
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

DOI:10.5121/ijcsit.2016.8508 107

CLOHUI: AN EFFICIENT ALGORITHM FOR MINING

CLOSED
+

 HIGH UTILITY ITEMSETS FROM

TRANSACTION DATABASES

Shiming Guo and Hong Gao

School of Computer Science, Harbin Institute of Technology, Harbin, China

ABSTRACT

High-utility itemset mining (HUIM) is an important research topic in data mining field and extensive

algorithms have been proposed. However, existing methods for HUIM present too many high-utility

itemsets (HUIs), which reduces not only efficiency but also effectiveness of mining since users have to sift

through a large number of HUIs to find useful ones. Recently a new representation, closed
+
 high-utility

itemset (CHUI), has been proposed. With this concept, the number of HUIs is reduced massively. Existing

methods adopt two phases to discover CHUIs from a transaction database. In phase I, an itemset is first

checked whether it is closed. If the itemset is closed, an overestimation technique is adopted to set an upper

bound of the utility of this itemset in the database. The itemsets whose overestimated utilities are no less

than a given threshold are selected as candidate CHUIs. In phase II, the candidate CHUIs generated from

phase 1 are verified through computing their utilities in the database. However, there are two problems in

these methods. 1) The number of candidate CHUIs is usually very huge and extensive memory is required.

2) The method computing closed itemsets is time consuming. Thus in this paper we propose an efficient

algorithm CloHUI for mining CHUIs from a transaction database. CloHUI does not generate any

candidate CHUIs during the mining process, and verifies closed itemsets from a tree structure. We propose

a strategy to make the verifying process faster. Extensive experiments have been performed on sparse and

dense datasets to compare CloHUI with the state-of-the-art algorithm CHUD, the experiment results show

that for dense datasets our proposed algorithm CloHUI significantly outperforms CHUD: it is more than

an order of magnitude faster, and consumes less memory.

KEYWORDS

Closed
+

high-utility itemsets, pattern growth, utility mining

1. INTRODUCTION

Along with the evolution of information technology and network infrastructure, an unprecedented

amount of data are constantly being generated and collected, such as web click data, stock ticker

data and sensor network data. Discovering useful patterns hidden in a database plays an essential

role in several data mining tasks, such as frequent itemsets mining (FIM) and high-utility itemset

mining (HUIM). FIM is a fundamental research topic, and has various application domains [1].

Given a transaction database, each transaction contains a set of items. FIM refers to discovering

the complete set of itemsets from the database whose support (i.e. the number of transactions in

the database that contain an itemset) is no less than a user-specified minimum support threshold.

However there are two limitations in FIM. 1) The relative importance of items (i.e. weight) in the

database is not considered, such as unit profit of products in market basket analysis; 2) The

quantity of items in each transaction of the database is not considered. Therefore FIM cannot

satisfy the requirement of users who desire to discover itemsets with high profits, since profit

consists of two aspects, unit profit and purchased quantity [2]. In view of this, HUIM has been

proposed as an important research topic [3]. Intuitively utility is a measure of how useful an

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

108

itemset is. Utility of items in a database consists of two aspects: 1) the importance of different

items, which is called external utility like unit profit; 2) the importance of items in each

transaction of a database, which is called internal utility like purchased quantity.

Let us consider an online sale database in Table 1 and unit profit of items in Table 2. In Table 1,

each item in a transaction is associated with a quantity showing how many of this product was

purchased. For instance in the first transaction T1 the purchased quantity of item B is 1. Utility of

an item can be defined as the product of its external utility and its internal utility. Utility of an

itemset can be defined as the sum of utilities of all the items it contains. For example, in the

second transaction T2 the profit (utility) of item B is 2 × 2 = 4. The profit (utility) of itemset {BD}

is 2 × 2 + 2 × 2 = 8. HUIM is to discover all the itemsets from a database whose utilities in the

database are no less than a given minimum utility threshold. HUIM is a kind of constraint-based

mining, in which users are allowed to specify their focus through constraints to capture certain

itemsets from transaction databases [2]. This kind of constraint is called utility constraint. HUIM

has wide applications such as website click stream analysis, online e-commerce management and

mobile commerce environment planning [4][5].

Up to now, extensive algorithms have been proposed for HUIM [6][7][8]. However they present

too many HUIs, which reduces not only efficiency but also effectiveness of mining since users

have to sift through a large number of HUIs to find useful ones. To reduce the number of HUIs

and present fewer but more important HUIs to users, closed+ high-utility itemset (CHUI) has been

proposed [9], which incorporates the closure property of frequent itemsets into HUIM. With the

concept of CHUI, HUI can be divided into two categories, CHUI and non-closed
+
 high-utility

itemset. For each one in non-closed high-utility itemsets, there must be a corresponding closed

itemset in CHUIs. Thus, the number of CHUIs is much smaller than that of HUIs. Existing

methods adopt two phases to mine CHUIs from transaction databases. In phase I, each itemset is

first verified whether it is closed. If the itemset is closed, an overestimation technique is adopted

to set an upper bound of the utility of the itemset in the database. The itemsets whose

overestimated utilities are no less than a user-specified minimum utility threshold are selected as

candidate CHUIs. In phase II, the candidates generated from phase I are verified through

computing their utilities in the database to identify CHUIs. However, there are two problems in

existing methods: 1) the number of the candidates generated from phase I is usually huge, and

extensive memory is required; 2) it is time-consuming to adopt these methods to compute closed

itemsets. To deal with these problems, in this paper we propose an efficient algorithm for mining

CHUIs from transaction databases. The contributions in this paper are as follows:

1) We propose a new data structure HUITWU-Tree (high utility itemsets tree which arranges

items according to transaction weighted utility of single itemsets) to store the information

of itemsets in a transaction database, and a utility database is adopted to store the utility of

items in each transaction of the database.

2) We propose an effective algorithm CloHUI to discover the complete set of CHUIs from a

transaction database. CloHUI adopts pattern-growth methodology to divide the search

space into several subspaces. Each itemset in each subspace is first verified whether it is

closed. If the itemset is closed, its utility in the database is calculated from utility databases

directly, i.e., during the mining process there is no candidate generation.

3) Extensive experiments have been performed on real and synthetic datasets to compare the

performance of CloHUI with the state-of-the-art algorithm CHUD. The experimental

results show that for dense datasets CloHUI outperforms CHUD significantly in terms of

runtime and memory consumption: it is an order of magnitude faster and consumes less

memory.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

109

Table 1. Online sale database

Trans ID Transactions

T1 (A, 1) (B, 1) (C, 1) (D, 1) (E, 1)

T2 (B, 2) (D, 2) (E, 1) (F, 1)

T3 (A, 1) (B, 1) (C, 1) (D, 1)

T4 (A, 2) (E, 1)

Table 2. Unit profit of items

Item A B C D E F

Unit Profit 5 2 1 2 3 1

The rest of this paper is organized as follows. In Section 2, we introduce the background. In

Section 3 the tree structure HUITWU-Tree is described and how to compute closed itemsets from a

HUITWU-Tree is introduced. The proposed algorithm CloHUI is in Section 4. Experimental results

and conclusions are shown in Section 5 and 6.

