
International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

DOI:10.5121/ijcsit.2016.8601 1

AN EVALUATION STUDY OF GENERAL SOFTWARE

PROJECT RISK BASED ON SOFTWARE

PRACTITIONERS EXPERIENCES

Sahand Vahidnia1 and Ömer Özgür Tanrıöver2 and I. N. Askerzade3
1 23Ankara University / Computer Engineering Department, Ankara University, Gölbaşı

50.yıl Yerleşkesi Bahçelievler Mh., 06830 Ankara 06100, Turkey

ABSTRACT

Acritical process in a software project life-cycle is risk assessment and mitigation. Risks exist in every

software project and recognizing and evaluating risks and uncertainties is a challenging process for

practitioners with little historical data. In our study, by using a survey data, we identify and provide a

relatively wider coverage of risks and ratings of software project. The risk register and evaluations are

useful for practitioner of small organizations at initial phase of risk identification and assessment. There

are 128 risks in this study which are analyzed. Furthermore, the study provides a top risk list according to

this study alongside a highly cross correlatedrisks table. Additionally, previous studies have also provided

top risks lists regarding the corresponding surveys. This study extends previous studies to provide a recent

risk study. Outcomes are also compared to previous works in discussion.

KEYWORDS

Software Project Risk Assessment, Risk Matrix, Software Engineering

1. INTRODUCTION

As indicated by researches [1] [2][3], the worldwide software business sector is evaluated to have
an estimation of US$330 billion in 2014. Further, the Chaos Report from the Standish Group
reported that the success rate of worldwide (fundamentally U.S. and Europe) software projects in
2015 is only 29% [4].In all projects, risks should be identified, assessed by its probability of
occurrence and impact, and a contingency plan should be developed for remediating the problem
actually occur [5]. The procedure of risk identification can be troublesome and misleading in
some cases. Moreover, knowing whether a risk is important or not is also is another issue which
requires more research on cases.

This research`s aim is to assess the initial rating of risks for small to medium size software
projects. One can see that in recent years, there are not as much studies to determine general risk
factors and their possible effects on small to medium size software projects. In order to identify
general risks and deploy a survey and obtain rating from practitioners, previous researches in risk
assessment and management field had to be reviewed. Some of these studies are briefly given
below.

Zardari[6] in his research about managing software risks, attempts to provide practitioners with
necessary basic information regarding the management of risks in software. The research defines
the term of proactive and reactive management, a list of top risks, probability and impact and their
levels alongside other terms.

Keshlaf[7] specifically focuses on web and distributed software development project risks in this
study, and provides a summarized risk set from other works. The research studies risks and
challenges in the field and also studies and analysis existing methods and frameworks of software

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

2

risk management including SD-RM-Concept and EBIOS Methodology.

One of the most influential works in the field is Arnuphaptrairong`s research [8] regarding the
risk factor lists from other works and top risks of each list. The research compares and analyzes
top risk lists from Bohem and other studies. As for our study, we had a comparison of results
amongst the top risks and our research results. Further assessment is conducted in discussion
section.

Song’s research [9] is another research which attempts to show the importance of risk
management in software engineering projects. The research utilizes an information entropy
approach to analyze risks in three dimensions of loss, uncertainty and probability. The research
also provides awide risk list which was directly used in this research.

In other studies including [10] risk avoidance models are provided and some researches like [11]
have gathered and explained and analyzed risks. Some studies have taken different approaches
like analyzing multi characteristics of risks like multi dimension and multi situations and etc. like
Wang’s work [12].

One of the problems with previous studies is that each adopt a sets of risk factors which are
sometimes completely disjoint or overlapping. Also most of the studies consider a limited set of
risks, therefore we aim to put a wide coverage list of software related risks. We ask software
practitioners for their experience over of these risks and study the result to generate a super set of
risks and ratings for reference.

 In our study, by conducting a survey, we mean to distinguish and provide a wider coverage of
initial rating to software general project risks and their relations especially for practitioner of
small organizations. A top risk list, highly cross correlated risks are provided for use by software
teams or practitioners with relatively little experience and previous historical data. The identified
wider coverage of general risks and ratings may be used in further studies. Furthermore, we
discuss the outcomes and compare our results to other results from a survey of previous works[8].

