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ABSTRACT 
 
Vigilance of an operator is compromised in performing many monotonous activities like workshop and 

manufacturing floor tasks, driving, night shift workers, flying, and in general any activity which requires 

keen attention of an individual over prolonged periods of time. Driver or operator fatigue in these 

situations leads to drowsiness and lowered vigilance which is one of the largest contributors to injuries 

and fatalities amongst road accidents or workshop floor accidents. Having a vigilance monitoring system 

to detect drop in vigilance in these situations becomes very important. 

 
This paper presents a system which uses non-invasively recorded Frontal EEG from an easy-to-use 

commercially available Brain Computer Interface  wearable device to determine the vigilance state of an 
individual. The change in the power spectrum in the Frontal Theta Band (4-8Hz) of an individual’s brain 

wave predicts the changes in the attention level of an individual - providing an early detection and warning 

system. This method provides an accurate, yet cheap and practical system for vigilance monitoring across 

different environments. 
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1. INTRODUCTION 
 

Lack of vigilance leads to many accidents (on the road, in shop floors operating heavy 

machinery, in flying), and to drop in performance efficacy (in e-learning environments). 
 

Fatigue and fatigue induced drowsiness have contributed to a large number of road accidents in 

the last few decades. While driving, the reaction time of the individuals reduces drastically with 
fatigue, and driving with inadequate amounts of sleep is the equivalent of driving under the 

influence of alcohol. The National safety council suggests that an individual is three times more 

likely to be in a car crash if one is fatigued while driving [1]. There have been reports stating that 
about 40% of the road accidents according to enforcement officers patrolling the highways and 

major roads are due to sleep-deprived drivers [2]. There is a critical need for non-invasive 

monitoring of driver vigilance to improve driving safety. 

 
A different scenario where attention and vigilance plays a crucial role is in e-learning platforms. 

The attention span of individuals attending lectures online have dwindled in contrast to face-to-

face lectures. This leads to a significantly lower efficacy in the learning process. Automated 
systems for monitoring student vigilance is essential in combating this growing problem.  
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Industries thrive to produce better productivity without compromising safety. With the advent of 
ubiquitous computing and powerful EDGE devices, shop floor monitoring for productivity 

analysis has increased but they have not yet been leveraged for improving the safety of operators 

[3]. In shop floors the exertion of an individual is already high, and compounded with the 

monotonous nature of the tasks the chances of drop in operator vigilance and hence machine 
related injuries are high.  

 

There is a big need for simple yet accurate vigilance monitoring systems. The proposed solution 
can be used to identify a lack of attention or drop in vigilance in all these myriad situations. 

  

In this paper, we present some of the related works in these different applications and the need 
for a simple EEG based solution. We then present the methods used for experimentation and data 

collection, followed by the actual data and analysis results on the efficacy of our proposed 

solution. We finally present a discussion of the potential applications of this method, as well as 

possible scope for future enhancements. 
 

2. RELATED WORK 
 

There are many solutions to track an individual’s vigilance while performing different kinds of 
monotonous activities. Existing driver vigilance detection systems have proposed and validated 

the use of computer vision for relatively simple and monotonous driving tasks. The existing 

solutions include identifying the vigilance state using computer vision solutions - face expression, 

open-eye area and many more techniques complemented with deep learning to obtain inference 
[4]. They also extend into observing the driver’s behaviour - grip on the steering wheel and 

movement patterns [5]. There has been some work on getting robust  EEG monitoring under the 

low signal-to-noise environments [6]. Also in [7], under well-controlled laboratory conditions, a 
driver’s ability to sustain attention or vigilance level is shown to be exclusively affected by these 

simple and monotonous driving tasks. On the other hand in real life these may not be the only 

contributing parameters.  In addition, these systems require elaborate infrastructure and are 
difficult to implement in natural environments without distracting the drivers. 

 

There have also been attempts in using software tools for gaze estimation and vibrotactile 

feedback systems [8] for improving attention in e-learning. There are applications developed for 
parents and teachers to assign, monitor and analyze the efficiency while performing assignments 

with the use of smartphones and eye tracking solutions [9]. There are other computer vision 

based posture tracking for checking student attentiveness [10]. The need for proper lighting and 
various other factors such as user intervention at regular intervals are really important for these 

systems to function as desired. There have been studies which analyse the attention of students 

using EEG recording devices in different contexts - for studying the change in attention to the 

different type of media being presented [11]. 
 

