those metrics at a reasonable level since FP of a class is based on each metric value. 

 

5.1. Strengths and Weaknesses 

 
This study covered at least large number of articles that assist in extracting relevant information 

used. To this end, we are quite sure that the study actually covers the empirical validation of CK 

and SLOC metrics published between January 1995 and December 2012. The SLR carefully 

followed the guidelines by proffered by Kitchenham et al [26] where credible and trusted sources 

were used. However, possible threats to this study could emanate from the search terms used, the 

risks posed by not covering all the relevant studies or it could be that most relevant studies were 

hidden in the excluded sources. Furthermore, threats could be the risk of misrepresenting the 

findings of some of the papers found like not considering fault severity levels, positive or 

negative significance of the metrics. Nonetheless, we have strong confidence that if such threats 

exist, they have no significant effect on the results of this SLR. In this case, we worked 

collaboratively, analysed all selected studies and all decisions as well as results were checked, 

rechecked and inconsistencies resolved. 
 

6. CONCLUSIONS 
 

Today, as the OO paradigm has gained widespread popularity coupled with software 

dependability, it is important that high software quality should not be compromised. OO design 

metrics should always be used to assess software quality during software development. By this 
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evaluation, design quality will be improved which in turn would lower the probability of the 

software being flawed. Doing this at the early phases of development can attracts a considerably 

small cost and reduced efforts than late during development process. Several OO metrics have 

been proposed in this direction like CK metric suite and the size measure. Moreover, many 

empirical validation of the relationship between OO metric and FP have been reported. However, 

to ascertain which of them are useful predictors of FP, this study explored the existing empirical 

validation of CK+SLOC metrics to bring together the state-of-the-art in fault prediction using FP 

and CK + SLOC metrics. The results obtained were presented and discussed. 
 

The main findings of this SLR are as follows: 
 

� SLOC, CBO, RFC, WMC are metrics that strongly association with FP. There are also 

considered the best predictors of FP in majority of the studies. Moreover, LCOM is 

somehow an indicator of FP while DIT and NOC are found to be mostly insignificant. 

With the results, we deduced that best predictors of FP depends on the class of 

applications and the domain involved. 

� This study found 29 empirical studies that have validated CK and SLOC metrics with FP 

of OO class. In these studies, 6 were from student’s project and 23 were from non-

students projects (mainly OSS and industrial applications). 

� Software applications written in C++ and Java were majorly used to empirically validate 

the association between OO metrics and FP. 

� The prediction models constructed were mainly based on LR. Only few machine learning 

and other techniques have been used. Thus, this study deduced that LR is the best 

statistical technique used for FP prediction. 

� The empirical studies revolved around pre-release software products. Only one study has 

performed empirical validation on post-release product. 

� Lastly, only few replicated studies exist. However, most studies were found reusing the 

dataset of previous studies. 

 

Future work will involve conducting systematic review on the empirical validation of the 

relationship between FP and other OO metrics other than CK metric suite as well as 

maintainability. 

 

With the above findings, here are some recommendations: 

 

a) To predict the FP with some level of accuracy using CK and SLOC metrics, SLOC, 

CBO, RFC, WMC and LCOM are to be considered. Moreover, LR should be used as the 

predictive model. Metrics such as DIT, and NOC should only be considered based on the 

current value measured in that particular software product. This is because, though they 

appears not to be regular FP indicators, however their significance or insignificance could 

be as a result of either the developers’ experience or the inheritance strategy applied.   

b) For high quality software to be ensured that is stable and maintainable, low-coupling, 

highly cohesion, controlled size and inheritance should be adhered to.  

c) For the evaluation of software quality during development or maintenance, measures 

should strongly not be based on the nature of the environment involved, instead on steady 

indicators of design problems and impacts on external quality attributes. 

d) More empirical studies should be carried out on applications written in other OO 

languages other than C++ or Java. Also, additional empirical studies should be performed 

in the academia and more replicated studies should be carried out in order to re-validate 

the metrics and keep them relevant. 

e) More efforts should be channeled towards post-release software products in order to 

confirm if models utilizing OO metrics can effectively predict class FP accurately or not. 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.6, December 2015 

 

16 

f) During impact analysis of OO software systems, as a quality support activity, OO metrics 

can be used to assess the software quality first before actual changes are made.  
 

To this end, developers and maintainers should use these metrics consistently to evaluate and then 

identify which OO classes requires attention in order to channel resources to those classes that are 

likely failure in the field.  
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