2. GENERAL SOFTWARE PROJECT RISK FACTOR COLLECTION

Although, in previous studies diverse risk factors, categories and analysis tools have been
utilized, in this study we considered studies using keywords of “risk” and “software”. Some of the
studies have a wider coverage over risks. Among cited researches, throughout recent years,
especially from 2006 to 2016, there have been few researches about software development risk
factors. However, since 2006, many aspects of software engineering have evolved.

In various studies, risk factors included are constrained to particular aspect or phase of software
development. But it is desired to have a near complete set of general risk factors and their effects.
So as the initial phase of this study, we accumulated risk factors and categories from related
researches [6], [7],[9],[10], [11], [13], [14], [15]. By gathering risk factors, we came up with a
superset of risks which has a greater coverage over risks of software projects and development
phases. But the risk set, in addition to have too many risks to consider and assess, includes
numerous similar and covering risks. So an action is taken to minimize the risk set.

In order to discover similar risk factors, at first a keyword search was performed. This search
prompted a keyword sorting, and also finding exceedingly comparative risks which are dispensed
based on their definitions. Additionally, some available risks were unpredictable and were
outcome of project rather than a possible risk to endanger project. These risks are also eliminated
from the list. Next table is presenting few examples of eliminated risks.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

3

Table 1- Risk elimination example

Development Over-

Schedule

Team Disaster Recovery

We consider over
schedule development as
a failure type, rather than
a risk. Over scheduling is

result of many risks
happening during project
design and development

phases.

Team, itself is too
general to be considered
as a risk factors. There
are other risk factors in
this study which will

cover team.

The risk of bad disaster
recovery is important,
but we decided to have

the risk of Disaster /
Catastrophe to cover this

risk and prevent
overlapping.

The corresponding table of risk-factors and gathered data is shown in Appendix. in its final state.
This phase led us to a set of risk factors which itself can be helpful for development teams as
initial set for risk register formulation.

To make it possible for survey participants to judge and evaluate the risk factors, we reworded the
risk factors in a way that these factors are consistent, understandable and rated more naturally.
For instance, “Project Management Approach / method” has a high risk potential and possibly
will receive a 2 or 3 risk rating from experts (moderate to high). But for a developer it's difficult
to evaluate a project considering this factor. In order to address this issue, we added "wrong
method" to this factor in parenthesis. In short we make factors easier to be rated, by adding
adjectives or other words to factor phrases. Other examples:

• Definition of the Program (ambiguity)
• Mix Of Team Skills (Bad Or Low)
• Technical Feedback (lack of)

Furthermore, all risk factors are stated to with negative statements. As an example "programming
language experience" factor is actually a positive and good factor in project. So listing this in risk
factors may confuse experts and developers. So, we added "lack of" in parenthesis to risk factor.
Now probability of confusion for participants is less likely to occur.

Risk can be divided into three items of probability, impact and risk [16]. Risk is product of
probability and impact items [17]. Scale definitions of probability and impact levels are reused
from[6].

Risk Score = Probability * Impact

Probability levels definitions:

1. High / Very Likely: High chance of this risk occurring, thus becoming a problem {70% <
x}.

2. Medium / Probable: Risk like this may turn into a problem once in a while {30% < x <
70%}.

3. Low / Improbable: Not much chance this will become a problem {0% < x < 30%}.

Impact levels definitions:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

4

1. High / Catastrophic: Loss of system; unrecoverable failure of project; major problem;

schedule slip causing launch date to be missed; cost overrun greater than 50% of budget.

2. Medium / Critical: Considerable problem with project with recoverable operational
capacity; cost overrun exceeding 10% (but less than 50% of planned cost).

3. Low / Marginal: Minor problem project; recoverable loss of operational capacity; internal
schedule slip that does not impact launch date cost overrun less than 10% of planned cost
or timeframe.

Further to make risk factors more understandable and precise, we gave brief information about
some risk factors from [18].

