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ABSTRACT 
 

This study builds up two parallel algorithms to improve computing performance for two listing binary and 

listing permutation algorithms. The problems are extremely interesting and practically applicable in many 

fields in our daily life. To parallel execution, we divide the data set input and allocate them to the 

processors. The article focuses on (i) the analysis of the research situation of the related works to compare 

and evaluate the existing problems of previous works, (ii) the analysis of the input data structure to divide 

data for the sub processors, (iii) the construction of parallel algorithms - proof of correctness and analysis 

of computing complexity, and (iv) experiments in multi-processing MPI and Thread library. Then the 

comparison of the results of the parallel algorithm with the sequential algorithm and the comparison of the 

execution time on different sub processors is discussed.  
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1. INTRODUCTION 
 

Listing binary and permutation are amazing and appealing problems in discrete mathematics with 

numerous wide applicability. However, when the input data is large, the listing time is highly 

long. For example, with input n = 20, the number of binary array is 2
20

. Therefore, It is crucial to 

build up parallel algorithms to improve the computing performance for this problem. 
 

In Vietnam, Hoang Chi Thanh has done some Research on combinatorial [3], [4], [5], [6] , [7]. 
 

In the world, there are many researchers publishing works related to the field of combinatorial 

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] ]. 
 

In the article [1] by Nguyen Dinh Lau, a parallel algorithm for listing permutation has been 

developed, but not yet applied to multi-processing MPI and Thread library. Thus, this paper is 

inspired by some parts of [1] to rebuild the listing permutation algorithm. 
 

However, in [8], [9], [10], [11], the listing binary sequences algorithm is not improved to cut 

down on the computing performance. Particularly [3] study by Hoang Chi Thanh focuses on 

building algorithm based on inversion vector and bounded sequence. However, Hoang Chi Thanh 

has neither analyzed and proved the complexity of the parallel algorithm, nor experimented in 

multi-processing MPI and Thread library to compare the processing time between different 

processors and different data sets. 
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Therefore, this article has the following new cutting-edge points: 

 

  1.   Building up a new parallel listing n-binary algorithm to  improve computing performance. It 

deals with the analysis, and proof of the complexity and experiments in the MPI to the 

examine and compare computing time.  
 

 2.  Basing on [1] to build up parallel listing permutation algorithm. It involves the analysis, 

proof the complexity and experiments in in the Thread to analyze and compare computing 

time. 

 

2. LISTING BINARY SEQUENCE ALGORITHM  
 

2.1. Sequential algorithm 
 

 Let n�N. List all binary sequences with n length, i.e., sequence [b1,..., bn], where bibi� {0, 1} � 

i=1, ..., n. 

 

The number of binary sequences is 2
n
 and the first sequence s = [0, 0, ..., 0]. For example, given n 

= 3, we have the 8 following binary sequences: 000, 001, 010, 011, 100, 101, 110, 111 

 

Algorithm 1. Creating a sequential binary sequence with n length 

 

Begin  

1. Input n,  s[i]:= 0i = 1,2,..., n 

2. Repeat 

3.          Print sequence s[1…n]. 

4.          i:=n; 

5.          While s[i]<>0 then 

6.               Begin 

7.                       S[i]:=0; 

8.                       i:=i-1; 

9.               End 

10.           If i>=1 then s[i]:=1 

11. Until i=0 

12. End. 

 

Assume s[i] in line 2 has the complexity O(n). Lines from 3 to 12 represents 2
n
 binary sequences. 

So the complexity of the algorithm is O(2
n
). 

 

2.2. PARALLEL ALGORITHMS 
 

Sequential algorithms might take a long time to process if n length is large. Therefore, it is 

necessary to build parallel algorithms to improve computing performance for the algorithms. 

 

This newly-built parallel algorithms use k processors (R0, R1,…,Rk-1)  with k = 2
n'
+ 1, where n' = 

0,1, ..., n-1. The processor Ri receives the output value which is the input value of Ri + 1 (i = 1,2, 

..., k-2). Note that the R0 main processor neither participates in the computation process nor lists 

binary sequences. R0 only sends and receives information. 
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The input on the processors is illustrated as follows: 
 

Let n be the input value, list all binary sequences, let n', then we have the number of k processors. 

