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ABSTRACT 

 

This paper presents a set of methods that uses a genetic algorithm for automatic test-data generation in 

software testing. For several years researchers have proposed several methods for generating test data 

which had different drawbacks. In this paper, we have presented various Genetic Algorithm (GA) based test 

methods which will be having different parameters to automate the structural-oriented test data generation 

on the basis of internal program structure. The factors discovered are used in evaluating the fitness 

function of Genetic algorithm for selecting the best possible Test method. These methods take the test 

populations as an input and then evaluate the test cases for that program. This integration will help in 

improving the overall performance of genetic algorithm in search space exploration and exploitation fields 

with better convergence rate.  
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1. INTRODUCTION 
 
Software testing is a process in which the runtime quality and quantity of a software is tested to 

maximum limits. The basic test of software is done in the environment for which it is has been 

designed. It’s run through is checked for correct and efficient outputs. Also software testing is 

done in foreign environments also so as to explore about the possibilities of scalability [8, 12]. 

Each software is tested under various strategized environments. 

 

The testing done is expected to produce the correct results under the assumptions of specific 

functions, but at no time all the defects can be identified. Instead, it furnishes a comparison that 

compares the state and behavior of the product —principles or mechanisms by which users might 

be able to recognize the problem. 

 

A test case is generally the data which acts as input for the software testing to done. Its consists of 

unique identifier, requirement references from a software specification, a series of steps to follow, 

events, preconditions, input, output, expected result, and actual result.[17] It is also coined as an 

expected output to the tested environment. This can be as pragmatic as “for condition your 

derived result is b”, whereas other test cases described the input scenario in detailed analysis and 

showed results that were expected [2, 9, 16]. 

 

Evolutionary Testing uses a kind of meta-heuristic search technique, the Genetic Algorithm (GA), 

to convert the task of test case generation into an optimal problem [4, 13, 27]. Evolutionary 
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testing is used to search for optimal test parameter combinations that satisfy a predefined test 

criterion. This test criterion is represented by using a “cost function” that measures how well each 

of the automatically generated optimization parameters are satisfying the given test criterion [7, 

22]. 

 

In our paper a study of different types of genetic algorithms is done. Different algorithms have 

been run on different tools and analyzed for their performance. All these algorithms follow the 

same basis of evolutionary testing but have different cost functions. On running these cost 

functions on different tools, observations on how these functions respond are made [1, 3, 5, 11]. 

 

2. INTRODUCTION TO GENETIC ALGORITHM 
 
Genetic algorithms are one of the best ways to solve a set of problems for which little information 

is given. Genetic algorithms are a very general algorithm and so they will work well in any search 

space [1, 25, 30, 33]. All you need to know is what you need the solution to be able to do well, 

and a genetic algorithm will be able to create a high quality solution. Genetic algorithms use the 

principles of selection and evolution to produce solution for various complex problems. 

 

Genetic algorithms tends to thrive in an environment in which there is a very large set of 

candidate solutions and in which the search space is not favorable and has many hills and 

valleys[12,15,16]. True, genetic algorithms can do well in any environment, but they might be 

greatly outclassed by more situation specific algorithms in the simpler search spaces. Therefore 

you must keep in mind that genetic algorithms are not always the best choice in random 

scenarios. Sometimes they might take quite a while to run and are therefore not always feasible 

for real time use. They are, however, one of the most powerful methods with which high quality 

solutions are created quickly to a problem [4,8,21]. There are few basic 

methodology/Terminology that will be used while implementing genetic algorithm like: 

 

Individual – Possible solutions 

Population - Set of all individuals 

Search Space - All possible solutions to the specified problem 

Chromosome – Blueprint for an individual 

Trait - Possible aspect of an individual entity. 

Allele - Possible settings for a trait 

Locus - The position of a gene on the chromosome 

Genome - Collection of all chromosomes for an individual entity. 

 

3. BACKGROUND 

 
Genetic algorithms use the following three operations on its population. 

 

 3.1 Selection:  

 
A selection process is applied to determine a way in which individuals are chosen for mating from 

a population based on their fitness. Fitness is defined as a characteristic and capability of an 

individual to survive and reproduce in an environment. Selection generates the new population 

from the old one, thus starting a new generation. The fitness value of each chromosome in present 
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generation is determined by an appropriate evaluation. Thus, the fitness value is used to select a 

set of better chromosomes from the population for the next generation.[5,6]. 

 

3.2 Crossover:  
 

After the selection process, the crossover operation is applied to the chromosomes selected from 

the population. Crossover involves swapping of sequence of bits or genes in the string between 

two individuals [8, 10]. This process of swapping is carried out and repeated each time with 

different parent individuals until the next generation has optimum individuals. 
 

 

Figure 3.2: Uniform Crossover 
 

3.3 Mutation:  
 

After the crossover process, the  mutate operation is applied to a randomly select subset of the 

population. Mutation leads to an alteration of chromosomes in small new ways to introduce good 

traits. The main aim of mutation is to bring diversity in population.[1,5] 

 

Figure 3.3: Mutation (Bit Inversion) 
 

Factors essential in a fitness function are:  
 

• Likelihood. 