In addition, most of the current studies are based on physical behavioral changes in an individual 

while the physiological signals are altered much earlier than the physical behavioral expressions. 
Some studies suggest the use of low-cost wristbands which have the ability to record 

physiological signals. In [12] they have suggested the use of photoplethysmogram (PPG) and 

respiration signals from a sports wristband which were able to predict hypervigilance state with 
high accuracy indicating higher correlation of physiological sensors which do not depend on 

external environmental factors. Although the PPG can assist in early detection of various 

cardiovascular conditions, these systems are monitoring the changes in the peripheral nervous 

system - which are lagging indicators of the drops in vigilance compared to the changes in the 
central nervous system. EEG can capture these changes much earlier.   
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The current systems for quantitative measurement of vigilance using EEG also involve the 
change in reaction time and other experimental setups including simulated driving setup and 

simulated visual environments [13]. In [14] Oindrila et.al have implemented an amalgam of 

detection systems which include a single electrode (FP1) EEG recording device for driving 

application, combined with an infrared sensor to capture eye status (used for avoiding false 
positives), and a compass to detect motion in the steering wheel, to verify inactivity of the driver. 

These demand an elaborate infrastructure 

 
The proposed solution is conducted in regular household setup with negligible auditory and no 

visual stimulation. The studies were conducted around times when vigilance is at its peak and 

also when it dips low for better sampling. It does not take into account reaction time of the user to 
the stimuli rather concentrates on identifying drops in vigilance level in real-time. The proposed 

solution can be utilised to monitor drivers, shop floor workers, and also students during classes 

non-invasively without any other environmental factor affecting the efficacy of the device or its 

results.   
 

Even with the advent of EEG recording devices which can measure accurate readings at a low 

price, the use of cumbersome EEG recording devices with 32+ electrodes cannot be practical for 
most applications. The proposed solution makes use of a single frontal EEG channel (AF7) from 

a lightweight, non-invasive EEG headband with 5 electrodes (TP9, AF7, AF8, TP10, AUX ). The 

headband is made of fabric making it comfortable to be used over prolonged periods of time. It is 
also easy for the average individual to set up and start using the device. This headband can also 

be substituted with a single electrode to collect the frontal theta readings as in [14] and this data 

can be captured on the mobile device and alertness of the individual can be assessed. 

 

3. METHODOLOGY 
 

Four different individuals ages ranging from 14-50 participated in the protocol to analyze EEG 

vigilance data. The participants of the study wore a wireless EEG recording device (Muse-S 
headband). The EEG device connected to a mobile phone and the data was streamed from the 

device through BLE.  

 

The participant was sitting on a chair in a quiet room with minimal decorations and a naturally lit 
environment. The participants wore the headband, had a mobile phone with a cross-platform 

application which was built as part of the solution. The participant was given a ten minute time 

period to wear the band and get accustomed to the procedure - before every session. The entire 
protocol took place for 3 minutes including the baseline protocol. This application was used to 

collect data from individuals, while reporting their vigilance status. 

 

3.1. Data Acquisition 
 

As part of the solution a cross platform application was built using Ionic Framework. The app 
enables the user to quickly and seamlessly connect to the MUSE-S headband using BLE (the 

device provides an API for this purpose). The user interface is simple and intuitive. The device 

and the app was used to collect a frontal channel (AF7) EEG data from the device at a 256Hz 

sampling rate, and data processing was done to obtain standardized values (the 
processing/analysis being done is explained in the next section).  

 

The application collects data to obtain baseline values when the participant is calm and relaxed. 
A vigilance threshold is used to evaluate the vigilance state of the individual (as explained in the 

next section). 
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Data collection sessions for each individual were done at 3 different times throughout the day - in 
the morning when the mind and body is active, post lunch when the alerting signal of the 

circadian rhythm gradually dips around 1.30 PM, and finally when the build-up of adenosine is at 

its peak right before bedtime around 9.30 PM [15]. This was done to make sure that the monitor 

is accurate across the different times and circadian rhythmic state of the individual. 
 

We also recorded 2 sessions at each of these 3 time periods : the first session included 

instructions on when the individual had to close their eyes and when they had to open at regular 
intervals, this status was auto tagged using the mobile application. For the second session the 

subjects were allowed to naturally keep their eyes open or closed, and the experimenter tagged 

their eye status using the app.  
 

3.2. Data Processing (Analysis) 
 
The data from the collected EEG was processed by calculating the PSD (power spectral density) 

using DFT (Discrete Fourier Transform). Then we cumulated the spectrum in the theta band 

range (4-8Hz). This procedure is repeated every 5 seconds and the Theta band power (Theta BP) 
is obtained.  

 

We had the subjects have their eyes closed for the first 30 seconds, and used that duration to 

obtain a baseline for their individual Theta BP when they are non-vigilant. We then used that 
mean Theta BP (across the six 5 second epochs) in setting a threshold for estimating vigilance. 

The remaining data collection epochs were then classified as the subject being vigilant or non-

vigilant using this threshold (by using a standard scaling of the mean BP - here 1.1). This scaling 
factor was selected after looking at a few subject sessions to optimize prediction accuracy, and 

was then used across the data sessions. 

 
The data from the remaining 2 minutes and 30 seconds of the session was used to test the 

prediction of vigilance state using the threshold limit. The BP for every 5 seconds is collected, 

calculated and compared with the threshold BP of that individual and is used to determine if the 

individual is in a non-vigilant state. If Theta BP is over the threshold (the frontal theta power 
increased) they are vigilant, and vice versa. 