Then run the sequential algorithm (Algorithm 1) to list the binary sequence of  n' length. After 

adding the bits 0 on the right, the binary sequence of n' length has a sufficiently long binary 

sequence of n length will be divided by the processor R0 for the additional processors (R1, R2 ... 

Rk-1) as the input value. 
 

For example, given n = 4, n'= 2. Then, the number of processors k = 5 (R0, R1, ..., R4) 
 

The binary sequence n = 4 is: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 

1010, 1011, 1100, 1101, 1110, 1111 
 

The binary sequence n '= 2 is: 00, 01, 10, 11. Then, the sequences 0000, 0100, 1000, 1100 are the 

input of four su processors (R1, R2, R3, R4). 

 

The finishing condition of the four processors (R1, R2, R3, R4) is 0100, 1000, 1100, 1111. 

 

R1 listing binary: 0000, 0001, 0010, 0011 

R2 listing binary: 0100, 0101, 0110, 0111 

R3: listing binary 1000, 1001, 1010, 1011 

R4: listing binary 1100, 1101, 1110, 1111 

The following is the parallel algorithm 

 

Algorithm 2. Creating a parallel binary sequence 

 

1. Begin 

2. Input n, n’ 

3. k :=2
n’

+1 

4. If Rank=0 then // main processor R0 

5.    Begin   

6.       Call Algorithm 1 (n’) // listing binary sequence (t1, t2, …tn’ )i∀i∈ 1, … , 2�′ of length n’ 

7.       Create 2
n’

  (t1, t2, …tn’, tn’+1,…,tn)i := (t1, t2, …tn’)i∪(0 ,…, 0)i∀i∈ 1, … , 2�′ of length n 

 

n-n’element   

8.        Send (t1, t2, …tn’, tn’+1,…,tn)i∀i∈ 1, … , 2�′ to 2
n’

  (P1, …., Pk-1) sub processors 

9.     End 

10. For i:=1 to k-1 do 

11.       Begin 

12.           Listing binary sequences in the corresponding processor segment 

13.           Send the result to R0         

14. End; 

15. R0  print results 

16. End. 
 

Let 2
n
 = 2

n'
+ 2

n-n'
 where 2

n'
= k-1 (R1, R2, ..., Rk-1), then if R1 initiates a binary sequence  with a 

value 0 and n' length is 0... 000, R2  initiates binary sequence with a value 1 and n' length  is 0 ... 

001,  R3 initiates binary sequence  with n' length  is 0 ... 010, R4 with n' length' is 0 ... 011, 
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Continue to Rk-1. Each processor R1 to Rk-1 connects the 2
n-n' 

binary sequence has n-n' length  to 

left of the sequence. Send the results to processor R0. R0 prints results and ends. 

 
Example 2: Given n= 4, n'= 2, then k = 5, then R1 holds 00, R2 holds 01, R3 holds 10, R4 holds 11. 

 

R0 lists 2
n-n'

= 24-2 = 4 binary sequences with the length n-n' = 4-2 = 2 : 00, 01, 10, 11. Then 

broadcast  00, 01, 10, 11 to sub processors. The processors R1, R2, R3, R4 receive data from the 

Broadcast command, Then connect the sequence 00 to the left of the sequences in R1, then R1 

shows: 0000, 0001, 0010, 0011. R2 represents: 0100, 0101, 0110, 0111. R3 shows: 1000, 1001, 

1010, 1011. R4 represents: 1100, 1101, 1110, 1111 

 

Algorithm 2 is rewritten as algorithm 3 as follows: 

 

Algorithm 3. Creating a parallel binary sequence by data Broadcast  

 

1. Begin 

2. Input n, n’ 

3. k :=2
n’

+1 

4. If Rank=0 then //Main processor R0 

5. Begin   

6.       Call Algorithm 1 (n-n’) // listing binary sequence (tn’+1, tn’+2, …tn )i∀i∈
1, … , 2	
	�

 has length is n-n’ 

7. Broadcast (tn’+1, tn’+2, …tn )i∀i∈ 1, … , 2	
	�
 to 2

n’
 sub processors (P1, …., Pk-1) 

