
International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

DOI: 10.5121/ijcsit.2018.10504 33

IMPROVED COMPUTING PERFORMANCE FOR

LISTING COMBINATORIAL ALGORITHMS USING

MULTI-PROCESSING MPI AND THREAD LIBRARY

Nguyen Dinh Lau

University of Education and Science, University of Danang, Vietnam

ABSTRACT

This study builds up two parallel algorithms to improve computing performance for two listing binary and

listing permutation algorithms. The problems are extremely interesting and practically applicable in many

fields in our daily life. To parallel execution, we divide the data set input and allocate them to the

processors. The article focuses on (i) the analysis of the research situation of the related works to compare

and evaluate the existing problems of previous works, (ii) the analysis of the input data structure to divide

data for the sub processors, (iii) the construction of parallel algorithms - proof of correctness and analysis

of computing complexity, and (iv) experiments in multi-processing MPI and Thread library. Then the

comparison of the results of the parallel algorithm with the sequential algorithm and the comparison of the

execution time on different sub processors is discussed.

KEYWORD

Parallel algorithms, listing binary, listing permutation, bounded sequences, substituend, inversion

1. INTRODUCTION

Listing binary and permutation are amazing and appealing problems in discrete mathematics with

numerous wide applicability. However, when the input data is large, the listing time is highly

long. For example, with input n = 20, the number of binary array is 2
20

. Therefore, It is crucial to

build up parallel algorithms to improve the computing performance for this problem.

In Vietnam, Hoang Chi Thanh has done some Research on combinatorial [3], [4], [5], [6] , [7].

In the world, there are many researchers publishing works related to the field of combinatorial

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]].

In the article [1] by Nguyen Dinh Lau, a parallel algorithm for listing permutation has been

developed, but not yet applied to multi-processing MPI and Thread library. Thus, this paper is

inspired by some parts of [1] to rebuild the listing permutation algorithm.

However, in [8], [9], [10], [11], the listing binary sequences algorithm is not improved to cut

down on the computing performance. Particularly [3] study by Hoang Chi Thanh focuses on

building algorithm based on inversion vector and bounded sequence. However, Hoang Chi Thanh

has neither analyzed and proved the complexity of the parallel algorithm, nor experimented in

multi-processing MPI and Thread library to compare the processing time between different

processors and different data sets.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

34

Therefore, this article has the following new cutting-edge points:

 1. Building up a new parallel listing n-binary algorithm to improve computing performance. It

deals with the analysis, and proof of the complexity and experiments in the MPI to the

examine and compare computing time.

 2. Basing on [1] to build up parallel listing permutation algorithm. It involves the analysis,

proof the complexity and experiments in in the Thread to analyze and compare computing

time.

2. LISTING BINARY SEQUENCE ALGORITHM

2.1. Sequential algorithm

 Let n�N. List all binary sequences with n length, i.e., sequence [b1,..., bn], where bibi� {0, 1} �

i=1, ..., n.

The number of binary sequences is 2
n
 and the first sequence s = [0, 0, ..., 0]. For example, given n

= 3, we have the 8 following binary sequences: 000, 001, 010, 011, 100, 101, 110, 111

Algorithm 1. Creating a sequential binary sequence with n length

Begin

1. Input n, s[i]:= 0i = 1,2,..., n

2. Repeat

3. Print sequence s[1…n].

4. i:=n;

5. While s[i]<>0 then

6. Begin

7. S[i]:=0;

8. i:=i-1;

9. End

10. If i>=1 then s[i]:=1

11. Until i=0

12. End.

Assume s[i] in line 2 has the complexity O(n). Lines from 3 to 12 represents 2
n
 binary sequences.

So the complexity of the algorithm is O(2
n
).

2.2. PARALLEL ALGORITHMS

Sequential algorithms might take a long time to process if n length is large. Therefore, it is

necessary to build parallel algorithms to improve computing performance for the algorithms.