3. DATA COLLECTION AND ANALYSIS

3.1. EXPERT DATA COLLECTION

An essential phase in this research is acquisition of expert data. An onlıne survey data is used for
this purpose which was conducted during the research. The purpose of this survey was to collect
the risk-factor probabilities and potential impact based on real projects of developers which are
happened in the past. The survey comprises 3 parts of I, II and III. In part I we asked developers
to give us a brief information about an unsuccessful/challenged/failed project which they
participated in. There are 12 important questions in part I, including questions about experience of
the expert and questions about project size and type. These part also comprises questions about
programming paradigm, design pattern and methodology of project. Part II of the survey contains
10 questions about project’s fate. Questions in this part are generally excerpted from
references[6], [7], [10], [13], [14] and some are adjusted to prevent the possible confusion in
answering. This section provides the failure data of projects which will be evaluated on future
studies. Part III consists of the risk factor ratings Part III consists of the risk factor ratings as
described earlier. The analysis of part II is elaborated in a yet to be published study. In this one,
we analyze information obtained in part III. The structure of the survey can be accessed at
http://survey.labs.tips/result.php .

At this period of the research, assembled data is pre-processed. To do as such, all faulty data are
eliminated. There were a total of 86 participants in this survey, yet some answers were inadequate
and inappropriate which were removed. Also to prevent cheating (random answers) 5 check
questions were among part III questions. Toward the end, there were only 40 dependable answer
which are considered in final dataset.

Subsequent to making a rectified dataset, dataset is processed. The mean of all entered data for
each risk is used to order risks by importance according to current survey data, considering the
risk factors shown in appendix. The fundamental objective of this research is aggregation and
usage of these risk-factors in a more applicable manner for real world software projects. So we
chose to implement risk matrix at this stage.

3.2. GENERAL RISK MATRIX

Risk matrices are most likely one of wide spread tools for risk evaluation. Risk matrix is much
easier to comprehend than raw data and other methods. They are for the most part used to
determine the extent of a risk and whether or not the risk is adequately controlled. Probability and
Impact are two dimensions of a risk matrix. The combination of these dimensions creates a risk

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

5

matrix which makes the assessment easier. Risk matrix dimensions or axes are divided into 3
level each, which creates a 9 cell qualitative matrix [19]. This matrix has 3 part:

• High / Major Concern (red): Risk is high in these sections and an action should be taken.

• Medium / Concern (yellow): Risk is moderate in these sections and there is a chance that

risks in these areas may affect project.

• Low / No Concern (green): Risk in these sections are low and acceptable and can be ignored.

P

ro
b

a
b

il
it

y

 Low Medium High

High

Medium

Low

 Impact

Figure 1 - Risk Matrix

There are likewise different arrangements of risk matrices like 5x5, 7x5 and 7x4 risk matrices
which are not adapted in this study due to simplicity of 3x3 matrices [20].

A risk matrix is acquired utilizing averages of 40 data points for every risk factor according to
Figure 1. According to this general risk matrix, only risk factors listed below are categorized as
relatively important.

Table 2 – Top risk factor list according to risk matrix

Risk Factor # Risk Factor

1 Lack Of Development Technology
Experience Of Project Team

11 Short Term Solution (lack Of Long Term
Solution)

2 Project- Resource Conflict 12 Lack Of Testability
3 Large Project Size 13 Implementation Difficulty
4 Bad Project Management Approach /

Method
14 Late Identification Of Defects

5 Lack Of Project Management Experience 15 Bad Defect Tracking
6 Poor Project Planning 16 Lack Of Experience With Software

Engineering Process
7 Expansion Of Software Requirements 17 Lack Of Training Of Team
8 Low Knowledge And Understanding Of

Clients Regarding The Requirements
18 Dependency On A Few Key People

9 Bad Development Schedule 19 Need To Integrate With Other Systems
10 Lack Of Analyst Capability 20 Lack Of Platform Experience

 Risk matrix take into account both probability and impact perspective. Analysis and comparisons
regarding the table 2 is discussed at discussion section.

3.3. FREQUENCY AND CORRELATIONS

For the 128 risk factors and 40 data points, a statistical preprocessing is conducted. Firstly,
descriptive statistics and frequencies has been obtained for results to achieve a better
understanding over data points. Calculating average risk scores for available data points is

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

6

required in this step. In order to perform this action, two methods could be implemented. The first
method is simply calculating products of acquired average impact and probability values. This
approach yields in loss of validity because of ordinal scale definition. Hence, to produce risk
score from multiplication of each probability and impact data point, and then calculating the
average and frequencies.