2. BACKGROUND

2.1. PRELIMINARIES

Given a finite set of items I = {i1, i2, … in}, each item is associated with a unit profit p(ip) (1 ≤ p ≤

n) which is called external utility. An itemset X is a set of k distinct items {i1, i2, … ik}, where ij ∈

I (1 ≤ j ≤ k), and k is the length of X. An itemset with length k is called k-itemset. Without loss of

generality, we assume that items in an itemset are listed alphabetically. A transaction database

TDB is a set of transactions, where each transaction, denoted as a tuple 〈Td, Yd〉, contains a set of

items (i.e., Yd) and is associated with a transaction identification Td (1 ≤ d ≤ m), which is called

TID. Each item ip in the transaction Td is associated with a quantity q(ip, Td) which is called

internal utility. A transaction 〈Td, Yd〉 is said to contain itemset X, if X ⊆ Yd. The number of

transactions in a database containing X is called the support of X.

Definition 1 Utility of an item ip in a transaction Td is the product of the external utility of ip

and the internal utility of ip in Td, and denoted as u(ip, Td) = p(ip) × q(ip, Td).

Definition 2 Utility of an itemset X in a transaction Td is the sum of the utilities of all the items

contained by X in Td, and denoted as u(X, Td) = ∑ �(��, ��)
�∈
 .

Definition 3 Utility of an itemset X in TDB is the sum of the utilities of X in all the transactions

of TDB that contain X, and denoted as u(X) = ∑ �(�, ��)��∈��� .

For example, in the database of Table 1, the utility of item A in T4 is u(A, T4) = 5 × 2 = 10. The

utility of itemset {AE} in T4 is u({AE}, T4) = 5 × 2 + 3 × 1 = 13, and the utility of {AE} in the

database is u({AE}) = u({AE}, T1) + u({AE}, T4) = 21.

Definition 4 (High utility itemset) An itemset X is called a high utility itemset (HUI) if u(X) is

no less than a user-specified minimum utility threshold; otherwise, it is called a low utility itemset.

Definition 5 Utility of a transaction Td is the sum of the utilities of all the items it contains in Td,

and denoted as TU(Td) = ∑ �(��, ��)
�∈�� .

Definition 6 Utility of a transaction database TDB is the sum of the utilities of all the

transactions it contains, and denoted as ∑ TU(��)��∈��� .

For example, in the database of Table 1, suppose the minimum utility threshold min_util = 18,

itemset {AE} is a HUI. The utility of transaction T1 is TU(T1) = u(A, T1) + u(B, T1) + u(C, T1) +

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

110

u(D, T1) + u(E, T1) = 13, and the utility of the database is TU(T1) + TU(T2) + TU(T3) + TU(T4) =

48.

Definition 7 An itemset X is a closed itemset if there exists no itemset X′ such that 1) X′ is a

proper superset of X and 2) every transaction containing X also contains X′. For example, in the

database of Table 1, {AE} is a closed itemset, since there exists no superset of {AE} with the

same support.

Definition 8 (Closed high-utility itemset) An itemset X is called a closed high utility itemset

(CHUI) if the two following conditions are satisfied: 1) X is closed and 2) X is a HUI.

Problem statement. Given a transaction database TDB and a minimum utility threshold min_util,

CHUI mining refers to discovering the complete set of closed itemsets whose utilities in TDB are

no less than min_util. Without loss of generality, for min_util we use absolute utility value

describing our proposed algorithm and the percent of database utility for experimental evaluation.

In HUIM, utility of an itemset does not have the downward-closure property, i.e., utility of an

itemset does not decrease monotonically when adding items to the itemset. In fact, utility of any

superset of an itemset may be larger than, less than or equal to that of the itemset. A naive method

for HUIM is to enumerate all itemsets from a database by the principle of exhaustion. However,

this method suffers from the problem of a large search space. Hence, how to effectively prune the

search space is a crucial challenge in HUIM. To deal with this problem, "Transaction-Weighted

Utility" has been proposed [6]. With this concept, we can overestimate the utility of an itemset in

a database to prune the search space.

Definition 9 Transaction-Weighted Utility (TWU) of an itemset X in a transaction database

TDB is the sum of utilities of the transactions in TDB that contain X, and denoted as TWU(X) =
∑ TU(��)
⊆��⋀��∈��� .

Clearly, TWU(X) ≥ u(X). In addition, TWU satisfies the downward closure property. That is, for

all Y ⊆ X, TWU(Y) ≥ TWU(X). Thus TWU of itemsets can be used to prune the search space. For

example, in the database of Table 1, the TWU of items is shown in Table 3. Suppose min_util =

18, item F and its superset cannot be HUIs. Thus F can be pruned in the search space.

2.2. RELATED WORK

FIM is a foundational research topic and quite a few algorithms have been proposed for FIM [1],

such as Apriori [10] and FP-Growth [11]. However these algorithms are all based on the

support/frequency framework, which makes the itemsets with frequencies lower than a given

threshold but more important be filtered. Thus HUIM has been proposed as an important research

topic. Existing methods for HUIM can be classified into three categories. The first category is

candidate generation-and-test approaches, such as Two-Phase [6] and IIDS [12]. They discover

the complete set of HUIs with two phases. In phase I, an overestimation technique is adopted to

calculate an upper bound of the utility of each itemset in the database. The itemsets whose

overestimated utilities are no less than a given threshold are selected as candidate HUIs. The

search space is traversed by breadth first search, and candidate HUIs of length (k + 1) are

iteratively generated from a set of candidate HUIs of length k (k ≥ 1). In phase II, the candidates

generated from phase I are verified through scanning the database one more time. The second

category is pattern-growth methods, such as IHUP [4] and UPGrowth [7]. They are also based on

two-phase framework, and generally adopt tree structures to store the information of itemsets and

their overestimated utilities in the database. In phase I, instead of generating level-wise candidate

HUIs, they recursively partition the database into sub-databases according to the candidate 1-

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

111

Table 3 TWU Of Items

Item A B C D E F

TWU 36 35 23 35 38 12

Table 4. Revised Database

Trans ID Transactions

T1 (E, 1) (A, 1) (B, 1) (D, 1) (C, 1)

T2 (E, 1) (B, 2) (D, 2)

T3 (A, 1) (B, 1) (D, 1) (C, 1)

T4 (E, 1) (A, 2)

itemsets found and search for local candidate items to assemble longer global candidate HUIs. In

phase II, the candidates are verified. The third category is vertically formatting methods, such as

HUI-Miner [8]. In these methods each itemset isassociated with a vertical data format, i.e., TID

list showing the transactions containing the itemset. The utility of an itemset in the database is

calculated through its vertical data format. The search space is represented as a set-enumeration

tree, and the vertical data format of (k + 1)-itemsets is computed through the join operation on the

vertical data format of two certain subsets (k ≥ 1). However, the methods in the above categories

generally generate too many HUIs. Thus CHUI mining has been proposed to deal with this

problem.