This newly-built parallel algorithms use k processors (R0, R1,…,Rk-1) with k = 2
n'
+ 1, where n' =

0,1, ..., n-1. The processor Ri receives the output value which is the input value of Ri + 1 (i = 1,2,

..., k-2). Note that the R0 main processor neither participates in the computation process nor lists

binary sequences. R0 only sends and receives information.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

35

The input on the processors is illustrated as follows:

Let n be the input value, list all binary sequences, let n', then we have the number of k processors.

Then run the sequential algorithm (Algorithm 1) to list the binary sequence of n' length. After

adding the bits 0 on the right, the binary sequence of n' length has a sufficiently long binary

sequence of n length will be divided by the processor R0 for the additional processors (R1, R2 ...

Rk-1) as the input value.

For example, given n = 4, n'= 2. Then, the number of processors k = 5 (R0, R1, ..., R4)

The binary sequence n = 4 is: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,

1010, 1011, 1100, 1101, 1110, 1111

The binary sequence n '= 2 is: 00, 01, 10, 11. Then, the sequences 0000, 0100, 1000, 1100 are the

input of four su processors (R1, R2, R3, R4).

The finishing condition of the four processors (R1, R2, R3, R4) is 0100, 1000, 1100, 1111.

R1 listing binary: 0000, 0001, 0010, 0011

R2 listing binary: 0100, 0101, 0110, 0111

R3: listing binary 1000, 1001, 1010, 1011

R4: listing binary 1100, 1101, 1110, 1111

The following is the parallel algorithm

Algorithm 2. Creating a parallel binary sequence

1. Begin

2. Input n, n’

3. k :=2
n’

+1

4. If Rank=0 then // main processor R0

5. Begin

6. Call Algorithm 1 (n’) // listing binary sequence (t1, t2, …tn’)i∀i∈ 1, … , 2�′ of length n’

7. Create 2
n’

 (t1, t2, …tn’, tn’+1,…,tn)i := (t1, t2, …tn’)i∪(0 ,…, 0)i∀i∈ 1, … , 2�′ of length n

n-n’element

8. Send (t1, t2, …tn’, tn’+1,…,tn)i∀i∈ 1, … , 2�′ to 2
n’

 (P1, …., Pk-1) sub processors

9. End

10. For i:=1 to k-1 do

11. Begin

12. Listing binary sequences in the corresponding processor segment

13. Send the result to R0

14. End;

15. R0 print results

16. End.

Let 2
n
 = 2

n'
+ 2

n-n'
 where 2

n'
= k-1 (R1, R2, ..., Rk-1), then if R1 initiates a binary sequence with a

value 0 and n' length is 0... 000, R2 initiates binary sequence with a value 1 and n' length is 0 ...

001, R3 initiates binary sequence with n' length is 0 ... 010, R4 with n' length' is 0 ... 011,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

36

Continue to Rk-1. Each processor R1 to Rk-1 connects the 2
n-n'

binary sequence has n-n' length to

left of the sequence. Send the results to processor R0. R0 prints results and ends.

Example 2: Given n= 4, n'= 2, then k = 5, then R1 holds 00, R2 holds 01, R3 holds 10, R4 holds 11.

R0 lists 2
n-n'

= 24-2 = 4 binary sequences with the length n-n' = 4-2 = 2 : 00, 01, 10, 11. Then

broadcast 00, 01, 10, 11 to sub processors. The processors R1, R2, R3, R4 receive data from the

Broadcast command, Then connect the sequence 00 to the left of the sequences in R1, then R1

shows: 0000, 0001, 0010, 0011. R2 represents: 0100, 0101, 0110, 0111. R3 shows: 1000, 1001,

1010, 1011. R4 represents: 1100, 1101, 1110, 1111

Algorithm 2 is rewritten as algorithm 3 as follows:

Algorithm 3. Creating a parallel binary sequence by data Broadcast

1. Begin

2. Input n, n’

3. k :=2
n’

+1

4. If Rank=0 then //Main processor R0

5. Begin

6. Call Algorithm 1 (n-n’) // listing binary sequence (tn’+1, tn’+2, …tn)i∀i∈
1, … , 2	
	�

 has length is n-n’

