
International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

DOI:10.5121/ijcsit.2017.9204                                                                                                                        39 

 

 

USING ADAPTIVE AUTOMATA IN GRAMMAR-BASED 

TEXT COMPRESSION TO IDENTIFY FREQUENT 

SUBSTRINGS 
 

Newton Kiyotaka Miura and João José Neto 
 

Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil 

 

ABSTRACT 

 

Compression techniques allow reduction in the data storage space required by applications dealing with 

large amount of data by increasing the information entropy of its representation. This paper presents an 

adaptive rule-driven device - the adaptive automata - as the device to identify recurring sequences of 

symbols to be compressed in a grammar-based lossless data compression scheme. 

 

KEYWORDS 

 

Adaptive Automata, Grammar Based Data Compression 

 
1. INTRODUCTION 
 

New applications are continuously being created to take advantage of computing system’s 

increasing computational power and storage capacity. Currently, social media Internet 

applications data analysis and genome database processing are examples of applications that 

require handling of huge amount of data. Despite all advances in computer hardware technology, 

the necessity for optimizing its use is economically justifiable. Such optimization can be achieved 

by increasing the information entropy of the representation of the data, using data compression 

techniques. 

 

Grammar-based text compression uses a context-free grammar (CFG) as defined in Chomsky’s 

hierarchy [1] for representing a sequence of symbols. This CFG has rules that generates only one 

sequence: the original text. It is based on the idea that a CFG can compactly represent the 

repetitive patterns within a text. Intuitively, greater compression would be obtained for input 

strings containing a greater number of repeated substrings to be represented by the same 

grammatical production rule. Examples of data with these characteristics are the sequences of 

genes of the same species and texts in version control systems. 

 

The intrinsic hierarchical definition of a CFG allows string-manipulation algorithms to perform 

operations directly on their compressed representations without the need for a prior 

decompression [2] [3] [4] [5]. A potential reduction in the temporary storage space required for 

data manipulation, and shorter execution times can be expected by decreasing the amount of data 

to be processed [2]. These features are attractive for improving efficiency in processing large 

volume of data. 

 

In the literature, we can find propositions for may direct operations in grammatically compressed 

texts [6] such as string search, edit distance calculation, string or character occurrence frequency 

calculation, access to a specific position of the original string, obtaining the first occurrence of a 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

40 

substring, and indexing for random access. Examples of grammar-based compression 

applications such as recurring pattern searching, pattern recognition, data mining, tree 

manipulation are cited in [7], [3], [2] and [8]. 

 

This work focuses on adopting an adaptive device guided by rules [10] for the identification of 

repetitive data for grammar-based text compression. 

 

Adaptive rule-driven device [10] has the ability of self-modification, that is, it changes the rules 

of its operation at execution time without the need for external intervention. The adaptive 

automaton is an example of this type of device. It is a state machine with the capability of 

changing its configuration based on the input string. It has a computational power equivalent to 

the Turing machine [11].  

 

In Section 2 the basic concept of this data compression technique is presented with some 

algorithms found in the literature. In Section 3 an adaptive automaton-based algorithm for 

identifying frequently occurring substrings is presented. 
 

2. BACKGROUND 
 

2.1. Grammar based compression 
 

This compression technique uses a CFG G = (Σ, V, D, XS), where Σ is the finite set of terminal 

symbols and m = | Σ |. V is the set of nonterminal (or variable) symbols with Σ ∩ V = ∅. D ⊂ V × 

(V ∪ Σ)* is the finite set of rules of production with size n = | V |. XS ∈ V is the non-terminal that 

represents the initial nonterminal symbol of the grammar. 

 

The grammatical compression of a sequence S of terminal symbols is a CFG that produces 

deterministically only a single sequence S. That is, for any X ∈ V there is only one production 

rule in D, and there are no cycles. The syntax tree of G is an ordered binary tree in which the 

inner nodes are labelled with the non-terminal symbols of V and the leaves with the terminals of 

Σ, that is, the sequence of labels in the sheets corresponds to the input string S. Each internal node 

Z corresponds to a production rule Z → XY with the child nodes X on the right and Y on the left. 