To our best knowledge, CHUD is the state-of-the-art algorithm for mining CHUIs from

transaction databases [9]. In CHUD each itemset is associated with a TID list. The TID list of

single itemsets is computed through scanning the original database twice. The TID list of (k + 1)-

itemsets is computed through intersecting the TID list of two certain subsets (k ≥ 1). CHUD

discovers the complete set of CHUIs with two phases. In phase I, each itemset is first checked

whether it is closed through intersecting its TID list with the TID list of some single itemsets. If

an itemset is closed, an overestimation technique is adopted to set an upper bound of the utility of

the itemset in the database. The itemsets whose overestimated utilities are no less than a user-

specified minimum utility threshold are selected as candidate CHUIs. In phase II, the candidates

generated from phase I are verified through computing their utilities in the database. However the

number of candidates is usually very huge and extensive memory is required. Moreover it is time-

consuming to perform the join operation on the TID lists to identify a closed itemset.

3. PROPOSED DATA STRUCTURE

In this section we proposed a novel data structure HUITWU-Tree to store the information of

itemsets in a database, and a utility database is adopted to store the utility of items in each

transaction of the database. Utility database is a two-dimension array. The length of utility

database is the size of the longest transaction in the database, and the width of utility database is

the number of transactions in the database.

3.1. HUITWU-TREE AND UTILITY DATABASE

As stated in [4], item-arranging order in a tree structure can facilitate to improve the performance

of algorithms. Support descending order, lexicographic order and TWU descending order are

common used in algorithms. The experimental results in [4] show the algorithm based on the tree

structure where items are arranged in TWU descending order has the best execution time. Thus in

our proposed tree structure TWU descending order is adopted.

An initial HUITWU-Tree and a utility database can be constructed by two scans of a database. We

call the HUITWU-Tree and the utility database generated from the database global HUITWU-Tree

and global utility database. Firstly, the TWU of all the items in the database is accumulated by a

database scan. If TWU of an item is less than a given minimum utility threshold, the item and its

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

112

supersets cannot be HUIs, which means they also cannot be CHUIs. The items whose TWUs are

no less than the threshold are collected into a set named SET. The remaining items are sorted

according to TWU descending order, and the item order is denoted as R. Secondly, the database is

scanned for the second time. In each transaction of the database, the items appearing in SET are

removed, and then the remaining items are sorted according to R. The new transaction is called

revised transaction. For example, in the database of Table 1, suppose the minimum utility

threshold min_util = 18, the TWU of items after the first database scan is shown in Table 3. From

Table 3 we can learn that item F can be removed from the database, and the item order is (E, A, B,

D, C). After the second scan of the database all the transactions are revised. The database after

revising is called revised database, and the revised database of Table 1 is shown in Table 4.

As stated in [5], the tree-based framework for HUIM applies the divide-and-conquer technique in

the mining process. Let (i1, i2, …, in) be the items in the header table of tree structures. The search

space is divided into the following subspaces:

• {in}’s conditional tree (abbreviated as {in}-Tree);

• {in−1}-Tree without containing item in;

• · · ·;

• {ij}-Tree without containing any item in {ij+1, ..., in}; and so on until j = 1.

It can be observed that in the subspace {ij}-Tree (1 ≤ j < n), all paths are not related to any item in

{ij+1, ..., in}, i.e., the items that are descendant nodes of item ij in a global tree will not appear in

{ij}-Tree. From this viewpoint, prefix utility of an item in a transaction is proposed to facilitate

estimating the true utility of an itemset [13].

Definition 10 Assume the items in Td are listed in transaction-weighted utility descending order.

The prefix set of ip in Td consists of all the items in Td that are not listed after ip, which is denoted

as PrefixSet(ip, Td).

Definition 11 Prefix utility of an item ip in a transacrion Td is the sum of the utilities of the

items of PrefixSet(ip, Td) in Td, and defined as PrefixUtil(ip, Td) = ∑ �(�, ��)
∈���������(
�,��)	 .

Definition 12 Prefix utility of an item ip in a database TDB is the sum of the prefix utilities of

ip in all the transactions of TDB that contain ip, and defined as ∑ Pre�ixUtil(��, ��)
�∈�� ∧��∈��� .

For example, in Table 4, PrefixSet(B, T1) is {ABE}. The prefix utility of item B in T1 is

PrefixUtil(B, T1) = u(E, T1) + u(A, T1) + u(B, T1) = 3 + 5 + 2 = 10. The prefix utility of item B in

the database is PrefixUtil(B, T1) + PrefixUtil(B, T2) + PrefixUtil(B, T3) = 24.

With the concept of prefix utility of an item in a database, HUITWU-Tree is defined as follows:

Definition 13 (HUITWU-Tree) A HUITWU-Tree is a tree structure satisfying the following

conditions:

1) It consists of one root labeled as null, a set of item prefix subtrees as the children of root

and a header table.

2) Each node in an item prefix subtree consists of four fields: item_name, support, node_link

and tp_link. Item_name records which item this node represents. Support registers the

number of the transactions falling onto the path from the root to the node. Node_link links

to the next node in a HUITWU-Tree carrying the same item_name. Tp_link is an array whose

elements are the links to the transactions in a utility database.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

113

3) Each entry in the header table consists of three fields, (1) item_name, (2) prefix utility of

an item in a database and (3) head of node_link, which points to the first node in a

HUITWU-Tree carrying the same item_name.

The construction of an initial global HUITWU-Tree and a global utility database is presented in

Algorithm 1.

Figure 1. Global HUITWU-Tree and global utility database

An example is given to explain how to construct an initial global HUITWU-Tree and a global

utility database. In the database of Table 4, the revised transactions are inserted into the global

HUITWU-Tree as follows. When T1 = {(E, 1) (A, 1) (B, 1) (D, 1) (C, 1)} is retrieved, the first node

NE (The item_name of this node is E) is created (line 9 - 10). The utility of item E in T1 is 3 × 1 =

3, which is stored in the first record of utility database (line 12 - 13). The prefix utility of E in T1

is calculated, and accumulated into the prefix utility of E in the header table (line 14 - 16). The

same operation is conducted on item A, B, D and C. Since C is the last item of T1, the transaction

identification T1 is inserted into NC.tp_link (line 17 - 18).

After inserting all the transactions in the revised database of Table 4, the global HUITWU-Tree and

the global utility database are constructed, which are shown in Figure 1. Note in Figure 1 we

present items in each record of the utility database just for describing the relations between items

and their utilities in the transactions. In fact in our implementation we just store the utility of

items in the transactions instead of items and their utilities in the transactions to reduce memory

consumption. Thus the items in the utility database of Figure 1 are presented with 50%

transparency.