8. End 

9. For i:=1 to k-1 do 

10.       Begin 

11.             Ri create binary sequence has of length n’ with value  i-1 is (t1, t2, …tn’ )i 

12.             Ri connect (t1, t2, …tn’ )i into the left sequence (tn’+1, tn’+2, …tn )j∀j∈
1, … , 2	
	�

 
13.             Send the results to R0 

14.          End; 

15. R0print results 

16. End. 
 

2.3. EXPERIMENTAL RESULTS 

The world of parallel multiple instruction, multiple data, or MIMD, computers is, for the most 

part, divided into distributed-memory and shared-memory systems. From a programmer’s point 

of view, a distributed-memory system consists of a collection of core-memory pairs connected by 

a network, and the memory associated with a core is directly accessible only to that core. See 

Figure 1 [21], [22], [23], [24]. 
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Figure 1. Model of adistributed-memory system 
 

In message-passing programs, a program running on one core-memory pair is usually called a 

process, and two processes can communicate by calling functions: one process calls a send 

function and the other calls a receive function. The implementation of message-passing that we’ll 

be using is called MPI, which is an abbreviation of Message-Passing Interface. MPI is not a new 

programming language. It defines a library of functions that can be called from C, C, and Fortran 

programs. We’ll learn about some of MPI’s different send and receive functions. 
 

I used MPI to parallelize the computation and got exact results. Moreover, the execution time by 

parallel algorithms is much shorter than one by sequential algorithm. If  n = 10, n'= 1, then the 

number of processors k = 2
n'
+ 1 = 3. Only Rank 1 and rank 2 do calculations and send results to 

Rank 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Demo result 

 

Table 1. The execution time (ms) with n = 12 on the sequential (Seq) and parallel (Par) 

  

n=12 Seq Par_3p Par_5p Par_9p 

ime 

(ms) 
46761 26710 15617 9162 

Hình 1. Kết quả Demo 

Figure 2. Demo result 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018 

 

38 

 

 
 

Figure 3. The graph illustrates execution time of the binary sequence with n = 12 on the  

Processors 

 

It is noted that when n is big, the parallel algorithm will reduce the execution time as compared to 

the sequential algorithm. When we increase the number of processors, the execution time will 

decrease dramatically. However, when we increase the number of processors at a certain point, 

execution time does not reduce but increases.  

 

3. THE ALGORITHM LISTING PERMUTATIONS OF N ELEMENTS 
 

3.1. SUBSTITUTION, INVERSION 
 

Based on linear algebra theory and the study [1], the concepts of substituend, inversion are 

presented as follows: 

 

Let set Xn = {1, 2, 3, ..., n}, (n≥1). A bijection σ: Xn →Xn is called a substituendon the set Xn 

 

The set of all substituends on the set Xn is labeled Sn 

 

Substituend σ: Xn → Xn is demonstrated as follows: 

 

                                    � = �						1												2												3		 … … … … . �				
��1�					��2�					��3�	… … … . ���� �							(1) 

 

where �(i) is the image of the element i ∈Xn written on the bottom line, in the same column as i. 

 

For example. 

� = �		1						2							3						4		
3						2							4						1 �      (2) 
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is the substituendon the set X4 = {1, 2, 3, 4} determined by: σ (1) = 3, σ (2) = 2, σ (3) = 4, σ (4) = 

1. 
 

Then the number of  substituendson the set Xn is equal to the number of permutations on that set 

and is n !. Thus, Sn has n! elements. 

 

Suppose there exists a substituend on the set Xn. with i, j ∈ Xn, i ≠ j, the pair (σ (i), σ (j)) is 

aninversion of σ if i <j but σ (i)> σ(j). 

 

For example. Let X3, the  substituend�� = �		1						2							3					
2						3						1			 �has two inversions: (2, 1), (3, 1). the  

substituend�� = �		1						2							3					
3						2							1			 �has three inversions: (3, 2), (3, 1), (2, 1). 

 

Set Xn has n! permutations and n! substituend. the inversion sequence on every substituend can be 

defined as follows: the value of inversion of element 1 in the substituend is assigned to that 

inversion sequence, the value of inversion of element 2 in the substituend is assigned to the  

inversion sequence. Let's continue with this for n elements. The following is the inversion 

sequence with n = 4.  