As G can be expressed in the normal form of Chomsky [1] any compression grammar is a 

Straight-Line Program (SLP) [12] [13] [2] which is defined as a grammatical compression on Σ ∪ 

V and production rules in the form Xk → XiXj where Xk, Xi, Xj ∈ (Σ ∪ V) and 1 ≤ i, j < k ≤ n + m. 

A string S of the size l = | S | is compressed when l is greater than the sum of the size of the 

representation of grammar G that generates it and the size of the compressed sequence. 

 

To illustrate this process,  

Figure presents the compression of the string S = (a, b, a, a, a, b, c, a, b, a, a), resulting in the 

compressed sequence Sc = {X4, c, X3} and the derivation dictionary D = {X1 → ab, X2 → aa, X3 

→ X1X2, X4 → X3,X1}, corresponding to the forest of syntactic trees. The dashed lines of the same 

colour identify portions of the tree that have parent nodes with the same label. 

a b a a a b a b a a

X1 X2 X1X1 X2

X3 X3

X4

c
 

 

Figure 1.  Example of grammar based compression. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

41 

The main challenge of grammar-based compression is to find the smallest CFG that generates the 

original string to maximize the compression rate. This problem has been shown to be intractable. 

Storer and Szymanski demonstrated [7] that given a string S and a constant k, obtaining a CFG of 

size k that generates S is an NP-complete problem. Furthermore, Charikar et al. [14] demonstrated 

that the minimum CFG can be approximated by a logarithmic rate and calculated that 8569/8568 

is the limit of this approximation rate of the algorithms to obtain the lowest value of k, if P ≠ NP. 

Research effort has been focused on finding algorithms to infer the approximate minimal 

grammar, searching for grammars and data structures with characteristics suitable to support 

operations directly in the compressed data [2] [3] [4] [5]. Regarding the dictionary representation, 

as discussed by [3] several initial algorithms have adopted Huffman coding to compact it, 

although it does not allow random access of the strings. More recently the succinct data structure 

method has been used. A brief description of some researches are presented below. 

 

2.2. Compression algorithms 
 

In the following lines, l is the size of the input string, g is the minimum CFG size, and log refers 

to log2. 

 

Nevill-Manning and Witten [15] proposed the Sequitur algorithm, which operates incrementally 

in relation to the input string with the restriction that each bigram is present only once in a 

derivation rule of the inferred grammar and that each rule is used more than once. Sequitur 

operates in a linear space and execution time relative to the size of the input string. 

 

The RePair algorithm developed by Larsson and Moffat [16] constructs a grammar by iteratively 

replacing pairs of symbols, either terminal or non-terminal, with a non-terminal symbol by doing 

an off-line processing of the complete text, or long phrases, and adopting a compact 

representation of the dictionary. It has the following simple heuristic to process a sequence S: 

 

1. Identify the most frequent pair ab in S. 

2. Add a rule X → ab to the dictionary of productions, where X is a new symbol that is not 

present in S. 

3. Replace every occurrence of the pair ab in S by the new nonterminal symbol X. 

4. Repeat this procedure until any pair in S occurs just once. 

 

Although it requires a memory space above 10 times the size of the input string, the algorithm 

presents a linear execution time, being efficient mainly in the decompression, facilitating search 

operations in the compressed data. 

 

Rytter [17] and Charikar et al. [14] have developed algorithms that approximate the size of the 

CFG obtained in O(log l/g) by transforming the representation of the data with LZ77 method [18] 

to the CFG. Rytter [17] proposed the use of a grammar whose derivation tree is an AVL self-

balancing binary search tree in which the height of two daughter sub-trees differ only by one unit, 

which favours pattern matching operations. Charikar et al. [14] imposed the condition that the 

binary derivation tree be balanced in width, favouring operations such as union and division. 

Sakamoto [19] developed an algorithm based on RePair [16] encoding scheme. He obtained an 

algorithm requiring a smaller memory space, performing iterative substitution of pairs of distinct 

symbols and repetitions of the same symbol, using double-linked lists for storing the input string 

and a priority queue for the frequency of the pairs. 