3.2. COMPUTING CLOSURES

As stated in [9], different join orders between utility constraint and closed constraint produce the

same result sets. In CloHUI closed itemsets are computed first, and then the complete set of

CHUIs is discovered from the result set. The divide-and-conquer framework for mining closed

itemsets in [14] is adopted in CloHUI. Similar to FP-Growth [11], suppose the items in the

header table are (i1, i2, …, in), the problem of mining the complete set of closed itemsets can be

divided into n sub-problems: The jth problem (1 ≤ j ≤ n) is to find the complete set of closed

itemsets containing in+1-j but no ik (for n + 1 - j < k ≤ n). We refer readers to [14] for more details

about the related techniques. As stated in [14], each closed itemset generated from FP-Tree needs

to be checked whether it is subsumed by some already found closed itemset with identical support.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

114

Algorithrim 1 (Construction of global HUITWU-Tree and global utility database)

Input: The revised database TDB

Output: A global HUITWU-Tree Tree and a global utility database UDB

01: Create the root R of Tree, and label it as null

02: Initialize the header table Header of Tree with the items in TDB

03: Set the prefix utilities of all the items in Header as 0

04: For each transaction Trans in TDB

05: Allocate a record Record from UDB for Trans

06: Call Insert_trans(Trans, R, Record, Header)

Insert_trans(Trans, R, Record, Header)

07: Let Trans be represented as [p|P], where p is the first element and P is the remaining list

08: If R does not have a child N with N.item_name = p.item_name, then

09: Create a new node N as a child of R

10: N.item_name = p.item_name

11: Let N.node_link be linked to the nodes with the same item_name

12: Calculate p.utility in the transaction Trans

13: Store p.utility in Record

14: Calculate p.prefix_utility

15: Find the entry E in Header with p.item_name

16: Increase E.prefix_utility by p.prefix_utility

17: If P is empty, then

18: Insert the TID of Trans into N.tp_link

19: Else

20: Call Insert_trans(P, N, Record, Header)

When the number of close itemsets is very huge, this operation is costly. In [15], a new

theoretical framework has been proposed to avoid comparing a candidate closed itemset with

already found closed itemsets. In this framework, each itemset is associated with a TID list and

the search space is a set-enumeration tree. If the TID list of an itemset is a subset of that of some

single itemsets, the itemset is not closed. For example, given a total order relation R defined

among item literals, for an item ip if there exists an item iq which appears before ip according to R

such that the TID list of ip is a subset of that of iq, {ip} is not a closed itemset. According to the

theory in [15], we propose a novel optimization strategy to verify closed itemsets in a tree

structure.

Definition 14 For a non-root node N of HUITWU-Tree whose item_name is ip, the subtree rooted at

N is denoted as subT. If there exists an item iq such that the support of iq in subT is the same as the

support of the node N in the HUITWU-Tree, N is called a non-closed node and iq is called a closed

item of N; otherwise, N is called a closed node. For example, in the global HUITWU-Tree of Figure

1 there are three nodes whose item_name is B. For each node NB the support of item D in the

subtree rooted at NB is the same as the support of the node NB in the HUITWU-Tree, which is 1.

Thus the three nodes are non-closed nodes and item D is a closed item of the three nodes.

Lemma 1 For each item ip in the header table, if the tree nodes obtained from traversing the node

link started from the entry in the header table are all non-closed nodes and there exists an item iq

which is a closed item of the above non-closed nodes, the itemsets where ip is the last item are not

closed itemsets.

Proof. Since iq is a closed item of each non-closed node, the projected paths of {ipiq} are the same

as the projected paths of {ip}. For example, in the global HUITWU-Tree of Figure 1, the projected

paths of {BD} are A, E and E → A, which are the same as the projected paths of {B}. Each

itemset X generated from ip-conditional pattern tree must have the same support with X ∪ iq. Thus

X is not a closed itemset.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

115

(a) (b)

(c) (d)

Figure 2. Transfer process of arrays in the global HUITWU-Tree

(a) C → D (b) D → B (c) B → A (d) A → E

In a global HUITWU-Tree we maintain an array for each leaf node to record the support of

descendent nodes. The length of the array is the number of items in the header table. For example,

in the global HUITWU-Tree of Figure 1 there exists three arrays and the length of each array is 5.

In CloHUI the header table are traversed from bottom to up to compute closed itemsets from a

HUITWU-Tree. For each item ip in the header table there are three phases to compute the closed

itemsets where ip is the last item. In phase I, ip is checked whether it can be pruned according to

lemma 1, i.e., whether the conditions in lemma 1 are satisfied by the nodes whose item_names are

ip. If ip cannot be pruned, ip-conditional database is generated and i-conditional pattern tree is

constructed in phase II. Then closed itemsets are mined from i-conditional pattern tree. In phase

III, when the closed itemsets containing ip have been finished, the arrays associated with the

nodes whose item_names are ip are transferred to their parents in the HUITWU-Tree for computing

the closed itemsets where the remaining items in the header table are the last items. During the

construction of conditional pattern tree in phase II, if there are items appearing in each transaction

of conditional database, the item-merging strategy is adopted [14].

Lemma 2 (Item-merging strategy) If a local item ip appears in each transaction of X’s conditional

database, the conditional itemset can be adjusted to X ∪ {ip} and there is no closed itemset

missing. (We refer readers to [14] for the proof).

Let’s use the global HUITWU-Tree in Figure 1 to examine how to compute closed itemsets. For the

global HUITWU-Tree, the transfer process of the arrays associated with leaf nodes is shown in

Figure 2. When the arrays associated with the tree nodes are transferred, the support in these tree

nodes is accumulated into the arrays. For example in Figure 2(a) the support in the nodes

Figure 3. {BD}’s conditional pattern tree

Figure 4. Transfer process from A to E

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

116

whose item_names are C is recorded in the arrays. The transfer process of the tp_links in tree

nodes is described in Section 4.

For item C in the header table, since the tree nodes whose item_names are C do not have

descendent nodes, the arrays associated with these nodes are empty. Lemma 1 cannot be adopted

in phase I. In phase II, {C}’s conditional database is generated, which is {{ABCDE: 1}, {ABCD:

1}}. The number after “:” represents the quantity of each transaction. Since item A, B and D

appear in each transaction of {C}’s conditional database, item-merging strategy is used and the

conditional itemset is adjusted to {ABCD} according to lemma 2. The first closed itemset

{ABCD} is obtained and the support is 2. Then {ABCD}’s conditional pattern tree is built (How

to construct a conditional pattern tree is described in Section 4), and the closed itemsets

containing {ABCD} are mined based on {ABCD}’s conditional pattern tree. The second closed

itemset {ABCDE} is obtained and the support is 1. In phase III, the arrays associated with the

nodes whose item_names are C are transferred, which is shown in Figure 2(a).