• Close to Boundary Value. 

• Branch Coverage. 
 

It has been proven that GAs required less CPU time in reaching a global solution in software 

testing [13]. 
 

3.4 Need for Genetic Algorithms in Software Testing: 
 

Drawbacks of manual testing: [7, 12]  

Speed of operation is limited as it is carried out by humans. 

High investment in terms of cost, time. 

Limited availability of resources. 
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Redundancy in test cases. 

Inefficient and inaccurate test checking. 

Pros of using genetic algorithms in software testing: 

Parallelism is a important characteristic of genetic testing [11,19]. 

Less likely to get stuck in extreme ends of a code during testing since it operates in a search 

space. 

With the same encoding, only fitness function needs to be changed according to the problem. 

 

 

 

Figure 4.1: Test Case Generation in Software Testing Using GA 

 

4. GENETIC ALGORITHM WORKING 
 
The genetic algorithm is an evolutionary approach to computing, which has the ability to 

determine appropriate approx. solutions to optimization problems. The basic process adopted by 

Genetic algorithms typically involves creating an initial set of random solutions (population) and 

evaluating them [2, 5, 9, 12]. Followed by a process of selection, the better solutions are 

identified (parents) and are then used to generate new solutions (children). These values can be 

used to replace other lesser members of the population. This new population (generation), is then 

reevaluated and the process for generating new values  continues, reproducing new generations 

until either a final solution is determined or some other criterion for determination of result is 

reached[18,22,32]. 
 

Genetic Algorithm borrows its terms from the biological world. For example, Genetic algorithm 

uses different representations for potential solutions which are referred to as a chromosome and 

the operators that are used to generate new child solutions are such as crossover and mutation are 

derived from nature. 
 

In their generic and most basic form, Genetic Algorithms were used mainly for single objective 

search and optimization algorithms. Common to most Genetic algorithms is the use of a 

chromosome, genetic operators, a selection mechanism and an evaluation mechanism [23, 27]. 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.7, No.2, April 2016 

 

25 

In our case, all we have to do is determine the parameters we need in order to build an efficient 

function and bundle them into a binary string, this will be the definition of our chromosome. 

Therefore, each chromosome will fully describe a Function. 

 

A common approach when working with Genetic Algorithm is to start by making a 'population' of 

random chromosomes (Test Variables) perhaps a 100. You may remember earlier that we said we 

can test each one individuals and score it, or to use the correct terminology, 'evaluate its fitness’ 

(function).  

 

This calculated Fitness function will help us to evaluate the efficiency of the method used [11, 27, 

29].And further to increase the efficiency of the test result we can change the input parameters 

and obtain values for different number of population. 

 

5.  APPLICATIONS OF GENETIC ALGORITHM 
 
Genetic Algorithm have been used for solving complex problems (such as NPC and NP-hard), for 

machine learning and is also used for evolving simple test programs. They are a very effective 

way of quickly finding a reasonable solution to a complex problem. 

 

Genetic algorithms are most efficient and effective in a search space for which little is known. 

Then again, genetic algorithms can be used to produce solutions to problems working only in the 

test environment and deviates once you try to use them in the real world [17, 24]. 

 

So when put simply, genetic algorithm can be used to create solutions for problems that are not 

very easy to calculate and analyze. 
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Figure 5.0: Flow chart of the workflow of Genetic Algorithm used for Test Case Generation n Software 

Testing. 

 

6. IMPLEMENTATION OF GA IN SOFTWARE TESTING 
 

6.1 Test case generation using GA in Ruby 

    

Algorithm:  

 

Start with randomly generated test cases from the population. 

Calculate the fitness f(x) of each pair of test cases (chromosome x) in the population.  

Repeat the following steps until a n child test cases have been generated. 
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a. Select a pair of parent test cases from the current population where the probability of selection 

is an increasing function of fitness. Selection is done “with replacement,” meaning that the same 

pair of test case can be selected more than once to become a parent. i.e. (Selection process is 

carried out) 

b. With the crossover probability Pc, cross over the pair at a randomly chosen point to form two 

child cases or off springs. If no crossover takes place, form two test cases that are exact copies of 

their respective parent cases.  

c. Mutate the two child cases with mutation probability Pm, and place the resulting pair of test 

cases in the new population. If n is odd, one new population member can be discarded at random. 

Replace the current test cases with the new test cases.  
 