Figure 2 – Frequency of average of every risk

Table 3 – Frequency data

 Probability Impact Risk Val.

Risk No. 128 128 128
Std. Deviation 0.19815 0.22983 0.40558
Std. Error of

Mean

0.01745 0.02024 0.03571

Range 1.00 1.30 2.03
Minimum 0.10 0.35 0.43
Maximum 1.40 1.65 2.45

Mean 0.8587 0.8965 1.244

For average of the 40 data points of every one of the128 risk factors, rest of calculated data are
appeared in the table above. As exhibited in figures above, most risks have an average of 1.2
which is the reason average data is not a decent information to rely on. So we decided to analyze
data using frequencies. When we investigate frequencies of risks, rather than comparing their
averages, we compare the number of people who marked a risk as important. By important we
mean a risk score of 6 or 9. To do so, all scores except 6 and 9 among all data are excluded from
evaluation to compare risks with dangerous behavior only. Table 5 also demonstrates the
generated top risk list.

Another objective of this study was to determine fundamental risk factors on software project
failures. In order to see if one consider only subset of risk factors which have high effect on
project failures, a dimensionality reduction technique was considered.

To minimize the risk factor dimension correlation coefficients of 128 risk factors are extracted.
Since the risk data is distributed normally, Pearson’s correlation coefficient is used as a statistical
measure of the strength of a linear relationship between paired data. In a sample it is denoted by r

and is by design constrained as follow:

-1≤ r ≤+1

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

7

According to Weinberg [21], Pearson correlation coefficients of r = ± 0.5 are considered strong
and correlation coefficients close to ±1 are the strongest. Also 0 means there are no correlation
among variables. Evans [22] recommends a correlation coefficient of ±0.6 to ±0.79 as a strong
and ±0.8 to ±1as very strong correlation coefficient. In our calculation, correlation coefficients
which are among ±0.8 and ±1 are considered as very strong. Next table shows a list of very
strongly cross correlated risk factors i.e±0.8. Strong cross correlation among risk pairs creates a
duplicate variable effect which makes the data unhealthy.

Statistical calculations in this research was performed using SPSS tool [23], except for the
correlation values which are generated using Matlab’s Pearson’s correlation function.

Table 4 - Very strongly correlated risks

There are a total of 33 highly correlated risks separated from entire risk factor list. Statistically
these 33 risks, represent rehashed data among 128 risk. Due to limits in gathering data-points and
low confidence in data analysis, it is not encouraged to rely on this correlation data for
eliminating all 33 risk factors.

Furthermore, we investigated few risks in correlation table and discovered that some correlations’
logically make sense and some don’t. For instance, risks of “Poor Project Planning” and
“Dependency On a Few Key People” are highly correlated with a score of 0.80 and there is a real
logical relation visible to engineers. On the other hand, there are no direct logical relation among
some risks like “Short Term Solution (lack of Long Term Solution)” and “Staff Turnover” with
correlation coefficient of 0.83. The issue needs to be addressed in future works after acquiring
more project and expert data.

4. DISCUSSION

As mentioned previously, [8] has conducted a literature review to compare risk factors in other
studies. In this study we also provide two tables of top risks with different methods. In this
section combination of top risks provided in [8] is compared to our results. Due to differences in
definition and implication of risks introduced and compared in other studies, we consider closest
risk and overlapping risks in definition and mark them with a star sign (*). It is worth mentioning
that prior to elimination of overlapping risks in section II., many overlapping risks were in our
superset of risks. This partially justifies our use overlapping and similar risks in table 5.