 

Jez [20] modified Sakamoto’s algorithm [19] obtaining a CFG of size O(g log (l/g)) for input 

strings with alphabet Σ identified by numbers of {1, …, l
c
} for a constant c. Unlike the previous 

research, it was not based on Lempel-Ziv representation. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

42 

More recently, Bille et al. [21] proposed two algorithms that improved the space required by the 

RePair algorithm, one with linear time complexity and other with O(l log l). 

 

Maruyama et al. [5] developed an algorithm based on a context-dependent grammar subclass Σ-

sensitive proposed to optimize the pattern matching operation on the compacted data. 

 

Tabei et al. [4] has devised a scalable algorithm for least-squares partial regression based on a 

grammar-packed representation of high-dimensional matrices that allows quick access to rows 

and columns without the need for decompression. Compared to probabilistic techniques, this 

approach showed superiority in terms of precision, computational efficiency and interpretability 

of the relationship between data and tag variables and responses. 

 

The text compression is also a focus of research such as the fully-online compression algorithm 

(FOLCA) proposed by Maruyama et al. [22] which infers partial parsing trees [17] whose inner 

nodes are traversed post-order and stored in a concise representation. For class C = {x1, x2, …, xn} 

of n objects, logn is the minimum of bits to represent any xi ∈ C. If the representation method 

requires n + (n) bits for any xi ∈ C, the representation is called succinct [3]. They presented 

experimental results proving the scalability of the algorithm in terms of memory space and 

execution time in processing human genomes with high number of repetitive texts with the 

presence of noise. 

 

Another online algorithm was proposed by Fukunaga et al. [12] to allow approximate frequent 

pattern searching in grammatically compressed data using less memory consumption compared to 

offline methods. They used edit-sensitive parsing [23], which measures the similarity of two 

symbol strings by the edit distance, for comparison of grammars subtrees. 

 

2.3. Grammar inference using adaptive rule-driven device 
 

An adaptive rule-driven device has the self-modifying capability [10], that is, it changes the rules 

of its operation according to the input data at run time without the need for external intervention. 

An example is the adaptive automaton [24] which consists of a traditional automaton with the 

addition of an adaptive mechanism. This mechanism allows modifications in the configuration of 

the underlying traditional automaton by invoking adaptive functions which can change its set of 

rules. 

 

Grammar-based compression is a specific case of grammatical inference whose purpose is to 

learn grammar from information available in a language [9]. In this case, the available 

information corresponds to the text to be compressed which is the only sentence of a given 

language. José Neto and Iwai [23] proposed the use of adaptive automaton to build a recognizer 

with the ability to learn a regular language from the processing of positive and negative samples 

of strings belonging to that language. The recognizer was obtained by agglutinating two adaptive 

automata. One automaton constructs the prefix tree from the input strings and the other produces 

a suffix tree from the inverse sequence of the same string. Matsuno [26] implemented this 

algorithm and she also presented an application of the Charikar algorithm [14] to obtain a CFG 

from samples of the language defined by this grammar. 

 

In this paper, we applied the adaptive automaton to identify repetitive sequence of symbols to 

infer a grammar to generate the compressed version of a string. 

 

 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

43 

3. GRAMMAR BASED COMPRESSION WITH ADAPTIVE IMPLEMENTATION 
 

The RePair [16] algorithm inspired our approach [27] in using the adaptive automaton in the 

process of finding pairs of symbols to be substituted by a grammar production rule.  

 
The adaptive automaton modifies the configuration of the traditional finite automaton. It is 

represented by a tuple (Q, Σ, P, q0, F). For a quick reference, Table 1 describes the meaning of 

the elements of the tuple, along with other elements used in this work. The notation used by 

Cereda et al. [28] is adopted. 

 

Modification in the underlying traditional automaton occurs through adaptive functions to be 

executed either before or after the transitions, according to the consumed input string symbols. 