For item D in the header table, there are three tree nodes whose item_names are D in the HUITWU-

Tree. Among the three nodes, one does not have descendent nodes and the other two nodes have

item C as descendent nodes. Thus Lemma 1 cannot be adopted in phase I. In phase II, {D}’s

conditional database is generated, which is {{ABDE: 1}, {BDE: 1}, {ABD: 1}}. Since item B

appears in each transaction of {D}’s conditional database, item-merging strategy is adopted and

the conditional itemset is adjusted to {BD} according to lemma 2. The third closed itemset {BD}

is obtained and the support is 3. Then {BD}’s conditional pattern tree is built, which is shown in

Figure 3. For the paths E → A → B → D and A → B → D in the global HUITWU-Tree, there are

two arrays associated with the nodes whose item_names are D. Thus in {BD}’s conditional

pattern tree the two arrays need to be attached to the last nodes of the new paths produced by E →

A → B → D and A → B → D, i.e., the nodes whose item_names are A in Figure 3. In {BD}’s

conditional pattern tree, the fourth closed itemset {BDE} is obtained and the support is 2. In

phase III, the arrays associated with the nodes whose item_names are D are transferred in the

global HUITWU-Tree, which is shown in Figure 2(b).

For item B in the header table, there are three tree nodes whose item_names are B in the HUITWU-

Tree. The three tree nodes are all non-closed and item D is a closed item of the three nodes. Thus

Lemma 1 can be adopted in phase I to avoid constructing {B}-Tree and the phase II is skipped. In

phase III the arrays associated with the nodes whose item_names are B are transferred in the

global HUITWU-Tree, which is shown in Figure 2(c).

For item A in the header table, there are two tree nodes whose item_names are A in the HUITWU-

Tree. One is non-closed and the other is closed. Thus Lemma 1 cannot be adopted in phase I, and

{A}’s conditional database is generated in phase II, which is {{AE: 2}, {A: 1}}. The closed

itemsets {A} and {AE} are obtained, and the support is 3 and 2 respectively.

For a condition pattern tree, there are the same steps in CloHUI as a global HUITWU-Tree to

compute closed itemsets. For example, in {BD}’s conditional pattern tree of Figure 3, item A in

the header table is considered first. In phase I, the conditions in lemma 1 are satisfied and A can

be pruned. The phase II is skipped and in phase III the arrays associated with the nodes whose

item_names are A are transferred in the condition pattern tree, which is shown in Figure 4. For

item E in the header table, the conditions in lemma 1 are not satisfied and a closed itemset {BDE}

is obtained and its support is 2.

In summary, in the global HUITWU-Tree of Figure 1, the closed itemsets in the order of output are

{{ABCD}: 2, {ABCDE}: 1, {BD}: 3, {BDE}: 2, {A}: 3, {AE}: 2, {E}: 3}. The number after “:”

represents the support of itemsets.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

117

4. PROPOSED ALGORITHM

In this section we propose an efficient algorithm named CloHUI for mining CHUIs from

transaction databases. Similar to UP-Growth [7], CloHUI adopts pattern-growth methodology and

the bottom-up order is used to traverse the header table of HUITWU-Tree. As stated in [13], prefix

utility of an item in a database has the downward closure property, and lemma 3 is proposed in

[13].

Lemma 3 Assume that items in all the transactions of a database TDB are listed in TWU

descending order. Let X be an nonempty itemset where ip is the last item of X, PrefixUtil(ip, TDB)

≥ u(X) (We refer readers to [13] for the proof).

This lemma means that for a global HUITWU-Tree, if prefix utility of an item ip in a database is

less than min_util, the itemsets where ip is the last item according to item order R cannot be HUIs

(They also cannot be CHUIs), i.e., there is no need to construct {ip}-Tree. Thus the prefix utility

of items in the header table can be used to prune the search space.

If the prefix utility of item ip in the header table is no less than min_util, there are four steps in

CloHUI to compute the CHUIs where ip is the last item according to item order R. 1) The

conditions in lemma 1 are checked. If the conditions are satisfied, Step 2 and 3 are skipped; 2)

{ip}’s conditional database is generated by tracing the paths in the global tree, and a conditional

pattern tree is constructed by the information in {ip}’s conditional database; 3) CHUIs are

iteratively mined from the conditional pattern tree; 4) the information related to ip in the global

HUITWU-Tree and the global utility database is updated. If the prefix utility of item ip in the header

table is less than min_util, only Step 4 is performed.

Generating a conditional database. For an item ip in the header table of a global HUITWU-Tree

(1 ≤ p ≤ n), if the prefix utility of ip in the header table is no less than min_util, {ip}’s conditional

database is generated as follows. First, the node links in the global tree corresponding to ip are

traced. Found nodes are traced to the root of global tree, and all the paths related to ip can be

retrieved and collected into {ip}’s conditional database. Moreover the utility of items in the paths

can also be collected into {ip}’s conditional database from the global utility database with the

tp_link of found nodes.

Table 5. {D}’s conditional database

TID Transactions Merging item Condition

T1 (E, 1) (A, 1) (B, 1) (D, 1)

T2 (E, 1) (B, 2) (D, 2)

T3 (A, 1) (B, 1) (D, 1)

Figure 5 {BD}’s conditional pattern tree and conditional utility database

Example 1. In the global HUITWU-Tree and the global utility database of Figure 1, item C in the

header table is considered first. Suppose min_util = 18, since the prefix utility of C in the header

table is greater than min_util, {C}’s conditional database is generated. The link queue started

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

118

from the head of node_link in the entry of C is traced. Two paths E → A → B → D → C and A

→ B → D → C are retrieved. {C}’s conditional database is {[(A, 1) (B, 1) (C, 1) (D, 1) (E, 1)],

[(A, 1) (B, 1) (C, 1) (D, 1)]}. Since item A, B and D appear in each transaction of {C}’s

conditional database, item merging strategy is adopted and the conditional itemset is adjusted to

{ABCD}. The first closed itemset {ABCD} is obtained and the utility of {ABCD} in the database

is calculated, which is 20. Then we can learn that {ABCD} is a CHUI.

Constructing a conditional HUITWU-Tree. A conditional HUITWU-Tree can be constructed by

two scans of a conditional database. For {ip}’s conditional database, the TWU of items in the

conditional database is calculated during the first scan. The items whose TWUs are less than

min_util and the ones appearing in each transaction of {ip}’s conditional database are collected

into a set which is denoted as S. The remaining items are sorted according to TWU descending

order, and the item order is denoted as R′. During the second scan of the conditional database, the

items in S are removed from the transactions. The remaining items are sorted according to R′. The

revised transactions in the {ip}’s conditional database are inserted into a conditional HUITWU-Tree

which has the similar structure with a global HUITWU-Tree except that 1) the root of conditional

HUITWU-Tree is labelled as the conditional itemset, and 2) for an item iq in the header table, the

utilities of the condition itemset in all the transactions where the condition itemset and iq co-exist

need to be accumulated into the prefix utility of iq in the header table.