Very Strongly Correlated Some Highly Correlated (among ±0.7 and ±0.8)

Risk
ID

Risk
ID

Correlation
Coefficient

Risk
ID

Risk
ID

Correlation
Coefficient

Risk
ID

Risk
ID

Correlation
Coefficient

18 125 0.83277 3 126 0.73161 65 120 0.76273

55 111 0.84347 9 54 0.70722 70 74 0.74817

37 51 0.82162 26 11 0.71208 71 93 0.77567

21 30 0.80628 27 48 0.71146 97 115 0.75964

87 93 0.85617 28 95 0.72975 84 98 0.70398

24 50 0.85583 29 31 0.77262 85 120 0.74108

25 74 0.84403 34 109 0.70646 105 124 0.70634

90 109 0.80085 47 126 0.71017 122 115 0.76228

38 126 0.84679 56 74 0.78317 43 104 0.71679

101 111 0.80295 57 88 0.74041 44 95 0.71029

39 49 0.82401 58 117 0.70219 36 126 0.74008

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

8

Table 5 – Comparison table of current and previous researches

TOP 20 RISKS (WITH SUM OF OVER 30) SUM A B C D E F G H I

1. Development Technology Not Match To
Project

30 * +

2. Lack Of Analyst Capability 30 * + + + +
3. Short Term Solution 30 *
4. Lack Of Organizational Maturity 30 *
5. Large Project Size 33 *
6. Lack Of Training Of Team 33 * * * * *
7. Lack Of Experience With Software Engineering

Process
33 *

8. High System Dependencies 33
9. Problem With Hardware Platform 33
10. Lack Of Project Management Experience 36 * * * * *
11. Incorrect Project Size Estimation 36 * *
12. Dependency On A Few Key People 36
13. Lack Of Or Bad Change Control For Work

Products
36 * *

14. Large Database Size 39 *
15. Bad Development Schedule 39 * *
16. Lack Of Platform Experience 39 * * *
17. Expansion Of Software Requirements 42 * * * *
18. Bad Project Management Approach / Method 42 * * * *
19. Lack Of Use Of Modern Programming

Practices
42 *

20. Lack Of Reusable Components 42

A. Is available at table 2

B. Is available at top 10 list of Bohem[8]

C. Is available at top 10 list of Schmidt et al. (USA) [8]

D. Is available at top 10 list of Schmidt et al. (HONG KONG) [8]

E. Is available at top 10 list of Schmidt et al. (FINLAND) [8]

F. Is available at top 10 list of Addison and Vallabh[8]

G. Is available at top 10 list of Addison [8]

H. Is available at top 10 list of Han and Huang [8]

I. Is available at top 10 list of Pare et al. [8]

+ means the risk can also cover named risk, or the risk can be concluded from named risk, but

not precisely the same.

* means the risk is very similar or exactly the same

10 risk factors out of 20 risk factors in table 5 are also present in table 2. Table 2 was generated
using risk matrix, but due to general project risks, unless the data is not filtered into sub
categories, arithmetic mean on data will be misleading. As a result, the data presented in table 5 is
much healthier and reliable.

As presented in table 5, many of the important risks from other works, are not recognized as
important in our survey data. Also the reason might not be clear in some cases, but in many cases
it can be explained. We suggest that these differences in the results can be related to time
dimensions of conducted researches regarding the risks. Also [8] is suggesting a similar
explanation for cases like Bohem. These researches are conducted between the years of 1991 and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

9

2008 which makes our hypothesis stronger. In past two decades, technology advancements have
had great contributions to advancements and changes in software industry and software risk
factors and their effects. As an example, “Developing wrong user interface” might not be that
much of a concern for software developers nowadays.

Another finding in this comparison is that, unsurprisingly our survey participants did not
recognize user related risks as important. This might indicate the lack of management experience,
dealing with clients and users for the participants, as our survey participants are all composed of
young computer engineers, students and software developers.

Another proof for this finding is that the risk of “Lack of Reusable Components” has not been
repeated or slightly mentioned in prior researches, whereas in this survey, this risk is on top of the
list. This indicates that participants were too much concerned about programming than managing
and user dimension.

5. CONCLUSION

In this study we introduce a reference software risk set for software development. We also
provide a risk matrix for software projects which can be used to assess probable and common
risks in developing software solutions.

Also in this study a dimensionality reduction was performed using statistical correlations among
risk factors. So software practitioners can see correlations of risks as Table 4 and predict which
risk may also affect them according to previous risks.

