
International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

DOI: 10.5121/ijcsit.2019.11403 27

AN EFFECT OF USING A STORAGE MEDIUM IN

DIJKSTRA ALGORITHM PERFORMANCE FOR IDEAL

IMPLICIT PATH COST

Ibtusam Alashoury1 and Mabroukah Amarif2

1Department of Computer Sciences, Faculty of Sciences, Sebha University, Sebha, Libya

2Department of Computer Sciences, Faculty of Information Technology, Sebha
University, Sebha, Libya

ABSTRACT

The graph model is used widely for representing connected objects within a specific area. These objects are

defined as nodes; where the connection is represented as arc called edges. The shortest path between two

nodes is one of the most focus researchers’ attentions. Many algorithms are developed with different

structured approach for reducing the shortest path cost. The most widely used algorithm is Dijkstra

algorithm. This algorithm has been represented with various structural developments in order to reduce the

shortest path cost. This paper highlights the idea of using a storage medium to store the solution path from

Dijkstra algorithm, then, uses it to find the implicit path in an ideal time cost. The performance of Dijkstra

algorithm using an appropriate data structure is improved. Our results emphasize that the searching time

through the given data structure is reduced within different graphs models.

KEYWORDS

Dijkstra algorithm, data structure, time complexity, implicit path, graphs

1. INTRODUCTION

The graph is a data structure of representing relationships between pairs of connected objects.
Objects are defined as a set of nodes (Vertices) and the connection between these objects is
denoted as edges that link these nodes. Each edge is marked with a weight value describing the
cost between the connected nodes. There are two types of graph; directed graph for which each
node is directed by one way to any other node and the order of vertices in the pairs is important.
Undirected graph is a graph where all edges are bidirectional and it’s possible to go to and back
from the same way between two connected nodes. The issue of the shortest path problem is
related to graph theory, which is one of the most important topics for researchers [1, 2, 3, 4, 5, 6,
7]. It concerns with finding the shortest path between two nodes, or between a node as a source to
all other nodes, depending on the weights of the edges that link these nodes [8]. The graph theory
and shortest path are used widely especially in the practical applications of various fields such as
mapping transportation, electrical engineering and computer networks [9, 10, 11, 12].

Various algorithms have been created to find the shortest path within graphs. These algorithms
depend on the graph and path type. The most common algorithm is Dijkstra algorithm which is
used for finding the shortest path between source and destination [13], others are Bellman, the
Johnson, and the Floyd Warshall algorithms [14].

In the last decade, the number of the rapid development and handling of the huge amount of road
networks data and their development methods have been increased, researchers try to improve the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

28

previous algorithms or develop their own in order to find out the typical shortest paths [4, 7, 9,
10, 11, 12]. They are also exploring more various ways and methods to get the lowest cost of path
into a large number of nodes and speeding up their search process. Some of them are working on
reconstructing the graphs in an attempt to reduce the cost of searching time either by
compression, optimization or subgraphs [1, 2, 3, 4, 5, 6, 15]. Others are replacing data structure
with another [18, 19, 20, 21].

Moreover, the area becomes an active filed for researchers to discover more ways and
mechanisms in an attempt to get the lowest search cost within a large number of nodes and
accelerate the search process which is a challenge until this time. This paper proposes an
improvement of Dijkstra algorithm using a special data structure (linked hash map) for storing the
solution path (shortest path given by Dijkstra algorithm) to optimize the searching time for the
implicit paths. The proposed algorithm uses Dijkstra algorithm with priority queue implemented
by min heap to find the solution path (shortest path). The solution path is stored into data
structure of array list contains of a linked hash map elements. We have tested the proposed
algorithm with different graphs sizes up to 10000 nodes of directed and undirected graphs. The
following section describes the research background and literature review related to our paper
while section 3 explains the algorithm description. Analysis and results are described in section 4.
A discussion of this paper is explained in section 5 and the conclusion is provided in section 6.