Example 2. In the global HUITWU-Tree of Figure 1, {D}’s conditional database is shown in Table

5. Since item B appears in each transaction of {D}’s conditional database, item-merging strategy

is adopted and the conditional itemset is adjusted to {BD}. The TWU of items in {BD}’s

conditional database is calculated during the first scan and the results are {(E: 24), (A: 23)}. The

number beside each item is its TWU. The root of {BD}’s conditional HUITWU-Tree is created,

and is labeled as {BD}. The header table is initialized with the items whose TWUs are no less

than min_util according to TWU descending order. During the second scan, the first revised

transaction {E, A} in Table 5 forms the first branch adhered to the root of {BD}’s conditional

HUITWU-Tree. The tp_link of the node NA which corresponds to the last item of {E, A} is set to T1.

The utilities of item E and A in T1 are stored in the first record of {BD}’s conditional utility

database. The sum of the prefix utility of E in T1 and the utility of the condition itemset {BD} in

T1 is 3 + 4 = 7, which is accumulated into the prefix utility of E in the header table. The same

calculation is conducted for item A. The second revised transaction and the third one are dealt

with in the same way. The {BD}’s conditional HUITWU-Tree and the {BD}’s conditional utility

database are shown in Figure 5.

Mining CHUIs from a conditional HUITWU-Tree. Mining CHUIs from a conditional HUITWU-

Tree has the same steps as a global HUITWU-Tree. The header table is traversed in bottom-up

order. For each item iq in the header table, if the prefix utility of iq in the header table is no less

than min_util, the conditions in lemma 1 are checked in Step 1. If the conditions are satisfied,

(a) (b)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

119

(c) (d)

Figure 6. Transfer process of tp_links in the global HUITWU-Tree

(a) C → D (b) D → B (c) B → A (d) A → E

according to lemma 1 there is no need to construct the conditional pattern tree of the itemset X

produced by concatenating iq with the conditional itemset; otherwise, X’s conditional database is

generated in Step 2. If there exists no item appearing in each transaction of X’s conditional

database, the utility of X is calculated; otherwise item-merging strategy is adopted and the utility

of new conditional itemset is calculated. Then a conditional HUITWU-Tree is constructed and

CHUIs from the conditional HUITWU-Tree are computed in Step 3. In Step 4 the information

related to iq is updated in the conditional HUITWU-Tree.

Example 3. In the conditional HUITWU-Tree of Figure 5, item A in the header table is considered

first. Suppose min_util = 18, the prefix utility of A in the header table is no less than min_util. For

{BD}’s conditional HUITWU-Tree, since item C appears in each related array of node NA and has

the same support as NA, lemma 1 is adopted in Step 1. Step 2 and 3 are skipped. In Step 4 the

tp_link of nodes whose item_names are A in the conditional HUITWU-Tree is transferred to their

parents. For item E in the header table, the conditions in lemma 1 are not satisfied. Thus a closed

itemset {BDE} is obtained and the utility of {BDE} is calculated, which is 18. We can learn that

{BDE} is a CHUI.

Updating the HUITWU-Tree and the utility database. When the itemsets where ip is the last

item have been finished, the HUITWU-Tree and the utility database need to be updated to facilitate

mining the CHUIs where the following items are the last items during the traversal of the header

table. The updating process is as follows. The link queue started from the head of node_link in the

entry of ip is traced. The nodes whose item_names are ip in the HUITWU-Tree are found. The

tp_link of found nodes is transferred to their parents in the HUITWU-Tree. The information of ip is

deleted from the utility database.

Example 4. In the global HUITWU-Tree of Figure 1, the updating process is shown in Figure 6.

Algorithrim 2 (CloHUI)

Input: A HUITWU-Tree Tree, a utility database UDB, min_util, a condition itemset X and Results

Output: The complete set of CHUIs

01: For each item ip in header table of Tree

02: If PrefixUtil(ip) ≥ min_util then

03: If the nodes Nip in Tree are closed and there is an item appearing in each array

 associated with above nodes, then

04: go to line 14

05: Generate Y = X ∪{ip}’s conditional database

06: If there are items i1, i2, …, im appearing in each transaction of Y’s conditional database,

 then

07: Y ← Y ∪ {i1} ∪ {i2} ∪ … ∪ {im}

08: Calculate the utility of itemset Y

09: If u(Y) ≥ min_util then

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

120

10: Results ← Results ∪ Y

11: Construct Y’s conditional HUITWU-Tree Tree′ and Y’s utility database UDB′

12: If Tree′ is not empty then

13: call CloHUI(Tree′, UDB′, min_util, Y, Results)

14: Update the information of Tree and UDB related to ip

15: Transfer the arrays associated with the nodes Nip to their parents

16: Return Results

In summary, for the dataset in Table 1, suppose min_util = 18, the CHUIs in the order of output

are {{ABCD}: 20, {BDE}: 18, {A}: 20, {AE}: 21}. The number after “:” is the utility of itemsets

in the database.

Based on above analysis, the pseudo code of CloHUI is in Algorithm 2. If the input parameter

Tree is a global HUITWU-Tree, the condition itemset X is empty. At first Results used to store

CHUIs from a database is initially set to null. The complete set of CHUIs is generated by

recursively calling the procedure CloHUI(global HUITWU-Tree, global utility database, min_util, ϕ,

Results). The header table is traversed in bottom-up order (line 1). If the prefix utility of item ip in

the header table is no less than min_util (line 2), the conditions in lemma 1 are checked (line 3). If

the conditions in lemma 1 are not satisfied, the conditional database of itemset Y = X ∪{ip} is

generated (line 5). The items appearing in each transaction of conditional database are merged

into the conditional itemset (line 6 - 7) and the utility of conditional itemset is calculated (line 8).

If it is a HUI, we can learn it is a CHUI (line 9 - 10). Then a conditional HUITWU-Tree and a

utility database of the condition are constructed (line 11). If the conditional HUITWU-Tree is not

empty, CloHUI(conditional HUITWU-Tree, conditional utility database, min_util, Y, Results) is

called (line 12 - 13). After the itemsets where ip is the last item have been computed, the

information related to ip is updated in X’s HUITWU-Tree and X’s utility database (line 14 - 15).

