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ABSTRACT 
 
This paper describes the outcome of an attempt to implement the same transitive closure (TC) algorithm 

for Apache MapReduce running on different Apache Hadoop distributions. Apache MapReduce is a 

software framework used with Apache Hadoop, which has become the de facto standard platform for 

processing and storing large amounts of data in a distributed computing environment. The research 

presented here focuses on the variations observed among the results of an efficient iterative transitive 

closure algorithm when run against different distributed environments. The results from these comparisons 

were validated against the benchmark results from OYSTER, an open source Entity Resolution system. The 

experiment results highlighted the inconsistencies that can occur when using the same codebase with 

different implementations of Map Reduce. 
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1. INTRODUCTION 
 

1.1. Entity Resolution 
 

Entity Resolution (ER) is the process of determining whether two references to real world objects 
in an information system refer to the same object or to different objects [1]. Real world objects 

can be identified by their attributes and by their relationships with other entities [2]. The 

equivalence of any two references is determined by an ER system based upon the degree to 
which the values of the attributes of the two references are similar. In order to determine these 

similarities, ER systems apply a set of Boolean rules to produce a True (link) or False (no link) 

decision [3]. Once pairs have been discovered, the next step is to generate clusters of all 
references to the same object. 

 

1.2. Blocking 
 

To reduce the amount of references compared against one another, one or more blocking 

strategies may be applied [1].  Blocking is the process of dividing records into groups with their 
most likely matches [4,19]. Match keys are first generated by encoding or transforming a given 

attribute. Records whose attributes share the same match key value are placed together within a 

block. Comparisons can then be made among records within the same block. One common 
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method used to generate match keys is Soundex, which encodes strings based on their English 
pronunciation [5]. Using Soundex, match keys for the names “Stephen” and “Steven” would both 

have a value of S315. Records containing these strings in the appropriate attribute would have the 

same match key value, and would thus be placed into the same block for further comparison, 

along with records with slight differences such as “Stephn” and “Stevn”.   Blocks are often 
created by using a combination of multiple match rules. Records can be placed in more than one 

block, which can sometimes lead to many redundant comparisons [25]. 

 

1.3. Transitive Closure 
 

Transitive closure is the process used to discover clusters of references from among matched 
pairs. The transitive relationship determines that if reference A is equivalent to reference B, 

reference B is equivalent to reference C, then, by the property of transitivity reference A is 

equivalent to reference C [2]. This study utilized CC-MR, a transitive closure algorithm 
developed for use in MapReduce by Seidl, et al. [18] and enhanced in [8]. 

 

1.4. Oyster 
 

The ER processes discussed in this paper were performed with OYSTER (Open System for 

Entity Resolution) Version 3.6.7 [3]. OYSTER is an open source ER system developed by the 
Center for Advanced Research in Entity Resolution and Information Quality (ERIQ) at the 

University of Arkansas at Little Rock. OYSTER’s source code and documentation is freely 

available on Bitbucket [7].  The system has proven useful in several research and industry 
applications [6]. Notably, OYSTER was used in previous studies using  large-scale education 

data in [3] and [5] and electronic medical records in [22].  

 

1.5. Hadoop and MapReduce 
 

Apache Hadoop is an open-source system designed to store and process large amounts of data in 
a distributed environment [23].  Hadoop is highly scalable, capable of employing thousands of 

computers to execute tasks in an efficient manner. Each computer, or node, utilizes the Hadoop 

Distributed File System (HDFS) to store data [9].  

 
Apache MapReduce (MR) is a software framework with the capability to create, schedule, and 

monitor tasks developed to run on the Hadoop platform [16]. As noted in [10],  MR is a good fit 

for ER operations, as each pairwise comparison is independent of another, and thus can be run in 
parallel [19,20]. 

 

2. BACKGROUND 
 

This research began in an effort to migrate OYSTER’s operations to a distributed environment in 
order to accommodate faster and more efficient processing of larger datasets.  
 

In the Hadoop distributed environment, the preprocessors lack access to a large shared memory 

space which makes the standard ER blocking approach impossible [11].   
 

This study employs the BlockSplit strategy introduced in [12] to accompany the transitive closure 

algorithm design introduced in [8]. The algorithm generates clusters by detecting the maximally 

connected subsets of an undirected graph. BlockSplit is a load balancing mechanism that divides 

the records in large blocks into multiple reduce tasks for comparison [6]. Three different 
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platforms for distributions of Hadoop were tested to investigate the stability and efficiency of the 
same TC algorithm. 
 

