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ABSTRACT 
 

Solving University Class Scheduling Problem (UCSP) is a complex real-world combinatorial optimization 

task that has been extensively studied over the last several decades. Many meta-heuristic based techniques, 

including prominent swarm intelligence (SI) methods have been investigated to solve it in different ways. In 

this study, Ant Colony Optimization (ACO) based two methods are investigated to solve UCSP: ACO based 

method and ACO with Selective Probability (ACOSP). ACO is the well-known SI method that differs from 

other SI based methods in the way of interaction among individuals (i.e., ants); and an ant interacts with 

others indirectly through pheromone to solve a given problem. ACO based method considers 

probabilistically all the unassigned time slots to select next solution point for a particular course 
assignment. In contrast, ACOSP probabilistically selects next solution point for a particular course 

assignment from the selective probabilities. Such selective probability employment with ACO improves 

performance but reduces computational cost. The performances of the proposed methods have been 

evaluated comparing with Genetic Algorithm (GA) in solving real-world simple UCSPs. In addition, 

proposed methods are compared with each other for solving highly constrained UCSPs. Both the proposed 

methods outperformed GA and ACOSP was the best to solve the given problems. 
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1. INTRODUCTION 
 

University Class Scheduling Problem (UCSP) is a scheduling problem concerned with 

assignment of classes for instructors and students among suitable time slots satisfying a set of 

constraints. UCSP can be described as: given a set of classes, a set of (contiguous) time slots, a 
set of students, and a set of instructors, the task is to assign classes to time slots for instructors 

and students satisfying a set of hard and soft constraints. Mathematically, the UCSP is defined as 

triple CTE ,, , where  .,, kji iscE   contains three triples: set of classes ic , set of students js , 

and set of instructors ki .  nttT ,........,1 is a set of time slots and  nccC ,........,1  is the set 

of hard and soft constraints. The task is to assign iE  to the time slot iT  satisfying constraints iC  

where .CCi   
 

There are usually two types of constrains involved in UCSP: hard constraints [1, 2, 7] and soft 
constraints [1, 2, 7]. Hard constraints must be satisfied completely so that the generated solutions 

become feasible solutions. Soft constraints which are related with objective function and they 

must be satisfied as much as possible, but it is not necessary that soft constraints are being 
satisfied as hard constraints. UCSP has to maintain various types of constraints such as 
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instructors’ constraints, students’ constraints, rooms’ constraints, and administrative constraints 
etc. The main feature of UCSP is to satisfy soft constraints as much as possible where there must 

be no violation of hard constraint. The main purpose of the study is to solve course scheduling 

problem of Khulna University of Engineering & Technology (KUET).It is to be noted that both 

hard and soft constraints may vary from university to university. 
 

The UCSP has been extensively studied over the last 25 years [5]. Different Swarm Intelligence 

(SI) based techniques are investigated to solve UCSP. The popular SI based techniques are 
adaptive Particle Swarm Optimization (PSO) [2], PSO based algorithm with local search [3], 

PSO with interchange heuristic [14] and honey-bee mating optimization algorithm [11] are well 

studied for solving UCSP.  Hybrid Particle Swarm Optimization (HPSO), one of the most recent 
algorithms, includes features to consider instructor’s preferences, and employs a repair process 

updating instructor timetable with re-generated feasible time slots to solve UCSP [4].There are 

also different meta-heuristic based techniques such as Tabu Search (TS) based techniques [9, 10] 

and Genetic Algorithm (GA) based techniques [6, 8] have been investigated to solve UCSP. 
Moreover, other well-known techniques are also found effective to solve UCSP in the literature 

[12, 13]. Ant Colony Optimization (ACO) is another well-known SI based method which has not 

been used to solve UCSP. Therefore, there is a scope to solve UCSPs using ACO based methods. 
 

2. METHODOLOGY 
 

There are two main reasons for solving UCSP is a challenging task. The first reason is the 

exponential growth problem of this problem is due to the faster growth students and secondly the 
numbers of constraints are varied from university to university. The proposed method follows 

ACO based strategy to solve UCSP. Based on this, two algorithms are proposed: ACO and ACO 

with Selective Probability (ACOSP). Originally, ACO was implemented for Travelling Salesman 
Problem (TSP), a well-known combinatorial optimization problem. To solve TSP using ACO, the 

number of cities is considered equal to the number of ants. But, in our proposed methods, each 

ant represents an UCSP solution. In the proposed method, the individual instructor’s suitable 
solutions are found by calculating total preference value. The formula for calculating fitness of 

individual instructor, iif  is given by- 
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PV  Preference values of assigned time slots n for each instructor.  