5. EXPERIMENTAL EVALUATION

In this section, the performance of CloHUI is evaluated and compared with the state-of-the-art

algorithm CHUD. We take runtime and peak memory consumption as the evaluation criteria,

which are adopted in [8]. Running time contains input time, CPU time and output time. When

measuring running time, we varied min_utils for each dataset. Since CloHUI does not generate

any candidate, we also report the number of candidates in CHUD. Experiments are performed on

a computer with 2.93 GHz Intel Core 2 Processor and 4 GB memory. The operating system is

Ubuntu 12.04. All the algorithms are implemented in C++. The “time” command is adopted to

measure the runtime of algorithms and the “massif” tool in the software “valgrind”
1
 is used to

record the memory consumption of algorithms

Table 6. Datasets′ characteristics

Database No. of Trans No. of Items AvgLen MaxLen Type

Mushroom 8,124 119 23 23 Dense

Chess 3,196 75 37 37 Dense

Accidents 340,183 468 33.8 51 Dense

Retail 88,162 16,470 10.3 76 Sparse

T40I10D100K 100,000 942 39.6 77 Dense

T10I4D100K 100,000 870 10.1 29 Sparse

1
 Valgrind: A GPL’d System for Debugging and Profilling Linux Program. http://valgrind.org.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

121

Six datasets are used in our experiments, which were obtained from FIMI Repository
2
. Datasets

mushroom, chess, accidents and retail are real. Datasets T10I4D100K and T40I4D100K are

synthetic, and were generated by IBM Quest Synthetic Data Generation Code. “T” means average

transaction length, “I” represents average frequent itemset length and “D” refers to the number of

transactions in a dataset. In above datasets, unit profit of items and purchased quantity of items in

each transaction are not provided. Like the performance evaluation of the previous algorithms

[6][7][8], unit profit of items is generated between 0.01 and 10 by using a lognormal distribution

and quantity of items in each transaction is generated randomly between 1 and 10. Table 6 shows

the characteristics of datasets used in the experiments, including the number of transactions, the

number of distinct items, the average number of items in a transaction and the maximal number of

items in the longest transaction.

5.1 EXPERIMENTS ON REAL-LIFE DATASET WITH SYNTHETIC UTILITY VALUES

The performance evaluation of CloHUI and CHUD on accidents dataset are depicted in Figure 7

and Figure 8. From Figure 7 we can learn that CloHUI is an order of magnitude faster than

CHUD. For example, when min_util = 25%, the runtimes of CloHUI and CHUD are 2 seconds

Figure 7 Runtime (accidents)

Figure 8 Memory consumption (accidents)

Figure 9 Runtime (Chess) Figure 10 Memory Consumption (Chess)

2
 http:// fimi.ua.ac.be/

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

122

and 38.4 seconds. As the min_util decreases, the runtime of CloHUI is stable. From Figure 8 we

can learn that the memory consumption of CloHUI is much less than that of CHUD. When

min_util = 25%, the memory consumption of CloHUI is 10.3 times less than that of CHUD.

Figure 9 and Figure 10 show the evaluation results for dense dataset chess. From Figure 9 we can

learn that CloHUI is two orders of magnitude faster than CHUD. For example, when min_util =

35%, the runtimes of CloHUI and CHUD are 0.03 second and 57.3 seconds. From Figure 10 we

can observe that the memory consumption of CloHUI is stable, and the memory consumption of

CHUD is very huge. The memory consumption of CloHUI is two orders of magnitude less than

that of CHUD. For example, when min_util = 35%, the memory consumption of CloHUI and

CHUD are 3.2 MB and 2,015 MB respectively.

Figure 11 and Figure 12 demonstrate the evaluation results of CloHUI and CHUD on mushroom

dataset. From Figure 11 we can learn that CloHUI is one order of magnitude faster than CHUD.

For example, when min_util = 1%, the runtimes of CloHUI and CHUD are 0.2 seconds and 3.7

seconds. From Figure 12 we can learn that the memory consumption of CloHUI is one order of

magnitude less than that of CHUD. For example, when min_util = 1%, the memory consumption

of CloHUI and CHUD are 6.5MB and 85 MB.

Figure 11 Runtime (mushroom)

Figure 12 Memory consumption (mushroom)

Figure 13 Runtime (Retail)

Figure 14 Memory consumption (Retail)

Figure 13 and Figure 14 present the evaluation results of CloHUI and CHUD on sparse dataset

retail. From Figure 13 we can learn that the runtime of CloHUI outperforms that of CHUD on the

min_utils. From Figure 14 we can know that the memory consumption of CloHUI is one order of

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

123

magnitude larger than that of CHUD. For example, when min_util = 0.07%, the memory

consumption of CloHUI and CHUD are 1,447MB and 28 MB.

5.2 EXPERIMENTS ON SYNTHETIC DATASET WITH SYNTHETIC UTILITY VALUES

Figure 15 and Figure 16 show the evaluation results of CloHUI and CHUD for sparse dataset

T10I4D100K. From Figure 15 we can see that at high utility threshold CloHUI and CHUD has

similar performance, and at low utility threshold the runtime of CHUD is several times than that

of CloHUI. For example, when the min_util is 0.005%, the runtime of CloHUI and CHUD are 12

seconds and 74 seconds. From Figure 16 we can see that the memory consumption of CloHUI is

more than that of CHUD.

Figure 17 and Figure 18 demonstrate the results for T40I10D100K dataset. Figure 17 shows that

CloHUI has significant better performance than CHUD. For example, when min_util = 0.65%, the

runtimes of CloHUI and CHUD are 17.8 seconds and 182 seconds. From Figure 18 we can know

that the memory consumption of CloHUI is far less than CHUD. For the above example, the

memory consumption of CloHUI and CHUD are 529 MB and 2,449 MB respectively.

Figure 15 Runtime (T10I4D100K) Figure 16 Memory consumption (T10I4D100K)

Figure 17 Runtime (T40I10D100K)

Figure 18 Memory consumption (T40I10D100K)

5.3 DISCUSSIONS

From the above experiments, we can learn that 1) the lower min_util is, the larger the number of

CHUIs is, and the more running time is; 2) For almost all datasets and min_utils, CloHUI

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

124

outperforms CHUD in terms of runtime performance. For dense datasets CloHUI can be one

order of magnitude faster than CHUD, and consumes less memory. For sparse datasets, the

performance superiority of CloHUI becomes very significant when min_utils decrease. However

the memory consumption of CloHUI is several times than that of CHUD. The reasons for the

experimental results are described as follows.

To mine CHUIs from transaction databases, CHUD first generates candidate CHUIs and

subsequently computes the exact utility of each candidate to identify CHUIs. Table 7 shows the

number of candidates CHUD generates and the number of CHUIs. From Table 7 and Figure 7 -18

we can observe that the number of candidates generated from CHUD is proportional to the

runtime and memory consumption of CHUD. However, the number is far larger than the number

of CHUIs in most cases. For example, when min_util = 0.65% for dataset T40I10D100K, CHUD

generates 707,098 candidates, and the number of CHUIs is only 17.

Using the tree structure HUITWU-Tree and the corresponding utility database, the proposed

algorithm CloHUI can mine CHUIs from transaction databases without candidate generation. The

advantage of CloHUI is that it avoids the costly candidate generation. For the above example,

CHUD has to process 707,098 - 17 = 707, 081 candidates. CHUD not only generates these

candidates but also compute their exact utilities through their TID lists. However, these

candidates are discarded finally. The potential advantage of CloHUI is that a large amount of

memory is saved. For example, the size of dataset T40I10D100K is 23.8MB. When the min_util is

0.65%, the candidates CHUD generates consume 24MB and their TID lists consume 2,340MB.