 
  Table 2. Substituend, inversion sequence and  inversion vector sequence with n=4 

 
No Permutation inversion Inversion vector 

1 1 2 3 4 0 0 0 0 0 0 0 0 

2 2 1 3 4 1 0 0 0 0 0 0 1 

3 2 3 1 4 2 0 0 0 0 0 0 2 

4 2 3 4 1 3 0 0 0 0 0 0 3 

5 1 3 2 4 0 1 0 0 0 0 1 0 

6 3 1 2 4 1 1 0 0 0 0 1 1 

7 3 2 1 4 2 1 0 0 0 0 1 2 

8 3 2 4 1 3 1 0 0 0 0 1 3 

9 1 3 4 2 0 2 0 0 0 0 2 0 

10 3 1 4 2 1 2 0 0 0 0 2 1 

11 3 4 1 2 2 2 0 0 0 0 2 2 

12 3 4 2 1 3 2 0 0 0 0 2 3 

13 1 2 4 3 0 0 1 0 0 1 0 0 

14 2 1 4 3 1 0 1 0 0 1 0 1 

15 2 4 1 3 2 0 1 0 0 1 0 2 

16 2 4 3 1 3 0 1 0 0 1 0 3 

17 1 4 2 3 0 1 1 0 0 1 1 0 

18 4 1 2 3 1 1 1 0 0 1 1 1 

19 4 2 1 3 2 1 1 0 0 1 1 2 

20 4 2 3 1 3 1 1 0 0 1 1 3 

21 1 4 3 2 0 2 1 0 0 1 2 0 

22 4 1 3 2 1 2 1 0 0 1 2 1 

23 4 3 1 2 2 2 1 0 0 1 2 2 

24 4 3 2 1 3 2 1 0 0 1 2 3 

 

Table 1 shows that a permutation always has an Inversion vector and an Inversion vector always 

has a permutation. Thus, instead of looking for the permutation of n elements in the order of the 
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dictionary methods. The study comes up with a new idea is that to work on the permutations by 

finding the Inversion vector sequence. Inversion vector  sequence (bounded sequence) is created  

with the initial sequence 0 0 0 0 and with final sequence 0 1 2 3 with n = 4. 

 

3.2. BOUNDED SEQUENCES 
 
The set of integers is represented by the letter Z. Let n be a positive integer, assume that p and q 

are two integer sequences of length n and denoted as follows: 

 

p=(p1p2…pn), q=(q1q2…qn)| pi, qi∈ �, ∀� ∈ 1, … , � 

We have the following definition: 

1) p ≤q If and only if pi≤qi∀�	 ∈ 1, … , � 

2) p <q If and only if∃� ∈ �1 … ��: pj<qj and pi≤qi : ∀� ∈ 1, … , �� and i≠ � 
Bounded sequence problems are demonstrated as follows: 

 

Given two integer sequences s and g of length n, such that s <g, find all sequences t of length n 

such that s≤t≤g 

 

Let s=(s1s2…sn) and g=(g1g2…gn), be two bound. The sequence t=(t1t2...tn)  must satisfy: 

 

ti∈ �⋀#$ ≤ %$ ≤ &$∀� ∈ �1 … ��(3) 

 

Example: Let s = (0 0 0 0), g = (0 1 2 3) be two bounds, integer sequences t satisfy s≤t≤g. Thus, t 

is arranged in ascending dictionary order as in the following table: 

 
 Table 3.Bounded sequence t with s=(0 0 0 0), g=(0 1 2 3)  

 

 

Theorem 1. Given two bounds s = (0 ... 0) (with n elements 0) and g = (0 1 2 ... n-1). The 

bounded sequence t satisfy # ≤ % ≤ & which is the inversion vector of the set Xn= {1, 2, 3,..., n}, ( 

n ≥ 1). The sequence t is equals to n! and the  inversion Vector s = (0 ... 0) corresponds to the 

permutation (1 2 ... n) and the inversion Vector g = (0 1 2 ... n-1) corresponds to the permutation 

(n n-1 ... 1) . 