Throughout this study analysis on survey data was conducted to highlight important risks in
software project development, using risk matrix and a custom method of priority table. For better
precision, further studies and more data-points are required, which will be available in next
research. Having more data-points in addition to having more reliable risk matrix and risk priority
tables, will also make it possible to perform other analysis including regression analysis.

ACKNOWLEDGEMENTS

The authors would like to thank all participants in the survey for their great contributions to this
research.

REFERENCES

[1] Hu, Yong, Zhang, Xiangzhou, Ngai, E.W.T., Cai, Ruichu ,Liu, Mei, "Software project risk analysis

using Bayesian networks with causality constraints," Decision Support Systems, pp. 439-449, 2013.
[2] "Research and Markets, Software: Global Industry Guide," 2010.
[3] T. S. Group, "The Chaos Manifesto," The Standish Group International, Incorporated, 2013.
[4] "CHAOS Report 2015," The Standish Group International, 2015.
[5] R. S. Pressman, Software Engineering, A Practitioner's Approach, 7, Ed., 2010.
[6] S. Zardari, "Software Risk Management," in 2009 International Conference on Information

Management and Engineering, 2009.
[7] Ayad Ali Keshlaf,Steve Riddle, "Risk Management for Web and Distributed Software Development

Projects," in The Fifth International Conference on Internet Monitoring and Protection, 2010.
[8] T. Arnuphaptrairong, "Top Ten Lists of Software Project Risks: Evidence from the Literature

Survey," in Proceedings of the International MultiConference of Engineers and Computer Scientists
(IMECS2011), 2011.

[9] Hao Song, Dengsheng Wu, Minglu Li, Chen Cai1, Jianping Li,, "An entropy based approach for
software risk assessment: A perspective of trustworthiness enhancement," Software Engineering, pp.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

10

575-578, 2010.
[10] Shahzad Basit , Abdullah S. Al-Mudimigh, "Risk Identification, Mitigation and Avoidance Model

for Handling Software Risk," in Second International Conference on Computational Intelligence,
Communication Systems and Networks Risk, 2010.

[11] Shahzad Basit,Ihsan Ullah, Naveed Khan, "Software Risk Identification and Mitigation in
Incremental Model," in 2009 International Conference on Information and Multimedia Technology,
2009.

[12] Yu Wang, Shun Fu, "A General Cognition to the Multi-characters of Software Risks Yu," in
International Conference on Computational and Information Sciences, 2011.

[13] Li Xiaosong, Liu Shushi, Cai Wenjun, Feng Songjiang, "The Application of Risk Matrix to Software
Project Risk Management," International Forum on Information Technology and Applications, pp.
480-483, 2009.

[14] Appari, Ajit, Benaroch, Michel, "Monetary pricing of software development risks: A method and
empirical illustration," Journal of Systems and Software, pp. 2098-2017, 2010.

[15] Dengsheng Wu, Hao Song, Minglu Li, Chen Cai, Jianping Li, "Modeling Risk Factors Dependence
Using Copula Method for Assessing Software Schedule Risk," Beijing,, 2010 .

[16] Haisjackl Christian, Felderer Michael, Breu Ruth, "RisCal - A Risk Estimation Tool for Software
Engineering Purposes," in 39th Euromicro Conference Series on Software Engineering and
Advanced Applications, 2013.

[17] Olid, Khan, Mannan, Bin, "A Review of Software Risk Management for Selection of best Tools and
Techniques," in Ninth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing,, 2008.

[18] Haneen Hijazi,Shihadeh Alqrainy,Hasan Muaidi,Thair Khdour, "Risk Factors in Software
Development Phases," European Scientific Journal, vol. 10, no. 3, pp. 213-232, 2014.

[19] Gary Stoneburner, Alice Goguen, Alexis Feringa, "Risk Management Guide for Information
Technology Systems," National Institute of Standards and Technology, no. sp800-30, 2002.

[20] Adam S. Markowski, M. Sam Mannan, "Fuzzy risk matrix," Journal of Hazardous Materials, vol.
159, no. 1, pp. 152-157, 2008.

[21] Sharon Lawner Weinberg, Sarah Knapp Abramowitz, Statistics Using SPSS: An Integrative
Approach, Cambridge University Press, 2008.