2. RESEARCH BACKGROUND

Dutch computer scientist Edsger Dijkstra have designed the first searching algorithm for shortest
path in 1956. He published his idea in 1959 [13]. His algorithm then was named by his surname
and become the base in the area of finding shortest path from single source to a node destination,
or multiple nodes destination within a graph [16, 17, 22]. It can also be used to find the shortest
route costs from the source to the destination by stopping the algorithm once the shortest route is
set to the specific target.

This algorithm has been considered by many researchers to improve the shortest path cost by
minimizing the searching time (time complexity) using different data structure. Jain et. al.
improve the Dijkstra algorithm by using priority queue and linked list [18]. It has been noticed
that by using a graph represented by thier adjacncey lists and the priority queue implemented as a
min-heap, the time efficiency is in O(|E| log |V |), where V is the number of nodes and E is the
number of edges which connected these nodes. if the priority queue is implemented using an
advanced data structure called the Fibonacci heap, the time becomes O(|V| log V+E), and its
imporved [16].

Time efficiency could be imporved by exploit the solution path to get the implicit paths if they are
queried again. From the literature, most algorithms may provide this feature, but there is no such
explanation or imporvement of it. A suitable data structure could improve the time efficiency for
the whole algorithm if used propably for storing the solution path and then search for the implicit
path. In this paper, we propose for an improved algorithm based on Dijkstra algorithm by using a
special data structure (linked hash map) to store the solution path. The proposed algorithm is
tested with different number of nodes. Results are recorded to justify the Algorithm validity.

3. THE PROPOSED ALGORITHM DESCRIPTION

The idea of Dijkstra algorithm is genius and amazing. In addition, it’s simple and easy to
understand especially by using non complicated data structure such as priority queue
implemented as a min-heap. Although Fibonacci heap has achieved greater success and better
performance, however, it’s complicated and often theoretical more than practical issues [16].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

29

Based on all of that, we use Dijkstra algorithm with priority queue implemented as a min-heap.
For storing the solution path, we use a linked hash map within array list. This can give us a fast
searching time equal to O(1) as an efficiency time. The following steps explain the main idea of
Dijkstra algorithm [16].

DIJKSTRA. (G,w,s)
1 INITIALIZE-SINGLE-SOURCE.(G, s)
2 S=Ø;
3 Q=G.V
4 while Q ≠ Ø ;
5 u=EXTRACT-MIN(Q)
6 S=SU{u}
7 foreach vertex v €G.Adj[u]
8 RELAX (u,v,w)

in step 1, the initialization of the source node s in the graph G is carried out. Step 2 initializes the
set S to the empty set. The algorithm maintains the invariant that Q = V - S at the start of each
iteration of the while loop of step 4 until step 8. Step 3 initializes the min-priority queue Q to
contain all the vertices in V ; since S = Ø at that time, the invariant is true after step 3. Each time
through the while loop of steps 4 until step 8, step 5 extracts a vertex u from Q = V - S and step 6
adds it to set S, for the first time through this loop, u = s. Vertex u, therefore, has the smallest
shortest path estimate of any vertex in V - S. Then, step 7 and step 8 relax each edge (u,v). Notice
that w is the wieght of the given edge.

We have built the storage data structure and identified a variant of the type of array-list which
contains of a set of linked-hash-map (each value within the array-list is actually linked-hash-map
includes a particular path) to store any path that has been queried .The hash-map is used to store
the nodes and the distance between them. Each hash-map consists of (Key, Value). Each node
and adjacent is stored in the key, while the distance between them is stored in Value. The
following code describes the idea of storing and searching operations of the storage data structure.

