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ABSTRACT 

 
Recently, different kinds of computer systems like smart phones, embedded systems and cloud servers, are 

more and more widely used and the system development and validation is under great pressure. Hardware 

device, firmware and device driver development account for a significant portion of system development 

and validation effort. In traditional device, firmware and driver development largely has to wait until a 

stable version of the device becomes available. This dependency often leaves not enough time for software 

validation. 

 

Recently, virtual prototyping techniques have been widely explored and utilized by both industry engineers 

and academic researchers. White box nature of virtual prototyping brings better observability, traceability, 

debugging support and adaptability. First, virtual prototyping has found their way into enabling early 

firmware and driver development and validation. Second, there has been some research utilizing virtual 

prototyping for post-silicon functional validation. Third, the industry has built hybrid emulation and hybrid 

FPGA systems for system validation using virtual prototyping. In this paper, we demonstrate how recent 

work and products utilize virtual prototyping techniques for system development and validation in the 

above three domains. 
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1. INTRODUCTION 

 
A recent study by International Business Strategies indicates that a 3-month delay to market 

reduces revenue by about 30% for chip manufacturers in general, and the penalty is even worse 

for fast-evolving markets such as mobile devices [1]. The growing system complexity combined 

with shorten time-to-market has created the following challenges for system development and 

validation. 

 

� Lack of early high quality software development. In the traditional system development 

process, software like firmware and device drivers largely has to wait until the first silicon 

prototype becomes available. Before that, it is very difficult for software developers to 

design and develop high quality firmware and device drivers [2, 3]. Before a silicon device is 

ready, software developers can only develop firmware and device drivers according to 

specifications. Such kind of development can lead to a lot of untested code being developed.     

It usually means that a large amount of time is needed for validating, debugging and 

rewriting software code once hardware is available. 
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� Lack of early post-silicon functional validation. Since post-silicon functional validation is 

one major aspect of system validation. To accelerate post-silicon functional validation, we 

need to face the following challenges [4]: limited silicon observability and traceability, lack 

of good test coverage estimation, lack of early test readiness. 

� Lack of early system integration validation. A system includes many different 

components. Different components interact with each other to achieve system functionalities 

and desired workflows. For example, the power management unit needs to interact with 

other system components to realize low power feature. Before all necessary system 

components are available, it's very challenging for developers to test if one component can 

interact with other components correctly to realize the desired flow and functionalities [5]. 

 

In the past several years, virtual platforms and virtual prototypes have been increasingly applied 

in hardware and software development, integration and validation before silicon devices are ready 

[6-8]. Virtual prototyping techniques have been widely explored and used by both industry 

engineers and academic researchers. 

 

� Enable early firmware and driver development. Virtual prototypes are software models 

developed according to the hardware specification. Such models simulate functional 

hardware behaviours and enable unmodified software execution on them. With virtual 

prototyping, software developers can develop and validate firmware and drivers without 

silicon hardware [9]. 

� Accelerate post-silicon functional validation. Because of the white box nature of virtual 

prototypes, they can provide better observability, traceability and controllability. The 

developers can take advantage of these features to enable early coverage evaluation and test 

generation for post-silicon functional validation [10-12]. Before silicon devices or FPGA 

prototypes are delivered, the developers can evaluate the coverage of developed post-silicon 

functional tests and develop better and high-quality post-silicon functional tests. 

� Build hybrid emulation and FPGA systems for integration testing. Hybrid 

emulation/FPGA combines emulation/FPGA and virtual prototyping to enable early 

architecture validation, software development and RTL verification. In this way, unmodified 

software can be validated on the RTL design. Both software and RTL design can be verified. 

 

The remainder of this paper is structured as follows. Section 2 provides a sample virtual 

prototype. Section 3 presents how virtual prototyping enables early firmware and driver 

development. Section 4 illustrates how to accelerate post-silicon functional validation with virtual 

prototyping. Section 5 elaborates how to build hybrid emulation and FPGA systems for 

integration testing with virtual prototyping. Section 6 discusses the conclusion. 
 