7. Broadcast (tn’+1, tn’+2, …tn)i∀i∈ 1, … , 2	
	�
 to 2

n’
 sub processors (P1, …., Pk-1)

8. End

9. For i:=1 to k-1 do

10. Begin

11. Ri create binary sequence has of length n’ with value i-1 is (t1, t2, …tn’)i

12. Ri connect (t1, t2, …tn’)i into the left sequence (tn’+1, tn’+2, …tn)j∀j∈
1, … , 2	
	�

13. Send the results to R0

14. End;

15. R0print results

16. End.

2.3. EXPERIMENTAL RESULTS

The world of parallel multiple instruction, multiple data, or MIMD, computers is, for the most

part, divided into distributed-memory and shared-memory systems. From a programmer’s point

of view, a distributed-memory system consists of a collection of core-memory pairs connected by

a network, and the memory associated with a core is directly accessible only to that core. See

Figure 1 [21], [22], [23], [24].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

37

Figure 1. Model of adistributed-memory system

In message-passing programs, a program running on one core-memory pair is usually called a

process, and two processes can communicate by calling functions: one process calls a send

function and the other calls a receive function. The implementation of message-passing that we’ll

be using is called MPI, which is an abbreviation of Message-Passing Interface. MPI is not a new

programming language. It defines a library of functions that can be called from C, C, and Fortran

programs. We’ll learn about some of MPI’s different send and receive functions.

I used MPI to parallelize the computation and got exact results. Moreover, the execution time by

parallel algorithms is much shorter than one by sequential algorithm. If n = 10, n'= 1, then the

number of processors k = 2
n'
+ 1 = 3. Only Rank 1 and rank 2 do calculations and send results to

Rank 0.

Figure 2. Demo result

Table 1. The execution time (ms) with n = 12 on the sequential (Seq) and parallel (Par)

n=12 Seq Par_3p Par_5p Par_9p

ime

(ms)
46761 26710 15617 9162

Hình 1. Kết quả Demo

Figure 2. Demo result

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

38

Figure 3. The graph illustrates execution time of the binary sequence with n = 12 on the

Processors

It is noted that when n is big, the parallel algorithm will reduce the execution time as compared to

the sequential algorithm. When we increase the number of processors, the execution time will

decrease dramatically. However, when we increase the number of processors at a certain point,

execution time does not reduce but increases.

3. THE ALGORITHM LISTING PERMUTATIONS OF N ELEMENTS

3.1. SUBSTITUTION, INVERSION

Based on linear algebra theory and the study [1], the concepts of substituend, inversion are

presented as follows:

Let set Xn = {1, 2, 3, ..., n}, (n≥1). A bijection σ: Xn →Xn is called a substituendon the set Xn

The set of all substituends on the set Xn is labeled Sn

Substituend σ: Xn → Xn is demonstrated as follows:

 � = �						1												2												3		 … … … … . �				
��1�					��2�					��3�	… … … . ���� �							(1)

where �(i) is the image of the element i ∈Xn written on the bottom line, in the same column as i.

For example.

� = �		1						2							3						4		
3						2							4						1 � (2)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

39

is the substituendon the set X4 = {1, 2, 3, 4} determined by: σ (1) = 3, σ (2) = 2, σ (3) = 4, σ (4) =

1.

Then the number of substituendson the set Xn is equal to the number of permutations on that set

and is n !. Thus, Sn has n! elements.

Suppose there exists a substituend on the set Xn. with i, j ∈ Xn, i ≠ j, the pair (σ (i), σ (j)) is

aninversion of σ if i <j but σ (i)> σ(j).

For example. Let X3, the substituend�� = �		1						2							3					
2						3						1			 �has two inversions: (2, 1), (3, 1). the

substituend�� = �		1						2							3					
3						2							1			 �has three inversions: (3, 2), (3, 1), (2, 1).

Set Xn has n! permutations and n! substituend. the inversion sequence on every substituend can be

defined as follows: the value of inversion of element 1 in the substituend is assigned to that

inversion sequence, the value of inversion of element 2 in the substituend is assigned to the

inversion sequence. Let's continue with this for n elements. The following is the inversion

sequence with n = 4.