//storing operation
public static ArrayList<LinkedHashMap<Integer,Integer>> AddtoPaths(List<Integer> path,int
srcc,int destt)
{
 if(path!=null)
 {
 if(AddHashMap.size()!=0)
 AddHashMap.clear();
 for (int i = 0; i < path.size() ; i++)
 { AddHashMap.put(path.get(i),i); }
 IndexHashMap=(LinkedHashMap) AddHashMap.clone();
 AddHashMap.clear();
 if(!dublecateData(IndexHashMap,paths1,srcc,destt))
 {
 paths1.add(IndexHashMap);
 Addtolinked1(IndexHashMap,paths1);
 }
 }
 return paths1;
 }

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

30

public static boolean dublecateData(LinkedHashMap<Integer,
Integer>IndexHashMap1,ArrayList<LinkedHashMap<Integer, Integer>> paths11,int srcc1,int destt1){
 for(LinkedHashMap<Integer, Integer> p:paths11){
 if(p.equals(IndexHashMap1)){
 return true;
 }
 }
 for(LinkedHashMap<Integer, Integer> s:paths11)
 {
 if(s.containsKey(srcc1) && s.containsKey(destt1))
 { return true; }
 }
 return false;
 }

public static void Addtolinked1(LinkedHashMap<Integer,Integer>
path,ArrayList<LinkedHashMap<Integer,Integer>> paths1){

 int ii=1;
 int i;
 if(paths1.size()>0){
 i=paths1.size()-1;
 }else{i=paths1.size();}
 if(path!=null){
 comp = new ArrayList<Integer>(path.keySet());
 for (int j = 0; j < comp.size() ; j++) {

if(Number_of_Nodes.containsKey(comp.get(j)) && Number_of_Nodes.get(comp.get(j))!=null
&& Number_of_Nodes.get(comp.get(j)).size()>0)
{

 Number_of_Nodes.get(comp.get(j)).add(i);
 }else{
 Number_of_Nodes.put(comp.get(j),new ArrayList<Integer>());
 Number_of_Nodes.get(comp.get(j)).add(i);
 }
 } comp.clear();
 } }

//searching operation
public static ArrayList findShortestPathsDS(int src,int dest,Graph graph)
{ start_time2 = System.nanoTime();
 ArrayList subPath = new ArrayList();
 Number_of_Nodes
 From=Number_of_Nodes.get(src);
 To=Number_of_Nodes.get(dest);
 if(MainClass.From!=null && MainClass.To!=null && MainClass.From.size()>0 &&
MainClass.To.size()>0)
 {
 SO=FoundContains(From,To);
 } else
 { time11=0.0;
 text = "\n The path is not implicit, So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

31

 time11=Graph.time;
 return subPath;
 }
 if(SO >=0)
 {
 if((paths1.get(SO).containsKey(src)) && (paths1.get(SO).containsKey(dest)))
 {
 found=true;
 i=SO;
 }
 if(found)
 {
 src1=paths1.get(SO).get(src);
 dest1=paths1.get(SO).get(dest);
 ss1=new ArrayList(paths1.get(SO).keySet());
 if (src1 <= dest1)
 {
 for (ii = src1; ii <= dest1; ii++)
 { subPath.add(ss1.get(ii)); }
 }else{
 for (ii = src1; ii >= dest1; ii--)
 {
 if (ii >=0)
 subPath.add(ss1.get(ii));
 }
 }
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 } else{
 time11=0.0;
 text = "\n The path is not implicit,So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 }
 return subPath;
 } else{
 time11=0.0;
 text = "\n The path is not implicit,So The path will be calculated using Dijkstra";
 subPath= (ArrayList)graph.findShortestPaths(src, dest);
 end_time2 = System.nanoTime();
 difference2 = (end_time2 - start_time2) / 1e6;
 time11=Graph.time;
 }
 return subPath;
 }
 public static Integer FoundContains(ArrayList<Integer> From11,ArrayList<Integer> To11)

{
 int SO1=-1;
 To12.clear();

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

32

 From12.clear();
 if(From11.size()>0 && To11.size()>0)
 {
 if(From11.size()>=To11.size())
 {
 for (int i = 0; i <To11.size(); i++)
 { To12.put(To11.get(i), i); }
 for (int i = 0; i <From11.size(); i++)
 {
 if(To12.containsKey(From11.get(i)))
 {
 SO1=From11.get(i);
 break;
 }
 }
 }else{
 for (int i = 0; i <From11.size(); i++)
 { From12.put(From11.get(i), i); }
 for (int i = 0; i < To11.size(); i++)
 {
 if (From12.containsKey(To11.get(i)))
 {
 SO1=To11.get(i) ;
 break;
 }
 }
 } return SO1;
 } return SO1; }

4. THE ALGORITHM ANALYSIS AND RESULTS

The time complexity of hash-map, linked-hash-map and array-list are different according to the
kind of operations. Table 1 and 2 describes the time for each given data structure.