2.  A SAMPLE VIRTUAL PROTOTYPE 
 

Before we demonstrate recent detailed advances in virtual prototyping, we would like to 

introduce a sample virtual prototype. A virtual prototype is a software functional model which 

implements the behaviour of the real device. Virtual prototypes can be implemented using 

different languages such as C, C++, DML and System C, but they have the same nature. Virtual 

prototypes provide a lot of advantages. First, they provide better observability for developers to 

observe and capture all interface and internal hardware states. Second, they enable better 

traceability which supports the debugging and tracing on the models. Third, they support better 

controllability which allows developers to modify hardware behaviours for software and system 

validation. 

 

There are many open source available virtual devices. In this paper, we take one virtual device 

from QEMU [13, 14] as our example. This virtual device models the Intel 8255x 10/100 Mbps 
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(E100) network adapter. E100 device is controlled by the corresponding driver through interface 

registers and interrupts. As shown in Figure 1, the E100 virtual device includes the following 

components: 

 

 
 

Figure 1. Excerpt of QEMU EEPro100 Virtual Device 
 

� The device state, EEPRO100State, which keeps track of the E100 device state and the device 

PCI configuration; 

� The I/O register functions such as eepro100_write which are registered as QEMU callback 

functions to access interface registers and trigger functional behaviours; 

� The device behavioural functions such as tx_command which are invoked by the I/O register 

functions to execute the corresponding commands; 

� The device specific functions such as eepro100_receive which are used for receiving data or 

packets from the outside environment. For example, when QEMU receives a network packet 

// Device state Structure 

typedef struct  

{ 

//PCI configuration 

PCIDevice dev; 

//Device I/O registers 

uint8_t mem[PCI_MEM_SIZE]; 

...... 

//SCB stat/ack byte 

uint8_t scb_stat; 

...... 

} EEPRO100State; 

 

// 2. Memory-mapped I/O register function 

static void eepro100_write (void *opaque, hwaddr addr, uint64_t data, unsigned size)  

{ 

EEPRO100State *s = (EEPRO100State *) opaque; 

...... 

tx_command(s); 

...... 

} 

 

// 3. Device behavioral function 

static void tx_command (EEPRO100State *s)  

{ 

...... 

//Send a network packet 

qemu_send_packet(); 

...... 

} 

 

// 4. Network receive function 

static ssize_t eepro100_receive (NetClientState *nc, const uint8_t *buf, size_t size)  

{ 

...... 

//Fire an interrupt 

eepro100_fr_interrupt(s); 

} 
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from the outside environment, it invokes eepro100_receive function to process the packet 

and fire the interrupt using eepro100_fr_interrupt function. 

 

3. EARLY FIRMWARE AND DRIVER DEVELOPMENT 
 
In the past several years, virtual platform and virtual devices have been widely used for enabling 

early software and firmware development. Since virtual prototypes can behave as the 

corresponding physical devices, drivers and firmware can be validated with virtual prototypes 

instead of physical prototypes when silicon prototypes are not ready. Virtual prototype 

environments include the dedicated ones from Electronic Design Automation (EDA) vendors 

such as Cadence [15] and Synopsys [16] and those adapted from various virtual machine (VM) 

environments such as QEMU [13, 14], Simics [17], VMWare [18], Xen [19].  

 

Before the first silicon prototype is ready, it is very challenging to develop the corresponding 

software. Moreover, silicon prototypes can only provide limited debugging and tracing abilities 

due to their black box nature. These limitations bring a lot of difficulties to driver and firmware 

development and validation. Recently virtual prototyping techniques bring advantages in enabling 

software development without silicon prototypes required [6, 9, 20]. All kinds of virtual platforms 

have been widely used by industry companies [21]. Those platforms can enable early operating 

system booting and driver development. Virtual prototypes can greatly shift-left the integration 

process. Before a silicon platform is ready, the operating systems, drivers and firmware can be 

validated on a virtual platform. Once a silicon prototype becomes available, the software can be 

running successfully on the first day. It can greatly reduce the integration cycles. For example, 

Intel developed a virtual prototype to enable early driver development for their 40G Ethernet 

network adapter [9]. With the virtual prototyping techniques, the corresponding drivers were 

developed and driver bugs were found and fixed before a silicon card became available. 