 Table 2. Substituend, inversion sequence and inversion vector sequence with n=4

No Permutation inversion Inversion vector

1 1 2 3 4 0 0 0 0 0 0 0 0

2 2 1 3 4 1 0 0 0 0 0 0 1

3 2 3 1 4 2 0 0 0 0 0 0 2

4 2 3 4 1 3 0 0 0 0 0 0 3

5 1 3 2 4 0 1 0 0 0 0 1 0

6 3 1 2 4 1 1 0 0 0 0 1 1

7 3 2 1 4 2 1 0 0 0 0 1 2

8 3 2 4 1 3 1 0 0 0 0 1 3

9 1 3 4 2 0 2 0 0 0 0 2 0

10 3 1 4 2 1 2 0 0 0 0 2 1

11 3 4 1 2 2 2 0 0 0 0 2 2

12 3 4 2 1 3 2 0 0 0 0 2 3

13 1 2 4 3 0 0 1 0 0 1 0 0

14 2 1 4 3 1 0 1 0 0 1 0 1

15 2 4 1 3 2 0 1 0 0 1 0 2

16 2 4 3 1 3 0 1 0 0 1 0 3

17 1 4 2 3 0 1 1 0 0 1 1 0

18 4 1 2 3 1 1 1 0 0 1 1 1

19 4 2 1 3 2 1 1 0 0 1 1 2

20 4 2 3 1 3 1 1 0 0 1 1 3

21 1 4 3 2 0 2 1 0 0 1 2 0

22 4 1 3 2 1 2 1 0 0 1 2 1

23 4 3 1 2 2 2 1 0 0 1 2 2

24 4 3 2 1 3 2 1 0 0 1 2 3

Table 1 shows that a permutation always has an Inversion vector and an Inversion vector always

has a permutation. Thus, instead of looking for the permutation of n elements in the order of the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

40

dictionary methods. The study comes up with a new idea is that to work on the permutations by

finding the Inversion vector sequence. Inversion vector sequence (bounded sequence) is created

with the initial sequence 0 0 0 0 and with final sequence 0 1 2 3 with n = 4.

3.2. BOUNDED SEQUENCES

The set of integers is represented by the letter Z. Let n be a positive integer, assume that p and q

are two integer sequences of length n and denoted as follows:

p=(p1p2…pn), q=(q1q2…qn)| pi, qi∈ �, ∀� ∈ 1, … , �

We have the following definition:

1) p ≤q If and only if pi≤qi∀�	 ∈ 1, … , �

2) p <q If and only if∃� ∈ �1 … ��: pj<qj and pi≤qi : ∀� ∈ 1, … , �� and i≠ �
Bounded sequence problems are demonstrated as follows:

Given two integer sequences s and g of length n, such that s <g, find all sequences t of length n

such that s≤t≤g

Let s=(s1s2…sn) and g=(g1g2…gn), be two bound. The sequence t=(t1t2...tn) must satisfy:

ti∈ �⋀#$ ≤ %$ ≤ &$∀� ∈ �1 … ��(3)

Example: Let s = (0 0 0 0), g = (0 1 2 3) be two bounds, integer sequences t satisfy s≤t≤g. Thus, t

is arranged in ascending dictionary order as in the following table:

 Table 3.Bounded sequence t with s=(0 0 0 0), g=(0 1 2 3)

Theorem 1. Given two bounds s = (0 ... 0) (with n elements 0) and g = (0 1 2 ... n-1). The

bounded sequence t satisfy # ≤ % ≤ & which is the inversion vector of the set Xn= {1, 2, 3,..., n}, (

n ≥ 1). The sequence t is equals to n! and the inversion Vector s = (0 ... 0) corresponds to the

permutation (1 2 ... n) and the inversion Vector g = (0 1 2 ... n-1) corresponds to the permutation

(n n-1 ... 1) .