The adaptive function executed before the transition is represented by the character ‘⋅’ written 

after the function name (e.g. �⋅) and the function executed after the transition is represented by 

the same character written before the name (e.g. ⋅ℬ). They can modify the automaton 

configuration by performing elementary adaptive actions for searching, exclusion or insertion of 

rules. The adaptive functions perform editing actions in the automaton using variables and 

generators. Variables are filled only once in the execution of the adaptive function. Generators 

are special types of variables, used to associate unambiguous names for each new state created in 

the automaton and they are identified by the ‘*’ symbol, for example, g1
*, g2

*. 

 
Table 1. List of elements 

 

Element Meaning 

Q set of states 

F ⊂ Q subset of accepting states 

q0 ∈ Q initial state 

Σ input alphabet 

D set of adaptive functions 

P P: D ∪ {ε} × Q × Σ → Q × Σ ∪ {ε} × D ∪ {ε}, mapping 

relation 

σ ∈ Σ any symbol of the alphabet 

� (q, x) ⋅ adaptive function � ∈ D with arguments q, x triggered before 

a symbol consumption 

⋅ℬ (y, z) adaptive function ℬ ∈ D arguments y, z triggered after the 

symbol consumption 

gi* generator used in adaptive functions that associates names with 

newly created states 

– (qi, σ) → (qj) elementary adaptive action that removes the transition from qi 

to qj and consumes σ 

+ (qi, σ) → (gi
*, ε), �⋅ 

 

rule-inserting elementary adaptive action that adds a transition 

from state qi, consuming the symbol σ, and leading to a newly 

created state gi
* with the adaptive function � to be executed 

before the consumption of σ 

Outi semantic action to be performed in state qi, as in the Moore 

machine [1] 

 

This paper presents an adaptive automaton that analyses trigrams contained in the original input 

string, searching for the most appropriate pair of symbols to be to be replaced by a grammar 

production rule as in an iteration of the RePair [16] algorithm. From the initial state to any final 

state it has a maximum of 3 transitions because it analyses at most 3 symbols. Thus, for each 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

44 

trigram, the automaton restarts its operation from the initial state q0. This requires obtaining the 

set of all the trigrams present in the input string, and the last bigram. For example, considering 

the sequence abcab, the input is the set {abc, bca, cab, ab}. 

 

The automaton helps counting the occurrence of each trigram in the input sequence and its 

containing prefix and suffix bigrams. This is accomplished by counters that are incremented by 

semantic action functions Outi executed in the states in which a bigram or trigram is recognized. 

Considering the trigram abc, it counts the occurrence of the trigram itself and the occurrence of 

ab and bc as the prefix and suffix bigrams. 

 

Each bigram has 2 counters, one for prefix and one for suffix. After processing all the trigrams, 

these counters are used to select the pair to be replaced by a nonterminal symbol. The pair that 

occurs most frequently inside the most frequent trigram, or the prefix or suffix bigram of this 

trigram are examples of criteria for the pair selection. 

 

Starting from the terminal state in which the most frequent trigram is recognized, it is possible to 

identify the constituent bigrams and get the values of their counters by traversing the automaton 

in the opposite direction of the transactions, towards the starting state. The bigram counter 

associated with the accepting state stores the total number of occurrences of the suffix bigram. 

The counter associated with the preceding state stores the number of occurrences of the prefix 

bigram. 

 

The use of adaptive technique guides the design of this automaton by considering how it should 

be incrementally built as the input symbols are consumed in run-time, performing the actions just 

presented above. A conventional finite state automaton to achieve the same results would require 

the prediction of all combinations of the alphabet symbols in design time. 

 

At the end of an iteration, the chosen bigram is replaced by a nonterminal symbol X in the input 

sequence to prepare it for the next iteration. All bigram and trigram counters are reset to zero, and 

the automaton is further modified to be used in the next iteration.  

 

It is modified to include the nonterminal X in the alphabet and to allow transitions consuming X 

by exploring its directed acyclic graph topology. The automaton can be traversed in a depth first 

way to identify the chosen bigram. Transitions and nodes that consumes the bigram is replaced by 

a single transition that consumes the new nonterminal X. New nodes and transitions must be 

created when a prefix of the chosen sequence is the same for other sequences starting from the 

same node. This approach reduces the processing time for partially rebuilding the automaton in 

the next iteration. 