 

For each triple (class, instructor, batch), Ee  , an ant chooses a time slot Tt  

probabilistically. The ants construct a partial assignment TEA ii :  for ),.....1,0( Ei   , 

where  ii eeeE ,......, 21 . An ant starts with an empty assignment iA . After construction 

of 1iA , the assignment is built probabilistically as   .),(1 teAA iii     The time slot t is 

chosen probabilistically out of  T  based on probabilities  ),( tep i , that depends on the 

pheromone matrix )( 1iA
 
and the heuristic information  )( 1iA is given by- 

 

   

  



 

T iiii

iiii

iii
AeAe

AteAte
AAtep












)))(,(.()))(,((

)))(,(.()))(,((
))(),()(,(

11

11

11
       (2) 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 13, No 1, February 2021 

23 
 

The impact of the pheromone and the heuristic information can be weighted by parameters α and 

β respectively and the pheromone matrix is given by 
0)(  iA  where ),.....1,0( Ei  . A 

simple method for computing the heuristic information is the following: 
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Ate                (3) 

 

Where  )))(,(( 1ii Atev  counts the additional number of soft constraints violations caused by 

adding   tei ,  to the partial assignment 1iA    .  

Let Agbest  be the assignment of the best solution found since the beginning.  The following 

update rule is used: 

 

              2+t)(e,).-(1
             t)(e,).-(1),(

tAgbest(e)=
Otherwisete


      (4) 

 

Here ρ is pheromone evaporation coefficient.  

The fitness of the UCSP solution is measured for k   number of instructors is given by- 
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              (5) 

 

Incorporation of  selective probability (SP) technique with the ACO to form a novel algorithm 
named ACOSP in which probabilities of suitable unassigned time slots, instead of all the 

unassigned time slots is maintained to select a particular time slot. As a result, better result will 

be obtained. Another benefit of incorporating selective population is to provide better 
convergence. 

 

2.1. ACO to Solve UCSP 
 

In the proposed ACO based algorithm, each ant constructs a UCSP solution by choosing time slot 

of classes probabilistically. The probability of choosing time slots of classes is a function of 
pheromone value and heuristic information. The less conflicting (i.e., high heuristic value) route 

will be increasingly enhanced, and therefore become more attractive. On the other hand, more 

conflicting route will eventually disappear because pheromones are volatile. Initially, different 

ants construct different solutions. Overtime, the solutions will converge to a single optimal UCSP 
solution.  

 

The pseudo code of proposed ACO based algorithm is given below: 
 

Input: (Courses, Instructors, Batch),  E  for solving UCSP 

Output: An optimal solution of UCSP 

1: Assign preferences in each slot for every instructor 


 1:2 0   

TEtete  ),(),(:3 0  

4: while(time limit not reached) do 
5: for (a=1 to m) do    // m is the number of ants 
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0A  

6: for (i=1 to E ) do 

7: Compute probability using Eq. (3.2.2)  

8: for each ie  choose time slot t probabilistically 

 ),(1 teAA iii    

9: Compute fitness value using Eq. (3.2.5) and save the best solution 

10: End for 
 

11: End for 

 
12: Update global pheromone value 

 

13: End while 

 

2.2. ACO with Selective Probabilities (ACOSP) to Solve UCSP 
 
The ACO based method use all unassigned time slots to select a particular time slot. The 

unassigned suitable time slot has chance to produce better optimal UCSP solution than the all 

unassigned time slots. To utilize this, modifications of the ACO is made and incorporate selective 
population to form another algorithm named ACOSP in which probabilities of suitable 

unassigned time slots, instead of all the unassigned time slots is maintained to select a particular 

time slot. As a result, better result will be obtained. Another benefit of incorporating selective 

probabilities is to provide better convergence. The bold text shows difference of these two 
algorithms. 