 

 
 

Figure 2. Enable Early Driver Development using Virtual Prototypes 

 

As shown in Figure 2, virtual prototypes are running in virtual platforms while silicon devices are 

running in physical machines. Virtual prototypes and silicon devices can behave the same to 

enable software development and validation because they are both developed according to 

hardware specifications. By using virtual prototypes instead of silicon devices, driver developers 

can start driver development without a silicon device prototype. The similar setups can be applied 

for enabling early firmware development. Firmware can be running on virtual prototypes instead 

of silicon devices so that we can test the firmware functionalities. 
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4. ACCELERATING POST-SILICON VALIDATION 
 

There are several stages in the product development cycle. Recently post-silicon validation has 

become more and more important and critical due to high system complexities and short time-to-

market. According to some recent reports, more and more overall system development and 

validation time has been devoted to post-silicon validation [22]. Due to this fact, developers for 

post-silicon validation face an increasing pressure. It is very critical to develop efficient and 

innovative approaches and methodologies to reduce the development time and cost of post-silicon 

validation. There are several key challenges in achieving accelerated and low-cost post-silicon 

functional validation. 

 

� Limited Silicon Observability. The silicon device is typically a black box. The amount of 

run-time information that can be retrieved from the device internal with build-in test 

circuitries and advanced logic analysers is still quite limited. Such limited observability 

makes post-silicon validation difficult. 

� Test Coverage Estimation. There lacks good test coverage metrics over a silicon device. 

Therefore, it is difficult to assess the effectiveness of test cases and prioritize their 

application. In addition, coverage metrics rooted in hardware design are not well suited for 

testing the integration with software. 

� Test Readiness. High-quality tests are required for post-silicon validation. Good tests can 

not only check the correctness and accuracy, but also detect bugs and security problems for 

post-silicon validation. It is better that developers can develop efficient tests before silicon 

prototypes become ready so that it can save time and speed up post-silicon validation. 

 

Virtual prototyping techniques provide potentials for solving the above challenges without 

available silicon devices. In some recent research, Kai et al. [10, 12, 23] present a systematic 

approach to accelerating post-silicon functional validation with virtual prototypes. In the pre-

silicon stage, post-silicon test coverage is estimated by evaluating the test cases on the virtual 

prototypes. With the estimated test coverage results, better test cases can be generated to improve 

coverage and further validate silicon designs in the post-silicon stage. 

 

4.1. Coverage Evaluation of Validation Tests 

 
In order to save time in the post-silicon stage, it is better to develop high-quality tests before a 

silicon device is ready [4]. However, how to evaluate if post-silicon tests are good or not is very 

difficult. One popular evaluation method is test coverage [24]. Test coverage has been widely 

used in software domain to estimate the quality of a test suite. However, there lacks of good 

coverage metrics methodologies for evaluating post-silicon tests on hardware devices.  In paper 

[23], Kai et al. proposed some hardware-related coverage metrics for evaluating post-silicon tests 

with virtual prototypes. Their approach applied the validation tests to virtual devices to estimate 

the coverage on corresponding silicon devices. 

 

They have proposed an online capture and offline replay approach. In their approach, they first 

run virtual devices and the corresponding drivers within a virtual platform. Then a test suite is 

issued to trigger hardware functionalities. In this process, hardware states and hardware/software 

interactions are captured and then consumed by an offline-replay engine to produce coverage 

reports. The coverage reports give developers good estimation of the test suite. They have applied 

the approach to estimating coverage of some test suites on several virtual network devices. 