Table 1. The time complexity of hash-map and linked-hash-map

 get Contains Key next note

Hash-map O(1) O(1) O(h/n) h is the table capacity

Linked-hash-map O(1) O(1) O(1)

Table 2. The time complexity of array-list

 get add contains next remove Iterator_remove

Array-list O(1) O(1) O(n) O(1) O(n) O(n)

According to the previous tables, n means the number of nodes (V), and m means the number of
edges (E). The total time for putting the new solution path in the given data structure is:
O(nlogn) + O(n) + O(nlogn) = O(n) + O(2nlogn) = O(2nlogn) = O(nlogn)

In the other side, the total time complexity of the query from the data structure is:
O(logn)+O(logn)+O(nlogn)+O(logn)+O(logn)
=O(4logn)+O(nlogn)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

33

=O(logn)+O(nlogn)
=O((1+n)logn) =O(nlogn)

We run the original Dijkstra algorithm and the proposed algorithm with different type of graph;
directed graph and undirected graph. We also run both of them with different number of nodes in
order to get the shortest path between a given source node and destination. After the solution path
is found, it’s stored in the given data structure (array-list of linked-hash-map). Then, an inquiry
for the implicit path is taken place. If the implicit path is found within the stored solution path in
the given data structure, the time is calculated and recorded, else; the searching using the original
Dijkstra algorithm is started again and the total time is recorded. The averages of each recorded
times are calculated. These operations are repeated many times with different number of nodes.

Table 3 and 4 contain the averages values of the time when the required path is the implicit path
of the stored solution path and the graph is directed, and figures 1 and 2 shows the results
analysis.

Table 3. The run time of the implicit path (directed graph)

No. of nodes
Dijkstra using only min-heap
Time average

Dijkstra using min-heap with
ArrayList<LinkedHashMap>
Time average

100 0.66256 0.28489

200 1.47381 0.3076

300 2.06859 0.34078

400 4.15724 0.38133

500 5.56397 0.28971
600 2.552 0.24657

700 3.15004 0.51842
800 8.35776 0.22292

900 5.11631 0.21436

1000 4.81021 0.2146

Figure 1. The run time of 100-1000 number of nodes (directed graph)

From figure 1, we notice that the time decreases as the number of nodes increases using the
proposed algorithm. Time average is equal to 0.28489 when the number of nodes is 100, then

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

34

time increases with unobserved amount. It gives the highest value when 700 nodes and starts to
decrease at 800 nodes and above.

Table 4. The run time of the implicit path (directed graph)

No. of nodes
Dijkstra using only min-heap

Time average

Dijkstra using min-heap with
ArrayList<LinkedHashMap>

Time average
1000 4.81021 0.2146

2000 11.03552 0.18769

3000 13.76008 0.17272

4000 12.66174 0.19816

5000 15.29122 0.16887

6000 20.46555 0.18637

7000 47.87112 0.1797

8000 27.05117 0.17704

9000 55.55694 0.18778

10000 42.26821 0.17102

Figure 2. The run time of 1000-10000 numbers of nodes (directed graph)

Looking at figure 2, nodes numbers are various from 1000 to 10000 nodes. We realize that the
time decreases as the number of nodes increase and that improved the proposed algorithm
validity. We observe a linear time for the given data structure; ArrayList<LinkedHashMap>.