 

The pseudo code of proposed ACOSP based algorithm is given below: 
 

Input: (Courses, Instructors, Batch), E for solving UCSP 

Output: An optimal solution of UCSP 

 
1: Assign preferences in each slot for every instructor 


 1:2 0   

TEtete  ),(),(:3 0  

4: while(time limit not reached) do 

5:for (a=1 to m) do          // m is the number of ants 

0A  

6: for(i=1 to E  ) do 

7:Compute probability using Eq. (3.2.2) and maintain selective probabilities for time slots 

8:for each ie  choose time slot t  from selective probabilities 

 ),(1 teAA iii    

9:Compute fitness value using Eq. (3.2.5) and save the best solution 
10: End for 

 

11: End for 

 
12: Update global pheromone value 
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13: End while 

 

3. EXPERIMENTAL STUDIES 
 

In the experimental environment, both instructors ‘flexibility, and students’ flexibility is 

considered. Due to the complexity of developing such type of algorithm, configuring of the 
algorithms are strongly relied on an experimental methodology. The instructors’ preferences are 

varied from 0 to 5. 0 means lowest preference and 5 means highest preference. Experiments with 

real-world input data coming from department of Computer Science and Engineering (CSE) of 
Khulna University of Engineering & Technology (KUET) have been conducted. In KUET, there 

are 5 days for teaching in a week and 9 teaching hours for each day. Two instructors conduct a 

theory course and there is a common class between them. Moreover, two instructors must 

conduct a laboratory course and the duration of each laboratory class is three consecutive time 
slots. The experiments have been done with real data which is even term data of CSE for course 

schedule. The simulation of the ACO and ACOSP on UCSP has been performed on a PC (Intel 

Core 2 Duo E7500 @ 2.93 GHz CPU, 2GB RAM, Win2007 OS). The algorithm is implemented 
in C++ programming language on Code Blocks 10.05. 

 

3.1. Experiments on Simple Environment 
 

In the simple environment, only theory courses are considered and they must be assigned among 

the first six periods for every instructor. Also, all the classes of a particular course will be 
conducted by only one instructor.  

A comparison is made among GA, ACO based, and ACOSP method to solve UCSP for simple 

environment.  The proposed ACO and ACOSP methods already been discussed. In the following, 
it will discuss about how the UCSP solution is encoded in the GA based method. 

Every solution is considered with one vector for UCSP, with the length of the vector equal to the 

number of theory classes. The first row represents with triple {classes  )(E , instructors  )(I , 

batches  )(B }; the second row represents the assigned timeslot )(T  to the corresponding triple  

},,{ BIE as shown in Figure 1. 
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Figure 1. Representation of the solution matrix. 

 
The fitness of a solution is computed so that particular solution can be preferred than all other 

solutions. The fitness of solution is calculated using Eq. (5). 

 

3.1.1. Input Data Preparation 
 

Table 1 consists of which course related to which batch and also credit hour of each course. Table 

2 consists of number of courses of each instructor and which instructor will conduct which 
course. 
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Table 1. Batch information for simple environment 

 

Batch Name Course No. Credit No. of assignment/week 

1st Year 2nd Term CSE 1201 3.0 3 

CSE 1207 3.0 3 

CHEM 1207 3.0 3 

EEE 1217 3.0 3 

MATH 1207 3.0 3 

    

2nd  Year 2nd 

Term 

CSE 2201 3.0 3 

CSE 2207 3.0 3 

CSE 2213 3.0 3 

EEE 2217 3.0 3 

MATH 2207 3.0 3 

 

Table 2. Instructor’s information for simple environment 

 

Instructor No. of Course Taken Course No. 

T1 2 CSE 1207,CSE 2213 

T2 2 CSE 2201,CSE 1201 

T3 1 CSE 2207 

T4 1 EEE 1217 

T5 1 EEE 2217 

T6 1 MATH 1207 

T7 1 MATH 2207 

T8 1 CHEM 1207 

 

3.1.2. Experimental Analysis 

 

A small data set is considered to conduct the experiment where 8 instructors, 10 courses, and 2 
batches. The experiment is conducted varying population size and number of iterations. The 

individual fitness value is calculated using eq. (1) and UCSP fitness value is calculated using eq. 

(5). Actually, the UCSP fitness values are plotted against number of iteration and population. The 
experimental results are given after 10 trials. In Figure 2, 100 iterations are set for GA, ACO 

methods and 10% selective probability for ACOSP method. In this case the population size is 

varied. In Figure 3, 100 population is set for all three methods. In this case the numbers of 

iterations are varied.  
 

It is seen from Figure 2 and Figure 3; the proposed two algorithms have better fitness value than 

that of GA. The main reason is GA assigns courses to the time slot without considering 
probabilities of time slots. Whereas both ACO and ACOSP calculate probabilities of time slot 

before selecting a particular time slot. Therefore, there is a chance to choose suitable time slots. 

On the other hand, ACOSP method provides better result than ACO method. The main reason is 

ACOSP maintains 
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Figure 2. Comparison among GA, ACO, and ACOSP varying population size. 

 

 
 

Figure 3. Comparison among GA, ACO, and ACOSP varying no. of iteration. 