Furthermore, they have extended their approach to support coverage estimation and conformance 

checking on silicon devices in the post-silicon validation [11, 25, 26]. 
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4.2. Concolic Test Generation 

 
With coverage evaluation results on virtual prototypes, test generation can be conducted to 

provide high-quality post-silicon tests before the first silicon prototype becomes available. Kai et 

al. have developed a concolic approach to generation of post-silicon tests with virtual prototypes 

[10]. They borrow "concolic" from software testing domain literally and conduct concolic test 

generation by integrating concrete runtime execution and symbolic execution [27]. 

 

They first capture concrete traces within a virtual platform. The capture traces are analysed and 

device states under test are identified. Then they symbolically execute the virtual prototype with a 

symbolic request from these device states to generate tests. The generated tests are issued 

concretely to the FPGA prototype and physical device. This approach has been evaluated on 

several virtual network devices. 

 

As shown in the paper [10], the generated test cases improve test coverage significantly. For some 

virtual devices, the generated test cases trigger 100% function coverage and improve the branch 

coverage more than 30%. Both the test suite and the generated tests have been issued to silicon 

devices. They detected 20 inconsistencies between virtual prototypes and silicon devices with 

conformance checking using generated tests. 

 

5. HYBRID EMULATION AND FPGA PROTOTYPES 

 
For some certain tasks, the combined virtual prototypes and other methodologies have begun to 

show the strengths [28, 29]. There are two common frameworks. One is hybrid prototypes which 

combine virtual prototypes with FPGA-based prototypes [30-32]. The other is hybrid emulation 

which combines virtual prototypes with RTL emulation. 

 

Hybrid prototypes and hybrid emulation are approaches to mitigate both virtual prototypes and 

RTL availability. To run a system, the developers can mix virtual prototypes and RTL designs. In 

this way, they can use what becomes most readily available and reliable to build a system as early 

as possible.  

 

Hybrid prototypes and hybrid emulation have been employed to different kinds of use cases. 

 

� Reuse available RTL design. Sometimes it is better to use RTL design or third-party IP 

instead of virtual prototypes. When a new system is designed, it is highly possible that there 

are some pre-existing RTL designs from a legacy project or there are some IPs provided by 

third-party companies. If we can reuse them in a hybrid system, it can save time to develop a 

new virtual prototype. 

� Use necessary RTL design. For some models such as GPUs, it might not be so easy to 

model in a virtual prototype. Moreover, some systems require cycle-accurate hardware 

models for timing and performance verification. Furthermore, developers might want to only 

verify one specific RTL design. Under the above cases, it is necessary to combine RTL 

design with FPGA/emulation. 

� Early system integration and architecture validation. In order to validate system 

architecture and functionalities, it is better to use hybrid system. When a new system is 

designed, it is difficult to determine either RTL design or a virtual prototype is available 

first. It is better to use whatever available as early as possible for early system integration 

and architecture validation. 
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Figure 3. Hybrid Framework 

 

The basic frameworks of hybrid prototype and emulation are shown in Figure 3. On the left side, 

a basic virtual platform is built based on different virtual prototypes. It usually implements a basic 

system framework with only a few components missing. On the right side, some RTL designs or 

IPs are simulated using FPGA or hardware emulators. Therefore, the functionalities missing on 

the left side can be complemented by FPGA or emulator. To connect two sides, a transaction-

level modelling (TLM) adaptor is required since virtual prototypes are usually implemented at the 

transaction level. The TLM adaptor acts as a bridge between virtual prototypes and RTL 

simulation. In this way, a complete system can be simulated for development and verification. 
 

6. CONCLUSIONS 
 

In this paper, we summarize the current research and industry utilization of virtual prototyping 

techniques. Virtual prototyping techniques have shown their powerfulness and strengths in 

enabling early software development and accelerating post-silicon functional validation. The 

hybrid prototypes and emulation can better shift-left software development, hardware verification 

and system integration. In the future, there are still many unexplored areas which can take 

advantage of virtual prototyping techniques. 
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