The expected outcome of the study was that the results from the transitive closure process run in 

each environment would agree (in terms of F-Measure) with those from the OYSTER baseline 

run. 
 

3. RESEARCH METHODOLOGY AND EXPERIMENTS 
 

3.1. Transitive Closure Logic 
 

Consistent with the Map-Reduce paradigm, the steps of the algorithm are divided into a Map and 

Reduce phase.  In the Map phase, pairs are generated and identifiers are assigned to each pair.  
Both the original pair (ex. A,B)  and the reverse of each pair (ex. B,A) are generated.  Pairs are 

sorted by  the first node and then the second. Pairs that have the same recid as the first element of 

the pair are placed into a group. Each group is then processed as in the Reduce details below. 
Figure 1. Transitive closure logic. 

 

Transitive Closure Logic (Reduce phase) 
 

Reduce: Apply Group Processing Rules 

(X, Y) represents a generic pair; Set processComplete = True 

Get next Group, Examine first pair in the group (X, Y) 

If  X <= Y, Then pass the entire group to the output (R1) Else 

If groupSize = 1, Ignore (don’t pass to output) (R2) Else 

Set processComplete = False 
For each pair (A, B) following first pair (X, Y) in the group 

Create new pair (Y, B) 

                  Create new pair (B, Y) 

                             Move (Y, B) to output (R3) 

Move (B, Y) to output (R4) 

             Examine last pair of the group (Z,W) 

             If X < W 

                             Move (X, Y) to the output (R5) 

After all groups are processed, If processComplete = false 

             Make input = output 

             Repeat Process Else 
             Process complete  

Join final output back to original full set of record keys to get singleton 

clusters iteratively 

New output sorted and grouped AND Iteration Complete with Reduce 
 

Final Output:  Join back to original input and validate with connected 

records. 
 

 

3.2. Dataset 
 
To simulate the variety of data quality challenges present in real-world data, a synthetic dataset 

was used. The dataset contains 151,868 name and address records with 53,467 matching pairs, 

and 111,181 total clusters. The field names for the dataset use are: recid, fname, lname, address, 
city, state, zip, ssn, and homephone. 
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 While distributed systems such as Hadoop are designed to handle much larger amounts of data, 
the dataset size was chosen to accommodate the baseline OYSTER calculations performed on a 

single local computer. 

 

3.3. Hadoop Distribution Platforms 
 

The details of each Hadoop distribution  used for this study are as follows:  
 

 Local HDFS: a stand-alone, single node cluster running Hadoop version 2.8.4. 
 

 Cloudera Enterprise: a multi-node cluster running Cloudera Enterprise version 5.15 

(multiple node cluster) along with Apache Hadoop 2.8.4 [13]. 
 

 Talend Big Data Sandbox:  a single node cluster running Apache Hadoop 2.0  hosted by 

Amazon Web Services (AWS) [14, 15] 

 

3.4. Boolean Rules 
 
OYSTER (Version 3.6.7) was used to prepare the input data by applying Boolean match rules.  

The output of this step was a set of indices containing the blocks generated by the Boolean rules. 

The algorithms used were:  

 

 SCAN: remove all non-alphanumeric characters, convert all letters to uppercase 
 

 Soundex: encode each string based on its English pronunciation.  
 

Table 1 details the rules used in this study. This component of the experiment design was  

previously used in [5, 21]. 
 

Table 1. Boolean Rules Used for each Index. 
 

Index Rules 

1 
fname : SCAN 

lname : SCAN 

2 
lname: SCAN 

ssn : SCAN 

3 

fname: Soundex 

lname: Soundex 

ssn: SCAN 

4 

fname: Soundex 

lname: SCAN 

address: SCAN 

 

3.5. Baseline Run 
 

An initial full ER run was conducted using OYSTER to establish a baseline for the dataset. This 
process included generating a link file containing the pairs considered to be a match, and 

performing transitive closure to discover the clusters. The expectation was that each MR 

implementation of TC would produce the same results as the ER calculation in terms of clusters 
of records.  The OYSTER ER Metrics utility [7] was used for evaluation. 
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3.6. Experiment Steps 
 

The MapReduce transitive closure experiment was conducted in three steps as defined below. 

The first two steps of the study helped to create benchmarks for the expected results of the TC 

process, setting the stage for the comparisons made in the final step.  
 