 

selective probabilities of unassigned suitable time slots to select a particular time slot. It is also 
seen that number of population (Figure 2) and iteration (Figure 3) increases the fitness value is 

increases. The main reason is that both exploration and exploitation is increases area of the search 

space which guides the solution towards better solution. The solution is converged at 100 

population (Figure 2) and at 250 ant (Figure 3) and optimum solution is found. 
 

3.2. Experiments on Highly Constrained Environment 
 

In highly constrained environment, both theory and laboratory courses are considered. Two 

instructors conduct a class each and a common class for the theory course and the laboratory 

course must be conducted by two instructors using three consecutive time slots. In this 
environment, larger data set is considered than the simple environment. GA is excluded for 

highly constrained environment because it is quite difficult to encode a solution in such 

environment. 
 

3.2.1. Input Data Preparation 

 
For input data, 35 instructors, 37 courses, and 4 batches is considered. Table 3 consists of which 

course related to which batch and also credit hour of each course. Odd number of courses is 

treated as theory courses and even number of courses is treated as laboratory courses. Table 4 

consists of number of courses of each instructor and which instructor will conduct which course. 
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Table 3. Batch information for highly constrained environment 

 

Batch Name Course No. Credit No. of assignment/week Type of course 

1st Year 2nd Term CSE 1201 3.0 3 Theory 

CSE 1202 1.5 2 Laboratory 

CSE 1207 3.0 3 Theory 

CHEM 1207 3.0 3 Theory 

CHEM 1208 1.5 2 Laboratory 

EEE 1217 3.0 3 Theory 

EEE 1218 1.5 2 Laboratory 

HUM 1208 0.75 1 Laboratory 

MATH 1207 3.0 3 Theory 

ME 1270 0.75 1 Laboratory 

2nd  Year 2nd Term CSE 2200 1.5 2 Laboratory 

CSE 2201 3.0 3 Theory 

CSE 2202 1.5 2 Laboratory 

CSE 2207 3.0 3 Theory 

CSE 2208 0.75 1 Laboratory 

CSE 2213 3.0 3 Theory 

EEE 2217 3.0 3 Theory 

EEE 2218 1.5 2 Laboratory 

MATH 2207 3.0 3 Theory 

3rd Year 2nd Term CSE 3201 3.0 3 Theory 

CSE 3202 1.5 2 Laboratory 

CSE 3203 3.0 3 Theory 

CSE 3204 0.75 1 Laboratory 

CSE 3207 3.0 3 Theory 

CSE 3211 3.0 3 Theory 

CSE 3212 0.75 1 Laboratory 

ECE 3215 3.0 3 Theory 

4th Year 2nd Term CSE 4105 3.0 3 Theory 

CSE 4106 0.75 1 Laboratory 

CSE 4107 3.0 3 Theory 

CSE 4108 0.75 1 Laboratory 

CSE 4109 3.0 3 Theory 

CSE 4110 0.75 1 Laboratory 

CSE 4113 3.0 3 Theory 

CSE 4120 0.75 1 Laboratory 

CSE 4123 3.0 3 Theory 

CSE 4124 0.75 1 Laboratory 
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Table 4. Instructor’s information for highly constrained environment 

 

Instructor No. of Course 

Taken 

Course No. 

T1 2 CSE 1207,CSE 2213 

T2 3 CSE 3211,CSE 3212,CSE 4120 

T3 2 CSE 3201,CSE 3202 

T4 3 CSE 3203,CSE 3204,CSE 4113 

T5 5 CSE 2200,CSE 4105,CSE 4106,CSE 4123,CSE 

4124 

T6 2 CSE 2207,CSE 2208 

T7 5 CSE 3207,CSE 4107,CSE 4108,CSE 4109,CSE 

4110 

T8 2 CSE 2207,CSE 2208 

T9  CSE 2200,CSE 2201,CSE 2202 

T10 4 CSE 3201,CSE 3202,CSE 4123,CSE 4124 

T11 7 CSE 1201,CSE 1202,CSE 4107,CSE 4108,CSE 
4109,CSE 4110, CSE 4120 

T12 5 CSE 1207,CSE 2201,CSE 2202,CSE 3207,CSE 

4113 

T13 4 CSE 3203,CSE 3204,CSE4105,CSE 4106 

T14 4 CSE 1201,CSE 1202,CSE 3211,CSE 3212 

T15 1 CSE 2213 

T16 1 EEE 1217 

T17 1 EEE 1217 

T18 2 EEE 2217,EEE 2218 

T19 2 EEE 2217,EEE 2218 

T20 1 EEE 1218 

T21 1 EEE 1218 

T22 1 MATH 1207 

T23 1 MATH 1207 

T24 1 MATH 2207 

T25 1 MATH 2207 

T26 1 ECE 3215 

T27 1 ECE 3215 

T28 1 ME 1270 

T29 1 ME 1270 

T30 1 CHEM 1207 

T31 1 CHEM 1207 

T32 1 CHEM 1208 

T33 1 CHEM 1208 

T34 1 HUM 1208 

T35 1 HUM 1208 

 