Proof: See [1]

Theorem 2. Lets=(s1s2…sn) and g=(g1g2…gn) be two bounds. The sequences t=(t1t2...tn) are

bounded sequences. Let C be the number of bounded sequences t. Then we have:

C=∏ �&$ − #$ + 1��$,- (4)

Proof: See [1]

No Bounded

sequence t

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

N0 Bounded

sequence

t

1 0 0 0 0 5 0 0 1 0 9 0 0 2 0 13 0 1 0 0 17 0 1 1 0 21 0 1 2 0

2 0 0 0 1 6 0 0 1 1 10 0 0 2 1 14 0 1 0 1 18 0 1 1 1 22 0 1 2 1

3 0 0 0 2 7 0 0 1 2 11 0 0 2 2 15 0 1 0 2 19 0 1 1 2 23 0 1 2 2

4 0 0 0 3 8 0 0 1 3 12 0 0 2 3 16 0 1 0 3 20 0 1 1 3 24 0 1 2 3

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

41

Algorithm 4. Creating bounded sequence (s(n), g(n))

1. BEGIN

2. Input n, s[i], g[i], i=1,…,n //s, g: two bounds

3. t[i]:=s[i], i=1,…,n

4. Repeat

5. Print t[i], i=1,…,n

6. i:=n;

7. While t[i] =g[i] do

8. Begin

a. t[i]:=s[i];

b. i:=i-1;

9. End;

10. If i>=1 then t[i]:=t[i]+1;

11. Untill i=0

12. END.

3.3. PARALLEL ALGORITHM LISTING PERMUTATIONS OF N ELEMENTS

Algorithm finding the permutation of n elements by the dictionary method is sometimes

challenging to determine the input and the end conditions of the processors. Thus, it is crucial to

propose a parallel algorithm to find the permutations of n elements based on the bounded

sequence to divide the bounded sequences for the processors.

3.3.1. THE IDEAS OF THE ALGORITHMS

If n increases, then the permutation is very large (n!). Therefore, a parallel algorithm must be

built to improve computing performance.

The idea of parallel algorithms is to utilize k processors, which have a main processor called

processor 0, and sub processors called k-1. The main processor receives the sequence s [i] and g

[i] that are the two bounds as in algorithm 4. The main processor will find k bound sequences

and send these k sequences for the sub processors to find the bounded sequences and convert

them into permutation sequences. k Processor depends on p with k: = p !, p = (2, 3, ..., n-1). Given

that p is chosen, the first bound has the smallest sequence: s0= 0…0 (n number 0) and the largest

sequence:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

42

 he smallest sequence of the 2 segment is:

Thus, the sequence gi (i = 0, ... k-1) is obtained by finding the bounded sequence of s'[i] = 0 ... 0

(p-1 No 0) and g'[i] = i, i = 1, ..., p-1. After finding the bounded sequence, 0 is inserted to the left

side of the bounded sequence and p, ..., n-1 are inserted to the right side of the bounded sequence.

We has gi

Based on gi-1. si. is found as follows:

m=Max(j, gi-1[j]<g[j], The value of si[1] to si[m-1] is unchanged, ie gi-1[a], a = 1, ... , m-1

si[m]: = gi-1[m] +1

s1[i] = 0, i = m + 1, ..., n

For example: Let n = 4, choose p = 3, k = 6, then we have 3! = 6 segments. These six segments

are allocated to 6 sub processors shown in Table 3

:
Table 4. Six segments are allocated to 6 sub processors

3.3.2. PARALLEL ALGORITHM

 Processors number k= p!; p=(2, 3,…,n-1)

Algorithm 5: Parallel algorithm finding permutation of n elements

{

1. Input n, p (p∈ .2,3, … , � − 1/)

2. s[i]:=0 ∀� = 1, … , �

3. g[i+1]:=i ∀� = 0, 1, … , � − 1	
4. k:=p!; p=(2, 3,…,n-1) // k is processors

5. //The main processor finds k subsegments, then divides to the subprocessors

If k=1 (Rank =1) then

 {

// Find the bounded by algorithm 4 and send data to subprocessors

5.1. s’[i]=0, i=1,…,p-1

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

No Bounded

sequence

t

1 0 0 0 0 5 0 0 1 0 9 0 0 2 0 13 0 1 0 0 17 0 1 1 0 21 0 1 2 0

2 0 0 0 1 6 0 0 1 1 10 0 0 2 1 14 0 1 0 1 18 0 1 1 1 22 0 1 2 1

3 0 0 0 2 7 0 0 1 2 11 0 0 2 2 15 0 1 0 2 19 0 1 1 2 23 0 1 2 2

4 0 0 0 3 8 0 0 1 3 12 0 0 2 3 16 0 1 0 3 20 0 1 1 3 24 0 1 2 3

Segment 1:

(s1,g1)

=(0000,0003)

Segment 2:

(s2,g2)

=(0010,0013)

Segment 3:

(s3,g3)

=(0020,0023)

Segment 4:

(s4,g4)

=(0100,0103)

Segment5:(s5,g5)

=(0110,0113)

Segment 6:

(s6,g6)

=(0120,0123)

s1 =(0 … 0 1 0…0) (6)

p-1 No 0 n-p No 0

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

43

5.2. g’[i]=i, i=1,…,p-1

5.3. cj :=Algorithm 4 (s’(i), g’(i)), j=1,…,k.

5.4. Send(s[i]=0, ∀� =1,…,n to p1)

5.5. Send (cj to pj (j=1,…,k)

5.6. Send (cj) to pj+1 (j=1 to k-1)

6.7. Send g[i] in step 4 to subprocessors

 }

6. // Subprocessors perform concurrently

{

6.1. Receive(data)

6.2. Insert element 0 to the left of cj (j = 1, ..., k) // j is the index of the k

processors

6.3. Insert the elements p, p + 1, ... n-1 to the right of cj (j = 1, ..., k)

6.4. gj:=cj (j=1,2,…,k) //gj is the largest bound sequence.

6.5. The subprocessor p1 initiates s1: s1[i]: = 0 ∀i = 1, ..., n // s1 is the smallest

bound sequence on processor p1.

// the Subprocessor p2, p3,…,pk find the smallest bound sequence as follows::

6.6. i:=n;

6.7. While cj-1[i] =g[i] do

6.8. Begin

6.9. cj-1[i]:=0;

6.10. i:=i-1;

6.11. End;

6.12. If i>=1 then cj-1[i]:=cj-1[i]+1;

6.13. sj[i]:=cj-1[j], i=1,…,n, j=2,…,k

7. tj[i] :=Algorithm 4 (sj(i), gj(i)), j=1,…,k, i=1,…,n.

8. Convert all bounded sequences tj[i] to permutation sequences

9. Send permutations sequences to main processor.

10. The main processor print results and ends.

Theorem 3: The Parallel algorithm is TRUE.

Proof:

First, we need to prove that the bound sequences sj and gj on k processors satisfy the formula (3),

ie, sj and gj are in the bounded sequence with the smallest bound sequence s[i]: = 0 ∀i = 1, ..., n,

and the largest bound sequence g[i + 1]: = i ∀i = 0,1, ..., n-1.

gj is computed in step 6.3 in the parallel algorithm by inserting 0 to the left of t and inserting p, p

+ 1, n-1 to the right of cj, then gj [i] ≤g[i], i = 1, ..., n. sj + 1 is based on the gj given from steps 7.6

to 7.13. there always exists s[i] ≤ sj[i], i = 1, ..., n. Thus sj and gj satisfy the formula (3) with 2

bound sequences s[i] and g[i], i = 1, ..., n.

Next, we prove that the total number of bounded sequences in the k processors is n!

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

44

When p (p∈ {2,3, ..., n-1}) is chosen, the number of processors involved in finding the bounded

sequences is k = p! (Note that the number of processors to find bounded sequences are equal.)