That means in CHUD a large amount of memory is used to store candidates and their TID lists.

Although CHUD can be modified to swap candidates to disk, the disk space requirement is also

considerable, and the algorithm’s performance will be degraded.

In CloHUI, the transactions of dense datasets can be compressed into a HUITWU-Tree efficiently,

and the transactions in conditional databases can be compressed into a conditional HUITWU-Tree

further. The compression method can improve the mining process, and calculates the utility of

itemsets directly through the tp_link of tree nodes. However, compared to constructing vertical

data formats, it needs more memory to construct a HUITWU-Tree for sparse datasets. In

conditional HUITWU-Trees the same items and their utilities in the transactions need to be stored

several times, which makes the memory consumption of CloHUI very huge.

Table 7. Number of candidates and number of CHUIs

Accidents 25% 26% 27% 28% 29%

CHUD 1,479 874 596 348 208

CloHUI 0 0 0 0 0

Mushroom 1% 1.5% 2% 2.5% 3%

CHUD 49,156 35,652 27,789 22,114 18,013

CloHUI 24,292 14,446 8,995 6,031 4,318

Chess 35% 36% 37% 38% 39%

CHUD 265,262 193,083 156,031 99,822 50,485

CloHUI 0 0 0 0 0

Retail 0.07% 0.08% 0.09% 0.1% 0.11%

CHUD 14,116 11,463 9,445 7,843 6,624

CloHUI 1,051 837 681 562 482

T10I4D100K 0.005% 0.01% 0.015% 0.02% 0.025%

CHUD 748,545 282,463 156,640 107,106 82,144

CloHUI 141,851 58,525 41,418 33,820 28,840

T40I10D100K 0.65% 0.675% 0.7% 0.725% 0.75%

CHUD 707,098 602,707 510,716 462,947 436,874

CloHUI 17 16 13 13 11

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

125

At last, compared to CLOSET [14], the optimization strategy we proposed can efficiently verify a

closed itemset from tree structures, and avoid checking whether it is subsumed by some already

found closed itemset with identical support. From experimental results we can learn that the

search space can be pruned efficiently, and the verifying process is improved.

6. CONCLUSIONS

In this paper, we have proposed an efficient algorithm named CloHUI for more efficiently mining

CHUIs from transaction databases. A novel data structure HUITWU-Tree was proposed for

maintaining the information of itemsets in a database. Moreover, we developed an efficient

strategy to verify a closed itemset faster. In CloHUI, closed itemsets are first computed. If an

itemset is closed, its utility in the database can be calculated directly from a HUITWU-Tree and a

utility database. Compared with the method generating candidates first and then computing the

utilities of the candidates in the database, the performance of our proposed algorithm is enhanced

significantly. In the experiments, both of synthetic and real datasets were used to evaluate the

performance of CloHUI. The experimental results showed that for dense datasets our proposed

algorithm is an order of magnitude faster than the state-of-the-art algorithm CHUD, and

consumes less memory. For sparse datasets, CloHUI outperforms CHUD in terms of runtime.

ACKNOWLEDGEMENTS

This work is partly supported by the National Natural Science Foundation of China under Grant

Nos. 61190115 and 61173022.

REFERENCES

[1] Han J, Cheng H, Xin D et al. (2007) Frequent pattern mining: current status and future directions,

Data Min. Knowl. Discov., Vol. 15, No. 1, pp55-86.

[2] Yao H, Hamilton H J (2006) Mining itemset utilities from transaction databases, Data Knowl. Eng.,

Vol. 59, No. 3, pp603-626.

[3] Yao H, Hamilton H J, Butz C J (2004) A foundational approach to mining itemset utilities from

databases, In Proc. the 4th SIAM Int. Conf. Data Min., pp482-486.

[4] Ahmed C F, Tanbeer S K, Jeong B S et al. (2009) Efficient tree structures for high utility pattern

mining in incremental databases, IEEE Trans. Knowl. Data Eng., Vol. 21, No. 12, pp1708-1721.

[5] Tseng V S, Wu C W, Shie B E et al. (2013) Efficient algorithms for mining high utility itemsets from

transactional databases, IEEE Trans. Knowl. Data Eng., Vol. 25, No. 8, pp1772-1786.

[6] Liu Y, Liao W, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility of

itemsets, In Proc. the 9th Pacific-Asia Conf. Knowl. Discov. Data Min., pp689-695.

[7] Tseng V S, Wu C W, Shie B E et al. (2010) UP-Growth: an efficient algorithm for high utility itemset

mining, In Proc. the 16th ACM Conf. Knowl. Discov. Data Min., pp253-262.

[8] Liu M C, Qu J F (2012) Mining high utility itemsets without candidate generation, In Proc. the 21th

ACM Conf. Inf. Knowl. Man., pp55-64.

[9] Wu C W, Philippe F V, Yu P S et al. (2011) Efficient mining of a concise and lossless representation

of high utility itemsets, In Proc. the 11th IEEE Conf. Data Min., pp824-833.

[10] Agrawal R, Srikant R (1994) Fast algorithms for mining association rules, In Proc. the 20th Conf.

Very Large Data Bases, pp487-499.

[11] Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation, In Proc. the 2000

ACM SIGMOD Conf. Man. Data, pp1-12.

[12] Li Y X, Yeh J S, Chang C C (2008) Isolated items discarding strategy for discovering high utility

itemsets, Data Knowl. Eng., Vol. 64, No.1, pp198-217.

[13] Zihayat M, An A (2014) Mining top-k high utility patterns over data streams, Inf. Sci., Vol. 285,

pp138-161.

[14] Pei J, Han J, Mao R (2000) CLOSET: an efficient algorithm for mining frequent closed itemsets,

ACM SIGMOD workshop Data Min. Knowl. Discov., pp21-30.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 5, October 2016

126

AUTHORS

Shi-Ming Guo received his B.S. degree in software engineering from Harbin institute of

technology, Harbin, in 2004. He is currently a Ph.D. candidate in the School of Computer

Science and Technology at Harbin Institute of Technology, Harbin. His current research

interests include high-utility pattern mining and massive data management.

Hong Gao is a professor in the School of Computer Science and Technology at Harbin

Institute of Technology, Harbin. Prof. Gao is the principal investigator for several National

Natural Science Foundation Projects. She is also the winner of National Science and

Technology Progress Award (Second Class) in 2005. Her research interests include wireless

sensor network, cyber-physical systems, massive data management and data mining. She has

published over one hundred papers in reputable international conferences and journals,

including IEEE Transactions on Knowledge and Engineering, VLDB Journal, SIGMOD,

SIGKDD, VLDB, ICDE, etc.