Table 5 and 6 contain the averages values of the time when the required path is not the implicit
path of the stored solution path and the graph is also directed, and figure 3 and 4 show the results
analysis.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

35

Table 5. The run time of the non-implicit path (directed graph)

No. of nodes
Dijkstra using min-

heap
Dijkstra using min-heap with
ArrayList<LinkedHashMap>

100 0.86681 0.92647

200 2.30324 2.41939

300 3.15914 3.27483

400 3.45716 3.54365

500 4.5522 4.64095

600 4.08183 4.17757
700 7.1498 7.26413

800 5.8222 5.90921

900 7.55844 7.65247

1000 7.73631 7.84603

Figure 3. The run time of 100-1000 number of nodes (directed graph)

Figure 3 describes the run time of non-implicit path if it’s not included within the stored solution
shortest path. The relationship between run time and nodes numbers is shown. It is observed that
the time for the proposed algorithm is almost equal to the original Dijkstra algorithm with min-
heap. There is a slightly fixed difference as the nodes numbers increases.

Table 6. The run time of the non-implicit path (directed graph)

No. of nodes
Dijkstra using min
heap

Dijkstra using min heap with
ArrayList<LinkedHashMap>

1000 7.73631 7.84603

2000 11.90012 12.02769
3000 17.38345 17.50731

4000 31.68681 31.79614

5000 35.59574 35.68865

6000 57.20521 57.31768

7000 67.07719 67.16318
8000 35.34394 35.4589

9000 73.9846 74.109
10000 69.43308 69.54271

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

36

Figure 4. The run time of 1000-10000 number of nodes (directed graph)

From figure 3 and 4, we notice that almost the same time is observed for searching for a path
which is not a sub path from the solution shortest path.

With respective to an undirected graph, table 7 and 8 contain the averages values of the time
when the required path is the implicit path of the stored solution path and figure 5 and 6 show the
results analysis.

Table 7. The time complexity of the implicit path (undirected graph)

No. of nodes Dijkstra using min heap
Dijkstra using min heap with
ArrayList<LinkedHashMap>

100 1.84947 0.33223

200 2.05475 0.28836

300 3.52372 0.30657

400 3.28394 0.27613

500 4.92279 0.2832

600 4.20319 0.29005

700 2.61191 0.24252

800 3.49764 0.21569

900 7.41144 0.2038

1000 7.00862 0.23575

Figure 5. the chart of time complexity of 100-1000 number of nodes (undirected graph)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

37

From figure 5, we notice that the time decreases as the number of nodes increases. It’s almost
same as the directed graph. We also notice that the time start to decrease as the number of nodes
increase. There is a slightly difference between the directed graph and undirected graph but
undirected graph is a bit better.

Table 8. The time complexity of the implicit path (undirected graph)

No. of
nodes

Dijkstra using min
heap

Dijkstra using min heap
with
ArrayList<LinkedHashMap>

1000 7.00862 0.23575

2000 7.0446 0.19993

3000 8.87373 0.20988

4000 14.7859 0.19355

5000 22.37447 0.17785

6000 12.27828 0.20967

7000 24.78728 0.18866

8000 40.37087 0.18704

9000 30.50427 0.17007

10000 42.68629 0.19351

Figure 6. the chart of time complexity of 1000-10000 number of nodes (undirected graph)

Figure 6, shows the average time of nodes from 1000 to 10000 nodes number. It’s also clear that
as the number of nodes increase, time is decrease.

Table 9 and 10 contain the averages values of the time when the required path is not the implicit
path of the stored solution path and the graph is undirected, and figure 7 and 8 show the results
analysis.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

38

Table 9. The time complexity of the non-implicit path (undirected graph)

No. of
nodes

Dijkstra using min
heap

Dijkstra using min heap with
ArrayList<LinkedHashMap>

100 1.60807 1.6634
200 2.87129 2.93079

300 2.47767 2.56841

400 3.056 3.15386
500 4.51615 4.61892
600 6.38728 6.46438

700 4.84882 4.93895

800 7.36835 7.48686
900 9.83962 9.94413
1000 7.09856 7.17292

Figure 7. the chart of time complexity of 100-1000 number of nodes (undirected graph)

Figure 7 and 8 describes the run time of non-implicit path if it’s not included within the stored
solution shortest path and the graph is an undirected. The relationship between run time and
nodes numbers is shown. It is observed that the time for the proposed algorithm is almost equal to
the original Dijkstra algorithm with min-heap. There is a slightly fixed difference as the nodes
numbers increases.