The smallest bound sequence of p1 is s1 = (00) (n number 0) and the largest bound sequence

is g1 based on formula (5). According to the solution in (4), the number of bounded sequence in

segment 1 that the subprocessor p1 has done is ∏ �� + 1��
-$,1 . Each subprocessor will also find the

number of bounded sequences equal to ∏ �� + 1��
-$,1 . In addition, sj and gj are two bound

sequences on the subprocessor pj, then #23�4 = &23�4, ∀� = 1, … , 5	6�7	#23�4 = 0, ∀� = 5 +
1, … , �	6�7	&23�4 = �, ∀� = 5, … , �-1.. Applying the formula (4) to the two bound sequences sj

and gj, the number of bounded sequence to each processor is ∏ �� + 1��
-$,1 =(p+1).(p+2). …. . n.

On the other hand, we have the number of processors k = p! So the number of buonded sequences

by the k processors is:

k.(p + 1). (p + 2). n = p! (p + 1). (p + 2). n = n! Thus, the number of bounded sequences

on the k processors is n! which is equal to permutation n!.�

3.3.3. EXPERIMENTAL RESULTS

The algorithm is implemented in the computer with its configuration:

Processor: corei7 2.6GHz and disk: write 28-30 Mb/s

- Interface on the main processor P1: In this main interface, we need to select n and the

number of subprocessors (Figure 4).

- Interface for the sub processors Pi (i=1,2....,k) (Figure 5)

- Resulting interface on the main processor P1. The permutation result is saved as a file

(Figure 6).

Figure 4. Interface of main processor P1

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

45

Figure 5. Interface of sub processors Pi

Figure 6. Interface results of the main processor P1

Figure 6. Interface results of the main processor P1

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

46

Table 4. The execution time (ms) on the sequential (Seq) and parallel (Par) (n=9 to 12)

N Seq Par_2p Par_6p Par_24p

9 323 234 100 97

10 3200 1879 691 151

11 45985 24061 8481 2190

12 1143542 581107 210590 27228

Figure 7. The graph illustrates time listing permutation of n elements by the subprocessors

Figure 8. The graph illustrates time listing permutation of n=11 and n=12 by the subprocessors

Remarks: a close look at Table 4, Figure 7 and Figure 8 shows that if n is large enough, the

parallel computation time is much lower than the sequential computation time. When the sub

processors increase in number, the computation time will decrease. When n increases to 1 unit,

the number of permutations increases dramatically, so the computation time goes up sharply

(Figure 8). However, if you abuse and increase too many processors, the computation time will

also go up.

0

200000

400000

600000

800000

1000000

1200000

1400000

Seq par_2 Par_6 par_24

n=11

n=12
Time

(ms)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

47

4. CONCLUSION

The paper solves the problem of improved computing performance for two listing binary

sequences and listing permutations with sufficiently large n. It is an interesting and innovative

idea in case n is large. This newly-built parallel algorithm was experimental with large n and with

numerous different sub processors. This paper is devoted to building up a general algorithm for

multiple processors. Last but not least, it demonstrates the correctness and experiments in multi-

processing MPI and Thread library.

REFERENCES

1. Nguyen Dinh Lau, Parallel algorithm list permutations,@ 2017,ISBN: 978-604-67-1009-7, 23-

24/11/2017, Quy Nhon, Binh Dinh, Vietnam, pp 348-353.

2. Nguyen Dinh Lau, Parallel algorithm for the graph, Doctoral dissertation, University of Technology,

The University of Da Nang, 2015.

3. Hoang Chi Thanh, Parallel Generation of Permutations by Inversion Vectors,Proceedings of IEEE-

RIVF International Conference on Computing and Communication Technologies, IEEE, ISBN: 978-

1-4673-0308-8, 2012, pp.129-132.

4. Hoang Chi Thanh, Parallelizing a new algorithm for the set partition problem, Annals UMCS

Information AIX, 2(2010) pp. 21-28, DOI:10.2478/v10065-010-0049-1, 2010,

(http://dlibra.umcs.lublin.pl/dlibra/plain-content?id=12053)

5. Hoang Chi Thanh, Nguyen Thi Thuy Loan. Nguyen Duy Ham, From Permutations to Iterative

Permutations, International Journal of Computer Science Engineering and Technology, Vol 2, Issue 7,

2012, pp. 1310-1315.