[22] J. D. Evans, Straightforward Statistics for the Behavioral Sciences, Brooks/Cole Publishing
Company, 1996.

[23] IBM, "IBM SPSS Software," IBM Corporation, 2016. [Online]. Available:
http://www.ibm.com/analytics/us/en/technology/spss/. [Accessed Dec 2015].

[24] Zhiwei Xu, Taghi M. Khoshgoftaar, Edward B. Allen Motorola, "Application of fuzzy expert
systems in assessing operational risk of software," Information and Software Technology 45, pp.
373-388, 2003.

APPENDIX

Unsorted Risk Statement

M
ed

iu
m

 /
 C

ri
ti

c
a
l

Im
p

a
ct

M
ed

iu
m

/

P
ro

b
a

b
le

p
r
o
b

a
b

il
it

y

R
ef

er
en

ce

Unsorted Risk Statement

M
ed

iu
m

 /
 C

ri
ti

c
a
l

Im
p

a
ct

M
ed

iu
m

/

P
ro

b
a

b
le

p
r
o
b

a
b

il
it

y

R
ef

er
en

ce

1. Large Database Size * * [1
4]

65. Developing Wrong
Software Functions

 [6][7
]

2. Main Storage Constraint [1
4]

66. Developing Wrong User
Interface

 [6][7
]

3. High Platform Volatility [1
4]

67. Gold Plating [6][7
]

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

11

4. Bad Development
Schedule

 [1
4]

68. Shortfalls In Outsourced
Components

 [6][7
]

5. Lack Of Analyst
Capability

* * [1
4]

69. Shortfalls In Externally
Performed Tasks

 [6][7
]

6. Lack Of Platform
Experience

* * [1
4]

70. Real-time Performance
Shortfalls

 [6][7
]

7. Lack Of Use Of Modern
Programming Practices

 * [1
4]

71. Bad Traceability [7]

8. Low Usage Of Software
Support Tools

 * [1
4]

72. Insufficient Verification
And Validation

 [7]

9. Lack Of Software
Developer Competence

 [2
4]

73. Customer Unsatisfied At
Project Delivery

 [7]

10. Project NOT Fit To
Customer Organization

 [1
3]

74. Risk Reducing
Technique Producing
New Risk

 [7]

11. Lack Of Customer
Perception

 [1
3]

75. Catastrophe / Disaster [7]

12. Project- Resource
Conflict

* * [1
3]

76. Incorrect Project Size
Estimation

* [11]

13. Customer Conflict [1
3]

77. Project Funding
Uncertainty

* * [11]

14. Lack Of Leadership [1
3]

78. Rapid Change Of Job [11]

15. Definition Of The
Program (ambiguity)

 [1
3]

79. Change In Working
Circumstances By
Management

 [11]

16. High Political Influences [1
3]

80. Hardware Default
Changes

 [11]

17. Inconvenient Date [1
3]

81. Requirement
Postponement

 * [11]

18. Short Term Solution
(lack Of Long Term
Solution)

* * [1
3]

82. Presence Of High
Bugs/errors Count

 [11]

19. Lack Of Organization
Stability

 [1
3]

83. Technology Change [11]

20. Lack Of Organization
Roles And
Responsibilities

 [1
3]

84. Underestimation Of Data
Increase Due To
Software Success

 [11]

21. Lack Of Policies And
Standards

 [1
3]

85. Lack Of Design And
Development Tool
Independence

 [11]

22. Lack Of Management
Support And
Involvement

 [1
3]

86. Risk Of Intruders
(hackers, Viruses, Trojan
Horse)

 [11]

23. Lack Of Project
Objectives

 * [1
3]

87. Misleading Estimation
About Skills Of Workers

* [11]

24. Lack Of User
Involvement

 [1
3]

88. Lack Of Technical
Feedback

* * [11]

25. Lack Of User
Acceptance

 [1
3]

89. Compromise On Profit
To Save Name

 [11]

26. High User Training
Needs

 [1
3]

90. Risk Of Economy
Distortion

 * [11]

27. Large Project Size * * [1
3]

91. Expansion Of Software
Requirements

* * [15]

28. Hardware Constraints [1
3]

92. Inaccurate Estimation Of
Software Effort

 [15]