 

Proof: See [1] 

 

Theorem 2. Lets=(s1s2…sn) and g=(g1g2…gn) be two bounds. The sequences t=(t1t2...tn)  are  

bounded sequences. Let C be the number of bounded sequences t. Then we have: 

 

C=∏ �&$ − #$ + 1��$,- (4) 

Proof: See [1] 

 

No Bounded 

sequence  t 

No Bounded 

sequence  

t 

No Bounded 

sequence  

t 

No Bounded 

sequence  

t 

No Bounded 

sequence  

t 

N0 Bounded 

sequence  

t 

1 0 0 0 0 5 0 0 1 0 9 0 0 2 0 13 0 1 0 0 17 0 1 1 0 21 0 1 2 0 

2 0 0 0 1 6 0 0 1 1 10 0 0 2 1 14 0 1 0 1 18 0 1 1 1 22 0 1 2 1 

3 0 0 0 2 7 0 0 1 2 11 0 0 2 2 15 0 1 0 2 19 0 1 1 2 23 0 1 2 2 

4 0 0 0 3 8 0 0 1 3 12 0 0 2 3 16 0 1 0 3 20 0 1 1 3 24 0 1 2 3 
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Algorithm 4. Creating bounded sequence (s(n), g(n)) 

 
1. BEGIN  

2. Input  n, s[i], g[i], i=1,…,n //s, g: two bounds   

3. t[i]:=s[i], i=1,…,n 

4. Repeat 

5. Print t[i], i=1,…,n 

6. i:=n; 

7. While t[i] =g[i] do 

8. Begin  

a. t[i]:=s[i];  

b. i:=i-1;       

9. End;  

10. If i>=1 then t[i]:=t[i]+1; 

11. Untill i=0 

12. END. 

 

3.3. PARALLEL ALGORITHM LISTING PERMUTATIONS OF N ELEMENTS 
 
Algorithm finding the permutation of n elements by the dictionary method is sometimes 

challenging to determine the input and the end conditions of the processors. Thus, it is crucial to 

propose a parallel algorithm to find the permutations of n elements based on the bounded 

sequence to divide the bounded sequences for the processors. 

 

3.3.1. THE IDEAS OF THE ALGORITHMS  

 

If n increases, then the permutation is very large (n!). Therefore, a parallel algorithm must be 

built to improve computing performance.  

 

The idea of parallel algorithms is to utilize k processors, which have a main processor called  

processor 0, and sub processors called k-1. The main processor receives the sequence s [i] and g 

[i] that are the two bounds as in algorithm 4. The main processor will find  k bound sequences 

and send these k sequences for the sub processors to find the bounded sequences and convert 

 
 

them into permutation sequences. k Processor depends on p with k: = p !, p = (2, 3, ..., n-1). Given 

that p is chosen, the first bound has the smallest sequence: s0= 0…0 (n number 0) and the largest 

sequence: 
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    he smallest sequence of the 2 segment is: 
 

 

 

 

 

Thus, the sequence gi (i = 0, ... k-1) is obtained by finding the bounded sequence of s'[i] = 0 ... 0 

(p-1 No 0) and g'[i] = i, i = 1, ..., p-1. After finding the bounded sequence, 0 is inserted to the left 

side of the bounded sequence and p, ..., n-1 are inserted to the right side of the bounded sequence. 

We has gi 

 

Based on gi-1.  si. is found  as follows: 

m=Max(j, gi-1[j]<g[j], The value of si[1] to si[m-1] is unchanged, ie gi-1[a], a = 1, ... , m-1 

si[m]: = gi-1[m] +1 

s1[i] = 0, i = m + 1, ..., n 

 

For example: Let n = 4, choose p = 3, k = 6, then we have 3! = 6 segments. These six segments 

are allocated to 6 sub processors shown in Table 3 

: 
Table 4. Six segments are allocated to 6 sub processors 

 

 

3.3.2. PARALLEL ALGORITHM 
 

 Processors number k= p!; p=(2, 3,…,n-1)   
  