6. Hoang Chi Thanh, Parallel combinatorial algorithms for multi-sets and their applications,

International Journal of Software Engineering and Knowledge Engineering, Vol. 23, No. 01, 2013, pp.

81-99

7. Hoàng Chi Thanh, Inheritance principle and some bounded sequence problems, The Journal of

Computer Science and Cybernetics, T.29 S.1, 2013, pp. 79-91.

8. Ivan Stojmenovic, Listing combinatorial objects in parallel, The international journal of parallel

emergent and distributed systems, vol. 21, no. 2, April 2006, pp. 127–146.

9. Akl, S.G., Gries, D. and Stojmenovic, I., An optimal parallel algorithm for generating combinations,

Information Processing Letters, 33, 1989, pp. 135–139.

10. Akl, S.G., Meijer, H. and Stojmenovi, I., An optimal systolic algorithm for generating permutations in

lexicographic order, Journal of Parallel and Distributed Computing, 20(1), 1994, pp. 84–91.

11. Akl, S.G. and Stojmenovic I., Parallel algorithms for generating integer partitions and compositions,

The Journal of Combinatorial Mathematics and Combinatorial Computing, 13, 1983, pp. 107–120.

12. Chen, G.H. and Chern, M.S., Parallel generation of permutations and combinations, BIT, 26, 1986,

pp. 277–283.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018

48

13. Cosnard, M. and Ferreira, A.G., Generating permutations on a VLSI suitable linear network, The

Computer Journal, 32(6),1989, pp. 571–573.

14. Djokic, B., Miyakawa, M., Sekiguchi, S., Semba, I. and Stojmenovic, I., Parallel algorithms for

generating subsets and set partitions. In: T. Asano, T. Ibaraki, H. Imai and T. Nishizeki (Eds.)

Proceedings of SIGAL International Symposium on Algorithms, Tokyo, Japan, Lecture Notes in

Computer Science, Vol. 450, 1990, pp. 76–85.

15. Even, S., Algorithmic Combinatorics (New York: Macmillan). Er, M.C., 1988, A parallel algorithm

for cost-optimal generation of permutations of r out of n items, Journal of Information & Optimization

Sciences, 9, 1973, pp. 53–56.

16. Elhage, H. and Stojmenovic, I., Systolic generation of combinations from arbitrary elements, Parallel

Processing Letters, 2(2/3), 1992, pp. 241–248.

17. Gupta, P. and Bhattacharjee, G.P., Parallel generation of permutations, The Computer Journal, 26(2),

1983, pp. 97–105.

18. Kapralski, A., New methods for the generation of permutations, combinations, and other

combinatorial objects in parallel, Journal of Parallel and Distributed Computing, 17, 1993, pp. 315–

326.

19. Seyed H. Roosta, Parallel Processing and Parallel Algorithms, Theory

and Computation,USA,Springer 1999.

20. Steve Fortune and James Wyllie, Parallelism in random access machines, STOC '78 Proceedings of

the tenth annual ACM symposium on Theory ofcomputing, 1978, pp 114-118.

21. Nguyen Dinh Lau, Tran Quoc Chien, Phan Phu Cuong, Le Hong Dung, On the implementation of

Goldberg’s maximum Flow Algorithm in extended mixed network, International Journal of computer

Science & Information Technology, Vol 9, No 6 pp. 93-102, 2017.

22. Nguyen Dinh Lau, Tran Quoc Chien,Algorithm to Find Maximum Concurent Multicommodity Linear

Flow with Limited Cost on Extended Traffic Network with Single Regulating Coeffitient on Two-Side

Lines, The International Journal of Computer Networks & Communications, V 9 N2, pp: 57-67, 2017.

23. Nguyen Dinh Lau, Tran Quoc Chien,Traveling Salesman Problem in Distributed Envirenment,

Computer Sciencs & Information Technology (CSIT), Fourth International Conference on Advanced

Information Technologies and Applications (ICAITA 2015), pp. 19-28, 2015.

24. Peter S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann Publishers is an

imprint of Elsevier, ISBN 978-0-12-374260-5 (hardback), 2011