29. Lack Of Reusable
Components

 [1
3]

93. Low Knowledge And
Understanding Of Clients
Regarding The
Requirements

* * [9]

30. Lack Of Cost Controls * * [1
3]

94. Incorrect Requirements [9]

31. Lack Of Delivery [1 95. Lack Of Frozen [9]

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

12

Commitment 3] Requirements
32. Lack Of Requirements

Stability
 [1

3]
96. Undefined Project

Success Criteria
 [9]

33. Requirements NOT
Complete And Clear

 [1
3]

97. Conflicting System
Requirements

 [9]

34. Lack Of Testability * [1
3]

98. Conflict Between User
Departments

 [9]

35. Implementation
Difficulty

 [1
3]

99. Low Number Of Users In
And Outside The
Organization

 [9]

36. High System
Dependencies

* [1
3]

100. Instability Of The
Client's Business
Environment

 [9]

37. Lack Of Response Or
Other Performance
Factors

 [1
3]

101. Dependency On A Few
Key People

 [9]

38. High Customer Service
Impact

 [1
3]

102. Lack Of Staff
Commitment, Low
Morale

 * [9]

39. Data Migration Required [1
3]

103. Instability And Lack Of
Continuity In Project
Staffing

 [9]

40. Lack Of Pilot Approach [1
3]

104. High Number Of People
On Team

 -

41. Lack Of Alternatives
Analysis

 [1
3]

105. Low Team Diversity * [9]

42. Lack Of Quality
Assurance Approach

 [1
3]

106. Lack Of Organizational
Maturity

 [9]

43. 15Lack Of Development
Documentation

 [1
3]

107. Lack of Project leader's
experience

 * [9]

44. No Use Of Defined
Engineering Process

 [1
3]

108. High Extent Of Changes
In The Project

* * [9]

45. Late Identification Of
Defects

 [1
3]

109. Excessive Schedule
Pressure

 [9]

46. Bad Defect Tracking [1
3]

110. Inadequate Cost
Estimating

 * [9]

47. Lack Of Or Bad Change
Control For Work
Products

 [1
3]

111. Poor Project Planning * * [9]

48. Problem With Physical
Facilities

 [1
3]

112. Ineffective
Communication

 [9]

49. Problem With Hardware
Platform

* [1
3]

113. Improper Definition Of
Roles And
Responsibilities

 [9]

50. Tools Unavailability [1
3]

114. Need To Integrate With
Other Systems

 [9]

51. Bad Project Management
Approach / Method

* * [1
3]

115. Inadequate Configuration
Control

 [9]

52. Lack Of Project
Management Experience

* * [1
3]

116. Low Quality Of Software
And Hardware Supplier
Support

 [9]

53. Bad Project Management
Attitude

 [1
3]

117. Excessive Reliance On A
Single Development
Environment

 [9]

54. Lack Of Project
Management Authority

 [1
3]

118. High Extent Of Linkage
To Other Organizations

 -

55. Team Member
Unavailability

* * [1
3]

119. Resource Insufficiency [9]

56. Bad Or Low Mix Of
Team Skills

 [1
3]

120. Intensity Of Conflicts [9]

57. Lack Of Experience
With Software
Engineering Process

* * [1
3]

121. Lack Of Control Over
Consultants, Vendors
,sub-contractors

 [9]

International Journal of Computer Science & Information Technology (IJCSIT) Vol 8, No 6, December 2016

13

58. Lack Of Training Of
Team

* * [1
3]

122. Massive User Stress [10]

59. Lack Of Expertise With
Application Area
(Domain)

* [1
3]

123. Lack Of Project Delivery
Milestones

 [10]

60. Development
Technology NOT Match
To Project

 [1
3]

124. Over-optimistic
Technology Perceives

 [10]

61. Lack Of Development
Technology Experience
Of Project Team

* * [1
3]

125. Staff Turnover [10]

62. Immaturity Of
Development
Technology

 [1
3]

126. Backup Issues [10]

63. High Design Complexity * * [1
3]

127. Bad Preservation Of
Intellectuals

 [10]

64. Lack Of Support
Personnel

 [1
3]

128. Inability To Secure
Confidential Customer
Data

 -