Algorithm 5: Parallel algorithm finding permutation of n elements 
 

{ 

1. Input n, p (p∈ .2,3, … , � − 1/) 

2. s[i]:=0 ∀� = 1, … , � 

3. g[i+1]:=i ∀� = 0, 1, … , � − 1	 
4. k:=p!; p=(2, 3,…,n-1) // k is processors 

5. //The main processor  finds  k subsegments, then divides to the subprocessors 

If k=1 (Rank =1) then  

           { 

// Find the bounded by algorithm 4 and send data to subprocessors 

5.1. s’[i]=0, i=1,…,p-1 

No Bounded 

sequence 

t 

No Bounded 

sequence 

t 

No Bounded 

sequence 

t 

No Bounded 

sequence 

t 

No Bounded 

sequence 

t 

No Bounded 

sequence 

t 

1 0 0 0 0 5 0 0 1 0 9 0 0 2 0 13 0 1 0 0 17 0 1 1 0 21 0 1 2 0 

2 0 0 0 1 6 0 0 1 1 10 0 0 2 1 14 0 1 0 1 18 0 1 1 1 22 0 1 2 1 

3 0 0 0 2 7 0 0 1 2 11 0 0 2 2 15 0 1 0 2 19 0 1 1 2 23 0 1 2 2 

4 0 0 0 3 8 0 0 1 3 12 0 0 2 3 16 0 1 0 3 20 0 1 1 3 24 0 1 2 3 

Segment 1: 

(s1,g1) 

=(0000,0003) 

Segment  2: 

(s2,g2) 

=(0010,0013) 

Segment 3: 

(s3,g3) 

=(0020,0023) 

Segment 4: 

(s4,g4) 

=(0100,0103) 

Segment5:(s5,g5) 

=(0110,0113) 

Segment 6: 

(s6,g6) 

=(0120,0123) 

s1 =(0 … 0 1 0…0)          (6)  

p-1 No 0 n-p No 0 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018 

 

43 

 

5.2. g’[i]=i, i=1,…,p-1 

5.3. cj :=Algorithm 4 (s’(i), g’(i)), j=1,…,k. 

5.4. Send(s[i]=0, ∀� =1,…,n to p1)  

5.5. Send (cj to pj (j=1,…,k) 

5.6. Send (cj) to pj+1 (j=1 to k-1) 

6.7. Send g[i] in step 4 to subprocessors 

           } 

6. // Subprocessors perform concurrently 

{       

6.1. Receive(data) 

6.2. Insert element 0 to the left of cj (j = 1, ..., k) // j is the index of the k 

processors 

6.3. Insert the elements p, p + 1, ... n-1 to the right of cj (j = 1, ..., k) 

6.4. gj:=cj (j=1,2,…,k) //gj  is the largest bound sequence. 

6.5. The subprocessor p1 initiates s1: s1[i]: = 0 ∀i = 1, ..., n // s1 is the smallest 

bound sequence on processor p1. 

// the Subprocessor p2, p3,…,pk find the smallest bound sequence as follows:: 

6.6. i:=n; 

6.7. While cj-1[i] =g[i] do 

6.8.        Begin  

6.9.         cj-1[i]:=0;  

6.10.         i:=i-1;       

6.11.     End;  

6.12. If i>=1 then cj-1[i]:=cj-1[i]+1; 

6.13. sj[i]:=cj-1[j], i=1,…,n, j=2,…,k 

7. tj[i] :=Algorithm 4 (sj(i), gj(i)), j=1,…,k, i=1,…,n. 

8. Convert all bounded sequences tj[i] to permutation sequences 

9. Send permutations sequences to main processor. 

10. The main processor print results and ends. 
 

Theorem 3: The Parallel algorithm is TRUE. 

 

Proof: 
 

First, we need to prove that the bound sequences sj and gj on k processors satisfy the formula (3), 

ie, sj and gj are in the bounded sequence with the smallest bound  sequence s[i]: = 0 ∀i = 1, ..., n, 

and the largest bound sequence g[i + 1]: = i ∀i = 0,1, ..., n-1. 
 

gj is computed in step 6.3 in the parallel algorithm by inserting 0 to the left of t and inserting p, p 

+ 1, n-1 to the right of cj, then gj [i] ≤g[i], i = 1, ..., n. sj + 1 is based on the gj given from steps 7.6 

to 7.13. there always exists s[i] ≤ sj[i], i = 1, ..., n. Thus sj and gj satisfy the formula (3) with 2 

bound sequences s[i] and g[i], i = 1, ..., n. 
 

Next, we prove that the total number of bounded sequences in the k processors is n! 
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When p (p∈ {2,3, ..., n-1}) is chosen, the number of processors involved in finding the bounded 

sequences is k = p! (Note that the number of processors to find bounded sequences are equal.) 
 