Table 10. The time complexity of the non-implicit path (undirected graph)

No. of nodes
Dijkstra using min
heap

Dijkstra using min heap with
ArrayList<LinkedHashMap>

1000 7.09856 7.17292

2000 12.75358 12.84875

3000 9.63923 9.73673

4000 26.47921 26.57234

5000 37.46062 37.53992

6000 47.93749 48.00873

7000 51.68053 51.78028

8000 66.05719 66.12449

9000 42.02263 42.11391

10000 49.61217 49.69425

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

39

Figure 8. the chart of time complexity of 1000-10000 number of nodes (undirected graph)

5. DISCUSSION

According to our case study of random directed graph and undirected graph, with different
number of nodes, we have noticed that our proposed algorithm works better if the graph is
undirected. The same case study has been given to the original Dijkstra algorithm with priority
queue implemented as a min-heap. The results of both algorithms have been recorded and
analysed.

Comparisons between these results have shown that the proposed algorithm is almost the best.
Although more data structures have been used within the proposed algorithm, however, the
enlarged storage is available for all of the current devices, even for the smallest one. We argue
that data storages aren’t problem if the performance of the given algorithm is higher and success.
It has been observed that the searching time of the original algorithm is almost the same as the
time of the proposed algorithm if the required path is not an implicit path within the solution path.
Regarding of the results in the literature, run time is various depending on the type of used data
structure and also CPU speed. Although our results give time average equal to approximately 0.1
for searching within a solution path, we realize that the greater the number of nodes, time
becomes less and less. This can work in a large storage of nodes especially in a huge road
network.

6. CONCLUSION AND FUTURE WORK

The analysis of searching time for implicit path seems to be rare and less concern. Most available
algorithms expect the nature of easy time searching for sub path within the solution path. Well,
data structure plays main role in the whole procedures and operations. We realize this point when
we start proposing our idea for improvement of the available Dijkstra algorithm. We consider
improving the time complexity of implicit path within the solution path as a first starting point.
According to our results, the improvement of the proposed algorithm is achieved with regard of
directed graph and undirected graph. In fact, most practical applications involve both directed and
undirected graphs. The proposed algorithm achieves the best result especially for a large number
of nodes and if the graph is undirected. We also plan to apply our proposed algorithm to a real
network road map to show the performance and improve the validity from a real point of view.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

40

REFERENCES

[1] Arman, N., & Khamayseh, F., (2015) "A Path-Compression Approach for Improving Shortest-Path

Algorithms," International Journal of Electrical and Computer Engineering, vol. 5, p. 772,.

[2] Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L., "Applying Dijkstra algorithm
for solving neutrosophic shortest path problem," International Conference on Advanced Mechatronic

Systems (ICAMechS), 2016, pp. 412-416.

[3] Gao, J., Zhao, Q., Ren, W., Swami, A., Ramanathan, R., & Bar-Noy, A., (2015) "Dynamic shortest

path algorithms for hypergraphs," IEEE/ACM Transactions on Networking, vol. 23, pp. 1805-1817.

[4] Gutenschwager, K., Völker, S., Radtke, A., & Zeller, G., "The shortest path: Comparison of different
approaches and implementations for the automatic routing of vehicles," in Simulation Conference

(WSC), Proceedings of the 2012 Winter, 2012, pp. 1-12.

[5] Khamayseh, F., & Arman, N., (2015) "Improvement of Shortest-Path Algorithms Using Subgraph’s

Heuristics”. Journal of Theoretical & Applied Information Technology, vol. 76.