In Step 1, the transitive closure algorithm for MapReduce was run on the Local HDFS cluster, 

using the pairwise link file that was generated in OYSTER by applying all Boolean match rules. 
This first run was the benchmark for all further experiments. 

 

In Step 2, separate pairwise link files were generated in OYSTER for each Boolean match rule 
individually. The files were combined and run through the TC process on the Local HDFS 

cluster.  This step was repeated on the Cloudera platform for validation.  

 

In Step 3, the original source input data is used, and all Boolean rules from Table 1 applied and 
transitive closure is done on MR [17]. This step was repeated on all three platforms. 

 

3.7. Evaluation 
 

The output from the TC processes on each platform in Step 3 were compared against the initial 

Step 1 benchmark that was conducted on the Local HDFS cluster with the full match link file. 
OYSTER’s ER Metrics utility [7] was used to compare the results based on the number of true 

matches found vs. the number of predicted matches. The primary metric used was the F-Measure, 

which is the harmonic mean of precision and recall [2]. F-Measure is reported with a value from 

0 to 1, with 1 meaning a 100% match of the expected results.  
 

4. RESULTS AND DISCUSSION 
 

The Local HDFS cluster executed all steps without issue, and was able to match the benchmark 
F-Measure value successfully. 

 

The Cloudera Enterprise platform was the most inconsistent among the environments tested.  

Cloudera was used for Steps 2 and 3. There were  multiple attempts  required due to 
compatibility and configuration challenges. The first few runs on the Cloudera platform failed 

because of a compatibility issue with the custom Soundex algorithm. Subsequent runs were 

processed with a reduced-size dataset (75, 934 records) which resulted in an F-Measure of 0.68,  
more than 50% than the full benchmark baseline. After reconfiguration, a final run was done with 

the full dataset and the subsequent F-Measure was 0.97. 

 

The Talend Big Data Sandbox Hadoop platform was used in Step 3. The initial run’s F-Measure 
was 0.57.  After a review of the results, it was determined that the input file format, CSV, caused 

inconsistencies during processing.  This was corrected by converting to a Fixed Width input 

format as required by the platform.  The subsequent run yielded 0.77, over a 10% improvement. 
 

Table 2. Outcomes by platform for Step 3. 
 

Platform Attempts Successes 
Average 

Outcome1 Best Outcome1 

Local HDFS 3 2 0.99 0.99 

Cloudera 5 2 0.98 0.97 

Talend 3 2 0.67 0.77  
1 by F-Measure. 
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Table 2 summarizes the results of step 3 from all three platforms.  “Attempts” is the number of 
attempts taken, including failed runs. “Successes” are the count of attempts that ran until 

completion.  The Average and Best outcomes of these attempts, according to F Measure, are also 

listed. 

 
While the same input data and TC algorithm were used, there were a few issues that led to failed 

attempts and inconsistent results.  Working with different platforms required adapting the process 

to fit the configuration constraints of each system, as with the file format issue mentioned above.   
In addition, the underlying load balancing mechanisms of each platform seem to vary in the 

manner in which the pairwise comparison tasks were spread across each node. The platforms 

used different internal thresholds to determine how the pairs were spread across data processing 
nodes, which led to inconsistencies among the results, even between iterations on the same 

platform. This affected the ability of the algorithm to return all matching pairs, which in turn 

affected the ability to discover the correct amount of clusters during the reduce phase. As 

previously mentioned, blocking is in itself an ongoing challenge in ER, and distributed 
environments add to the complexity. 

   

5. CONCLUSION 
 
Although the original intent was to improve the scalability and consistency of the TC algorithm, 

the experiment results show the inconsistent iterative TC behavior when using different 

platforms.  

 
The expected result of generating the same matches from using the TC algorithm on MR as the 

baseline run was impacted by the differences in configuration requirements and blocking 

behavior on the different Hadoop platforms.  
 

A compromise needs to be made between load balancing and preserving the generated blocks of 

matched pairs during the Map phase. If matched pairs that should be in the same block are spread 
across multiple nodes, the Reduce phase cannot correctly and consistently complete the transitive 

closure process.  

 

These experiments highlight some of the underlying scalability issues for Entity Resolution 
processes in distributed environments.  Future experiments include exploring additional blocking 

strategies, as well as testing additional platforms and distributed computing frameworks. We also 

plan to perform this experiment on different datasets to further validate our methods.  
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