The smallest bound sequence of p1 is s1 = (0 ... .0) (n number 0) and the largest bound sequence  

is g1 based on formula (5). According to the solution in (4), the number of bounded sequence in 

segment 1 that the subprocessor p1 has done is ∏ �� + 1��
-$,1 . Each subprocessor will also find the 

number of bounded sequences equal to ∏ �� + 1��
-$,1 . In addition, sj and gj are two bound 

sequences on the subprocessor pj, then #23�4 = &23�4, ∀� = 1, … , 5	6�7	#23�4 = 0, ∀� = 5 +
1, … , �	6�7	&23�4 = �, ∀� = 5, … , �-1.. Applying the formula (4) to the two bound sequences sj 

and gj, the number of bounded sequence to each processor is ∏ �� + 1��
-$,1 =(p+1).(p+2). …. . n. 

On the other hand, we have the number of processors k = p! So the number of buonded sequences 

by the k processors is: 

 

k.(p + 1). (p + 2). .... . n = p! (p + 1). (p + 2). .... . n = n! Thus, the number of bounded sequences 

on the k processors is n! which is equal to  permutation n!.� 
 

3.3.3. EXPERIMENTAL RESULTS 

 
The algorithm is implemented in the computer with its configuration: 

 

Processor: corei7 2.6GHz and disk: write 28-30 Mb/s 
 

- Interface on the main processor P1: In this main interface, we need to select n and the    

number of subprocessors (Figure 4). 
  

- Interface for the sub processors Pi (i=1,2....,k) (Figure 5) 

- Resulting interface on the main processor P1. The permutation result is saved as a file 

(Figure 6). 

 

 
 

Figure 4. Interface of main processor P1 
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Figure 5. Interface of sub processors Pi 

 

 

 

 

 

 

 

 

 

 

Figure 6. Interface results of the main processor P1 

 

 

 

 

 

 

Figure 6. Interface results of the main processor P1 
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Table 4. The execution time (ms) on the sequential (Seq) and parallel (Par) (n=9 to 12) 

 

N Seq Par_2p Par_6p Par_24p 

9 323 234 100 97 

10 3200 1879 691 151 

11 45985 24061 8481 2190 

12 1143542 581107 210590 27228 

 
Figure 7. The graph illustrates time listing permutation of n elements by the subprocessors 

 

 
 

Figure 8. The graph illustrates time listing permutation of n=11 and n=12 by the subprocessors 

 
Remarks: a close look at Table 4, Figure 7 and Figure 8 shows that if n is large enough, the 

parallel computation time is much lower than the sequential computation time. When the sub 

processors increase in number, the computation time will decrease. When n increases to 1 unit, 

the number of permutations increases dramatically, so the computation time goes up sharply 

(Figure 8). However, if you abuse and increase too many processors, the computation time will 

also go up. 
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4. CONCLUSION 
 

The paper solves the problem of improved computing performance for two listing binary 

sequences and listing permutations with sufficiently large n. It is an interesting and innovative 

idea in case n is large. This newly-built parallel algorithm was experimental with large n and with 

numerous different sub processors. This paper is devoted to building up a general algorithm for 

multiple processors. Last but not least, it demonstrates the correctness and experiments in multi-

processing MPI and Thread library. 

REFERENCES 

1. Nguyen Dinh Lau, Parallel algorithm list permutations,@ 2017,ISBN: 978-604-67-1009-7, 23-

24/11/2017, Quy Nhon, Binh Dinh, Vietnam, pp 348-353. 

 

2. Nguyen Dinh Lau, Parallel algorithm for the graph, Doctoral dissertation, University of Technology, 

The University of Da Nang, 2015.   

 

3. Hoang Chi Thanh, Parallel Generation of Permutations by Inversion Vectors,Proceedings of IEEE-

RIVF International Conference on Computing and Communication Technologies, IEEE, ISBN: 978-

1-4673-0308-8, 2012, pp.129-132. 

 
4. Hoang Chi Thanh, Parallelizing a new algorithm for the set partition problem, Annals UMCS 

Information AIX, 2(2010) pp. 21-28, DOI:10.2478/v10065-010-0049-1, 2010, 

(http://dlibra.umcs.lublin.pl/dlibra/plain-content?id=12053) 

 
5. Hoang Chi Thanh, Nguyen Thi Thuy Loan. Nguyen Duy Ham, From Permutations to Iterative 

Permutations, International Journal of Computer Science Engineering and Technology, Vol 2, Issue 7, 

2012, pp. 1310-1315. 