3.2.2. Experimental Analysis 

 
For highly constrained environment, r data consisting of 35 instructors, 37 courses, and 4 batches 

is considered to conduct the experiment. Experiment is conducted by varying number of 

iterations and number of ants. The individual fitness value is calculated using eq. (1) and UCSP 
fitness value is calculated using eq. (5). Actually, the UCSP fitness values are plotted against 

number of iteration and population or ant. The experimental results are given after 10 trials. In 

Figure 4, 300 ants are set for both the methods. In this case the numbers of iterations are varied. 

In Figure 5, 200 iterations are set for ACO method and 200 iterations with 50% selective 
population for ACOSP method. In this case the numbers of ants are varied. 
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Figure 4 and Figure 5 represents the comparison of proposed ACO and ACOSP based methods 
for the same size of data varying number of iterations and number of ants respectively. From the 

above experimental data, it is seen that with the same volume of data and varying number of 

iterations and number of ants, the average fitness of solution is significantly improved in the 

ACOSP method rather than ACO method (Figure 4 and Figure 5 where bold line shows fitness of 
ACOSP method and dotted line shows the fitness of ACO method). Because, incorporating 

selective probabilities for unassigned suitable time slots with ACO has more pheromone value 

and more heuristic information for a particular time slots. 
                   

This pheromone value and heuristic information value is directly involved to calculate the 

probability of time slots. Thus, ACOSP considers some better of probabilities of time slots 
 

 
 

Figure 4. Comparison of ACO with ACOSP varying no. of iteration. 

 

 
 

Figure 5. Comparison of ACO with ACOSP varying no. of ants. 

 
rather than all the time slots. It indicates that better probabilities of time slots have more chance 

to be chosen. On the other hand, ACO algorithm selects time slots probabilistically for assigning 

the courses among all the unassigned time slots. Moreover, it is seen from the figures (Figure 4 
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and Figure 5), if the number of iterations and number of ants are increased the fitness of both 
algorithms are also increased. The main reason is that more number of iterations and more 

number of ants are able to find better solution. 

 

From the experimental result it is seen that the ACOSP algorithm performs better than ACO 
algorithm i.e., better quality of UCSP solution as it operates with suitable time slots to select a 

particular time slot. On the other hand, ACO operates with all the unassigned time slots. 

Therefore, less chance the pheromone will be deposited to suitable time slots resulting better path 
of pheromone trail will be disappeared. Consequently, decrease the quality of the UCSP solution.  

It is also seen that number of iteration (Figure 4) and population or ant (Figure 5) increases the 

fitness value is increases. The main reason is that both exploration and exploitation is increases 
area of the search space which guides the solution towards better solution. Solution is converged 

at 1000 iteration (Figure 4) and at 500 ant (Figure 5) and optimum solution is found. 

 

4. CONCLUSION 
 
Solving Constrained Satisfaction Problem (CSP) has been an active research area for several 

decades. University Class Scheduling Problem (UCSP) is one of the most popular CSP and 

interest grows in last few years to solve it novel ways. Recently, Swarm Intelligence (SI) based 
methods had drawn great attraction to solve UCSP. In this paper an Ant Colony Optimization 

(ACO) and ACO with selective probability (ACOSP) methods are used for solving UCSPs. The 

experiment has been conducted for two different environments: simple and highly constrained. 

Varying number of ants/population size and number of iterations, at first a comparison is made 
for proposed ACO and ACOSP based methods with GA for simple environment. The 

experimental result shown that ACOSP based method performs better than GA and ACO based 

method. Then ACO and ACOSP based methods are applied for the highly constrained 
environment. From the experimental outcome it is shown that ACOSP based method is better 

than ACO based method. The main contribution is ACO algorithm is formulated and modified to 

solve course scheduling problem of KUET. The proposed algorithms are limited to applicable for 
particular domain of problem. In the future, the performance could be improved using more 

robust SI based algorithms. It is possible to solve similar domain or topic of problem with such 

algorithms. 
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