 

To better illustrate the configuration evolution of the automaton, we describe the processing of 

the trigram σ0σ1σ2 of a hypothetical input string in the following lines. 

 

Figure 1 shows a simplified version of the initial configuration of the automaton composed by a 

single state q0 and transitions for each symbol σ ∈ Σ that executes the adaptive function �0⋅ (σ, 

q0) before its consumption. For ease of visualization, the representation of the set of these 

transitions has been replaced by a single arc in which the symbol to be consumed is indicated as 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

45 

∀σ. This same representation simplification was adopted in the description of the Algorithm 1 

(

Algorithm 1: Adaptive function �0 

adaptive function �0 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

       + (g1
*, ∀σ) → (g1

*, ε), �1(∀σ, g1
*)⋅ 

end 

  

Figure 2) of the adaptive function �0 (s, qx)⋅. 

 

 
Figure 1. Initial topology of the adaptive automaton 

 
Function �0 modifies the automaton by removing the transition that consumes the first symbol σ0 

of the trigram, and creating three new elements: the state q1, the transition from q0 to q1 to allow 

the consumption of σ0 and the loop transition from q1 associating it with the consumption of ∀σ ∈ 

Σ and another adaptive function �1 (s, qx)⋅. 

 
Algorithm 1: Adaptive function �0 

adaptive function �0 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

       + (g1
*, ∀σ) → (g1

*, ε), �1(∀σ, g1
*)⋅ 

end 

  
Figure 2. Algorithm 1: Adaptive function �0⋅ 

 
 

Figure 3 shows the new adaptive automaton topology after consumption of the first symbol σ0.  

 
 

Figure 3. Topology after consuming the first symbol σ0 

 
The Algorithm 2 

(

Algorithm 2: Adaptive function �1 

adaptive function �1 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

       + (g1*, ∀σ) → (g1*, ε), �2(∀σ, g1*)⋅ 

end 

  

Figure 4) presents the adaptive function �1(s, qx)⋅. It operates similarly to �0⋅ creating a new 

state q2. It also prepares the consumption of a third symbol by inserting a transition with the 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

46 

adaptive function �2⋅, which is described in the algorithm 3 

(

Algorithm 3: Adaptive function �2 

adaptive function �2 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

End 

  

Figure 5). 

 
Algorithm 2: Adaptive function �1 

adaptive function �1 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

       + (g1*, ∀σ) → (g1*, ε), �2(∀σ, g1*)⋅ 

end 

  
Figure 4. Algorithm 2: Adaptive function �1⋅ 

 

The Algorithm 3 of the adaptive function �2(s, qx)⋅ in 
Algorithm 3: Adaptive function �2 

adaptive function �2 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

End 

  
Figure 5 modifies the automaton configuration by removing the transition from q2 to itself by 

consuming the symbol σ2 (the third symbol of the trigram) creating a new state q3 and the 

transition to it consuming σ2. The newly created state q3 is associated with the semantic function 

Out1. 
Algorithm 3: Adaptive function �2 

adaptive function �2 (s, qx) 

       Generators: g1
* 

       – (qx, s) → (qx) 

       + (qx, s) → (g1
*, ε) 

End 

  
Figure 5. Algorithm 3: Adaptive function �2⋅ 

 
 

Figure 6 shows the automaton topology after consumption of the second and third symbol of the 

input string.  

 

States q2 and q3 are associated with output functions Out0 and Out1 respectively. They are related 

to semantic actions in these states. Out0 is the function responsible for incrementing the 

occurrence counter of the prefix bigram σ0σ1. Out1 is responsible for incrementing the occurrence 

counter of the suffix bigram σ1σ2, and the counter of the trigram σ0σ1σ2. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

47 

 
 

Figure 6. Topology after consuming the initial trigram σ0σ1σ2 

 
To better illustrate the operation of the adaptive automaton,  

Figure 7 shows its configuration after processing the sample string abcabac. The index i of the 

states qi corresponds to the sequence in which they were entered by the algorithm. 