 

6. Hoang Chi Thanh, Parallel combinatorial algorithms for multi-sets and their applications, 

International Journal of Software Engineering and Knowledge Engineering, Vol. 23, No. 01, 2013, pp. 

81-99 

 

7. Hoàng Chi Thanh, Inheritance principle and some bounded sequence problems, The Journal of 

Computer Science and Cybernetics, T.29 S.1, 2013, pp. 79-91. 

 
8. Ivan Stojmenovic, Listing combinatorial objects in parallel, The international journal of parallel 

emergent and distributed systems, vol. 21, no. 2, April 2006, pp. 127–146. 

 

9. Akl, S.G., Gries, D. and Stojmenovic, I., An optimal parallel algorithm for generating combinations, 

Information Processing Letters, 33, 1989, pp. 135–139. 

 
10. Akl, S.G., Meijer, H. and Stojmenovi, I., An optimal systolic algorithm for generating permutations in 

lexicographic order, Journal of Parallel and Distributed Computing, 20(1), 1994, pp. 84–91. 

 

11. Akl, S.G. and Stojmenovic I., Parallel algorithms for generating integer partitions and compositions, 

The Journal of Combinatorial Mathematics and Combinatorial Computing, 13, 1983, pp. 107–120. 

 

12. Chen, G.H. and Chern, M.S., Parallel generation of permutations and combinations, BIT, 26, 1986, 

pp. 277–283. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 5, October 2018 

 

48 

 

13. Cosnard, M. and Ferreira, A.G., Generating permutations on a VLSI suitable linear network, The 

Computer Journal, 32(6),1989, pp. 571–573.  

 

14. Djokic, B., Miyakawa, M., Sekiguchi, S., Semba, I. and Stojmenovic, I., Parallel algorithms for 

generating subsets and set partitions. In: T. Asano, T. Ibaraki, H. Imai and T. Nishizeki (Eds.) 

Proceedings of SIGAL International Symposium on Algorithms, Tokyo, Japan, Lecture Notes in 

Computer Science, Vol. 450, 1990, pp. 76–85. 

 

15. Even, S., Algorithmic Combinatorics (New York: Macmillan). Er, M.C., 1988, A parallel algorithm 

for cost-optimal generation of permutations of r out of n items, Journal of Information & Optimization 

Sciences, 9, 1973, pp. 53–56. 

 

16. Elhage, H. and Stojmenovic, I., Systolic generation of combinations from arbitrary elements, Parallel 

Processing Letters, 2(2/3), 1992, pp. 241–248. 

 

17. Gupta, P. and Bhattacharjee, G.P., Parallel generation of permutations, The Computer Journal, 26(2), 

1983, pp. 97–105. 

 
18. Kapralski, A., New methods for the generation of permutations, combinations, and other 

combinatorial objects in parallel, Journal of Parallel and Distributed Computing, 17, 1993, pp. 315–

326. 

 
19. Seyed H. Roosta, Parallel Processing and Parallel Algorithms, Theory 

and Computation,USA,Springer 1999. 

 
20. Steve Fortune and James Wyllie, Parallelism in random access machines, STOC '78 Proceedings of 

the tenth annual ACM symposium on Theory ofcomputing, 1978, pp 114-118. 

 
21. Nguyen Dinh Lau, Tran Quoc Chien, Phan Phu Cuong, Le Hong Dung, On the implementation of 

Goldberg’s maximum Flow Algorithm in extended mixed network, International Journal of computer 

Science & Information Technology, Vol 9, No 6 pp. 93-102, 2017. 

 
22. Nguyen Dinh Lau, Tran Quoc Chien,Algorithm to Find Maximum Concurent Multicommodity Linear 

Flow with Limited Cost on Extended Traffic Network with Single Regulating Coeffitient on Two-Side 

Lines, The International Journal of Computer Networks & Communications, V 9 N2, pp: 57-67, 2017. 

 
23. Nguyen Dinh Lau, Tran Quoc Chien,Traveling Salesman Problem in Distributed Envirenment, 

Computer Sciencs & Information Technology (CSIT), Fourth International Conference on Advanced 

Information Technologies and Applications (ICAITA 2015), pp. 19-28, 2015. 

 
24. Peter S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann Publishers is an 

imprint of Elsevier, ISBN 978-0-12-374260-5 (hardback), 2011 

 

 

 

 

 

 

 