 

4. RESULTS 
 

The EEG data is received and processed by a mobile phone and the user’s vigilance state is 
indicated in real-time.  

 

Figure 1 presents a chart of the Theta Band Power across epochs (across 5s windows) for a 
participant, that is cumulated when they had their eyes closed and when they had their eyes open. 

As the chart shows, there is a good separation between these 2 data sets - which indicates that the 

Theta Band Power could be a good criterion for predicting the vigilance state of an individual. 
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Figure 1. Theta Band Power Variations 

 

When we look at using this criterion for predicting the eyes closed/open state (vigilant/non-

vigilant state), the prediction accuracy across multiple sessions and multiple individuals has been 
tabulated in Table 1.  

 

Table 1. Session Wise Accuracy. 

 

Session ID Instructed Natural Combined 

P1-Morning 84.85% 87.88% 86.36% 

P1-Afternoon 90.91% 93.94% 92.42% 

P1-Night 84.85% 90.91% 87.88% 

P2-Morning 84.85% 93.94% 89.39% 

P2-Afternoon 90.91% 87.88% 89.39% 

P2-Night 90.91% 93.94% 92.42% 

P3-Morning 93.94% 87.88% 90.91% 

P3-Afternoon 84.85% 96.97% 90.91% 

P3-Night 85.71% 96.97% 91.34% 

P4-Morning 87.88% 93.94% 90.91% 

P4-Afternoon 84.85% 84.85% 84.85% 

P4-Night 87.88% 81.82% 84.85% 

Average 87.70% 90.91% 89.30% 

STD 3.23% 4.83% 4.34% 

 

The sessions where the participants were explicitly instructed to close and open their eyes at 

specified intervals had relatively lesser accuracy compared to the sessions in which they tagged 

themselves while they closed or opened their eyes. Across the sessions the natural baselining 
protocol had a prediction accuracy of 91% and the instructed mode had a slightly lower 

prediction accuracy of 88%. But when we do a T-test of the 2 sets of data (instructed vs natural 

estimation accuracy) we see the p-value is 0.098. Though a value of 0.05 is usually used for 
rejecting the null hypothesis, 0.10 is still seen as indistinguishable (still both sets are considered 

to be from the same underlying population). 

 

In the data, we can see that in Table 2, the off-diagonal accuracy (closed eye condition being 
predicted as open) is a little high (over 20%). We estimate that it might be an artifact of 

instructing the participants to close/open their eyes. When they have been closed and we instruct 
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them to open their eyes, there may be a few seconds before they really get vigilant. This may be 
contributing to this higher error. We also see that in the natural condition (Table 3) where they 

automatically close/open eyes, this off diagonal accuracy (closed eye condition being predicted as 

open) drops to around 11% (half of the error rate from the instructed condition) - supporting the 

above hypothesis. 
 

Table 2. Confusion matrix of actual vs estimated eye status – Instructed Method 

 

Actual\Estimated Closed Open 

Closed 76.79% 4.39% 

Open 23.21% 95.61% 

 

Table 3. Confusion matrix of actual vs estimated eye status – Natural Method    

 

Actual\Estimated Closed Open 

Closed 88.38% 8.12% 

Open 11.62% 91.88% 

 

5. CONCLUSIONS AND DISCUSSIONS 
 

The system shows that the vigilance (alertness) state of an individual can be well predicted by 

using a single channel wireless EEG data. The simplicity of just using a frontal EEG (on the 
forehead) makes the system quite non-invasive and usable in many environments without 

encumbering or distracting the operators.  

 

Figure 2 presents a flow chart of using this system for predicting vigilance in any application. 
One example could be driving, where the dashboard could be linked to this system to display a 

danger indicator and/or play an alert sound when the user is in a non-vigilant state. 

 
Another example could be in the use of this system to alert floor managers in manufacturing 

applications to alert the non-vigilant state of heavy-machinery-operators. This could bring down 

the hazards and accidents. It can also be used for student attention monitoring in remote learning 
situations as discussed in the introduction, or in pilot vigilance monitoring. 

 

One point of discussion is the window length (time duration) used for the PSD and band power 

estimation. Typically people use anywhere between 2s-10s windows for this. The lower the 
window length, the larger the noise in the estimate but more responsiveness in the alertness 

monitor. The larger the window length, the lower the noise in the estimate but more sluggish in 

the alertness monitoring. We have chosen a balance between the ranges and selected 5 seconds 
for our estimation. This window can be further optimized by the application for which it is used - 

as it can dictate the responsiveness required and the acceptable noise rate. 

 
In the future we want to explore a couple of areas: we want to expand the data collection, with 

more participants and over longer time durations and environments; we also would like to use 

machine learning models for predicting the vigilance state (using the raw electrode signal and/or 

power spectral density of the signal) - we anticipate that these models could further improve the 
accuracy of the prediction. 
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Figure 2. System flowchart for predicting vigilance 
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