6.1.1 
 

Population size = 50 

Number of generations = 500 

Crossover rate=0.7 

Mutation rate = 0.001 
 

Ruby Implementation with First Case: 
 

Generation Average fitness Max fitness 

1 31.88 33 

2 32.88 34 

3 32.67 34 

4 32.75 35 

5 32.96 34 

10 34.17 38 

25 37.29 42 

50 41.21 44 

100 39.67 47 

150 44.33 49 

200 46.33 47 

250 47.63 49 

500 50.23 50 

750 51.79 51 

1000 52 51 

 
Table 1: Average fitness value with mutation rate = 0.001 

 

6.1.2 
 

Population size = 50 

Number of generations = 500 

Crossover rate=0.7 

Mutation rate = 0.01 
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Ruby Implementation with Second Case: 

 
Generation Average Max 

1 32.25 32 

2 32.13 32 

3 33.92 33 

4 32.42 33 

5 33.79 33 

10 34.71 34 

25 38.42 36 

50 39.08 37 

100 37.42 36 

150 35.54 40 

200 38.79 40 

250 41.83 39 

500 42.18 43 

 
Table 2: Average fitness value with mutation rate = 0.01 

 
Mutation rate has a great impact on the average on the average fitness of genetic algorithms 

during testing. Smaller the rate, better the fitness function value will be. 

 

Below is a graph which represents the average fitness overtime for different mutation rates. 
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6.2 Genetic Algorithm Implementation in C++                            
 

Pseudo-code for genetic algorithm: 
 

 choose initial_population: 

 evaluate individual_fitness function 

 determine population’s_average       

 fitness_function 

    Repeat 

  select best_case individuals to    

  reproduce; 

  mate_pairs at random; 

  apply crossover_operator; 

  apply mutation_operator; 

  evaluate Individual fitness; 

  determine population's average   

  fitness; 

 

The second step consists for generating data consists of the outer loop, which will generate the 

possible test cases remaining. To account for the possibility of unfeasible test requirements, which 

includes branches and statement values, the loop will produces iterations until it satisfies the test 

results for the given population values. The algorithm will produce values which will be applied 

for the crossover and mutation operator. Then the fitness function for individual values are 

generated and the population’s individual average fitness functions in calculated.  

 

In the final step, the algorithm will assign the combined values of the test cases and find at least 

one individual desired fitness function values until enough test generations have been passed. 

 

6.2.1 
 

Population size = 50 

Number of generations = 250 

Crossover rate=0.7 

Mutation rate = 0.001 
 

Table 3: Best fitness value generation 

 

Iteration Best fitness Average fitness Standard Deviation 

1 16.77 11.59 5.54 

2 20.39 15.09 3.26 

3 20.39 15.71 3.27 

4 22.99 15.84 3.79 

5 22.99 16.03 3.89 

10 23.24 17.65 3.46 

25 25.12 20.87 3.61 
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50 25.89 21.42 4.32 

100 26.27 20.88 5.33 

150 26.77 23.28 3.77 

200 26.77 20.38 6.91 

250 26.78 22.41 4.42 

500 26.98 22.68 5.54 

             

 
 

Graph: Number of generations (x-axis) vs. average fitness (y-axis) 

 

6.3 Genetic Algorithm Implementation using Matlab 
 

In this work both the genetic algorithm and the random testing method were compared and 

detailed analysis of the best fitness has been evaluated. In order to compare Genetic algorithm 

and a pure random method, 150 test cases were generated and tested by both methods [22]. From 

this we can see that the average response time of test cases created by genetic algorithm is much 

efficient than that of the random method. 

 

Case 1 shows the plot of the best and mean score of the population at every generation. The 

second plot function is stopping criteria, which plots the percentage of stopping criteria satisfied. 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                Figure 1 
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Results generated for Case 1: 

 

The number of generations: 124                        

The number of function evaluations: 6250     

The best function value found: -186. 

 
Case 2 shows a better detailed analysis of the best and the mean fitness function by changing the 

test cases to 20 instead of 10. This iteration generates better results than the previous iteration and 

by further iterating the test cases the result is obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 
               Figure 2 
 

Results generated for Case 2: 
 

The number of generations: 68                         

The number of function evaluations: 650      

The best function value found: -176.997 
 

Case 3 
 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                  
               Figure 3 

 
Results generated for final Case 3: 

 

The number of generations was: 101 

The number of function evaluations was: 5100 

The best function value found was: -186.627 
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Genetic algorithm for test case generation using Mat lab was implemented. It can be found out 

that for a population of 50 and maximum generations 500, the best fitness function is carried out 

until maximum generation is reached or until a certain value after which no significant change 

occurs. The iterative generation is stopped itself after such a condition hence providing us with a 

further optimization and avoid redundant solutions. 

 

7. CONCLUSIONS 
 
In this paper, we analyzed how evolutionary techniques such as GAs helped in software testing. 

The results show how software testing using Genetic Algorithms becomes efficient even with 

increasing number of test cases. In Random Testing Methods, since data points do not have a 

dependence with time, it becomes inefficient as code becomes complex. Thus, to increase the 

efficiency and process time of Software testing, Genetic Algorithms are being used and provide 

us a means of an automatic test case generator. The evolutionary generation of test cases can be 

applied and proves to be efficient and cost effective than Random Testing. 
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