[6] Niemeyer, K., E., & Sung, C.-J., (2016) "On the importance of graph search algorithms for DRGEP-

based mechanism reduction methods," Combustion and Flame, vol. 158, pp. 1439-1443.

[7] Shu-Xi, W., (2012) "The improved dijkstra's shortest path algorithm and its application," Procedia

Engineering, vol. 29, pp. 1186-1190.

[8] Douglas,W., B., (2001) Introduction to Graph Theory, Pernice Hall.

[9] Chandra, "Shortest Path Problem for Public Transportation Using GPS and Map Service," 2012.

[10] Saab, Y., & VanPutte, M., (1999) "Shortest path planning on topographical maps," IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 29, pp. 139-150.

[11] Xing, S., & Shahabi, C., "Scalable shortest paths browsing on land surface," in Proceedings of the

18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010,
pp. 89-98.

[12] Faro, A., & Giordano, D., (2016) "Algorithms to find shortest and alternative paths in free flow and

congested traffic regimes," Transportation Research Part C: Emerging Technologies, vol. 73, pp. 1-
29.

[13] Dijkstra., E., W., (1959) “A note on Two Problems in Connexion with graphs”, Numerische

Mathematik, 1, 269-271.

[14] Thorat, S., & Rahane, S., (2016) “Review of Shortest Path Algorithm”, IRJET, vol 3, issue 8.

[15] Yao, B., Yin, J., Zhou, H., & Wu, W., (2016) "Path Optimization Algorithms Based on Graph

Theory," International Journal of Grid and Distributed Computing, vol. 9, pp. 137-148.

[16] Cormen, T., Leiserson, C., Rivest, R., & Stein, C., (2009) Introduction to Algorithms, 3rd. ed., MIT
Press, London.

[17] Levitin, A., (2012) Introduction to the Design and Analysis of Algorithms, 3rd ed., Pearson

Education, Inc., Addison-Wesley.

[18] Jain, A., Datta, U., & Joshi, N., (2016) "Implemented modification in Dijkstra‟ s Algorithm to find
the shortest path for N nodes with constraint," International Journal of Scientific Engineering and

Applied Science, vol. 2, pp. 420-426.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 4, August 2019

41

[19] Xie, D., Zhu, H., Yan, L., Yuan, S., & Zhang, J., "An improved Dijkstra algorithm in GIS
application," in World Automation Congress (WAC), 2012, pp. 167-169.

[20] Lu, J., & Dong, C., "Research of shortest path algorithm based on the data structure," in the 3rd

International Conference of Software Engineering and Service Science (ICSESS), 2012 IEEE, 2012,
pp. 108-110.

[21] Kong, D., Liang, Y., Ma, X., & Zhang, L., "Improvement and Realization of Dijkstra Algorithm in

GIS of Depot," in the International Conference on Control, Automation and Systems Engineering

(CASE), 2011, 2011, pp. 1-4.

[22] Deng, Y., Chen, Y., Zhang, Y., & Mahadevan, S., (2012) "Fuzzy Dijkstra algorithm for shortest path
problem under uncertain environment," Applied Soft Computing, vol. 12, pp. 1231-1237

AUTHOR

Ibtusam Alashoury: received her BSc degree in Computer Science from University of
Sebha, Libya. She is currently doing her MSc in computer Sciences at Sebha University
of Libya. She interests in the area of Software Engineering, System Analysis and Web
design. she is currently working as a technical Engineer in the information development
project of Sebha University of Libya.

Mabroukah Amarif: received her BSc degree in Computer Science from University of
Sebha, Libya, MSc in Computer Science from Universiti Sains Malaysia, and PhD in
Software Engineering from Universiti Kebangsaan Malaysia. Her interests span a wide
range of topics in the area of Software Engineering, Networking, Computer Security,
Visual Informatic, Computer Education and programming languages. She is currently
working as Assistant Professor at the departement of computer science, Faculty of
Information Technology in Sebha University of Libya.