 

On the assumption that the most frequent bigram is the pair ab and it is going to be replaced by 

the nonterminal X1, the new input string for the next iteration is going to be X1cX1ac. Figure 8 

shows the resulting new topology of the automaton for this case. It was modified to consider X1 

no longer as a nonterminal, but as a member of the input alphabet, and consume it instead of the 

pair ab of the previous iteration. A new transition from state q0 to q2 was created, but the 

transition q1 was preserved because it is the path to consume the pair ac. 

 

4. EXPERIMENTS 
 

A test system is being developed using a publicly available Java language library for adaptive 

automaton1 proposed by [29] as the core engine, with the surrounding subsystems such as the 

semantic functions and the iterations that substitutes the frequently occurring patterns. 

 

Publicly available corpora from http://pizzachili.dcc.uchile.cl/repcorpus.html [30] is going to be 

used as the test data. 

 

Different criteria in choosing frequently occurring substrings to be replaced by a grammar rule 

will be experimented. Compression rates, execution time and temporary storage requirements will 

be measured and compared with other techniques. 

                                                
1 https://github.com/cereda/aa 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

48 

 
 

Figure 7. Automaton topology after processing abcabac. 

 

 
Figure 8. Automaton topology after replacing the pair ab by the nonterminal X1. 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

49 

5. CONCLUSION 
 
In this work, we presented the adaptive automaton as a device to find the most repeated bigram 

inside the most frequent trigram in a sequence of symbols. It is used to infer a substitution rule for 

a grammar based compression scheme. This bigram can be specified to be whether prefix or 

suffix of the trigram. After processing the input sequence of iteration, the same automaton is 

further modified to incorporate the non-terminal symbol used by the grammar rule to substitute 

the chosen repetitive pair in a new alphabet. This can reduce the next iteration execution time by 

preserving part of the automaton that would be adaptively built in run-time. 

 

As a future work, the adaptive automaton can be further expanded to analyse n-grams larger than 

trigrams. In addition, a comparative performance study can be done with other techniques. 

Another point to be investigated is the adoption of an adaptive grammatical formalism [31] in the 

description of the inferred grammar with the aim of making some operation in the compressed 

data. 

 

Adaptive rule-driven device allows the construction of large and complex system by simplifying 

the representation of the problem. It allows the automation of the construction of large structures 

by programming the steps of growth in run-time instead of predicting all the combinatorial 

possibilities in design-time. This type of automaton is designed by specifying how the device 

must be incrementally modified in response to the input data, from a simple initial configuration, 

considering its desired intermediate configurations and the output to be obtained by associating 

semantic actions. 

 

ACKNOWLEDGEMENT 
 

The first author is supported by Olos Tecnologia e Sistemas. 
 

REFERENCES 

 
[1] Sipser, M. (2006) “Introduction to the theory of computation”, Thomson Course Technology. 

[2] Lohrey, M. (2012) “Algorithmics on SLP-compressed strings: A survey.” Groups Complexity 

Cryptology, vol. 4, no. 2, pp. 241–299. 

[3] Sakamoto, H. (2014) “Grammar compression: Grammatical inference by compression and its 

application to real data”, in Proceedings of the 12th International Conference on Grammatical 

Inference, ICGI 2014, Kyoto, Japan, September 17-19, 2014., pp. 3–20. 

[4] Tabei,Y., Saigo, H., Yamanishi, Y. & Puglisi, S. J. (2016) “Scalable partial least squares regression 

on grammar-compressed data matrices”, in 22nd KDD, pp. 1875—1884. 

[5] Maruyama, S., Tanaka, Y., Sakamoto, H., & Takeda, M. (2010) “Context-sensitive grammar 

transform: Compression and pattern matching”, IEICE Transactions on Information and Systems, vol. 

E93.D, no. 2, pp. 219–226. 

[6] Tabei, Y. (2016) “Recent development of grammar compression”, Information Processing Society of 

Japan Magazine, vol. 57, no. 2, pp. 172–178 (in Japanese). 

[7] Jez, A. (2016) “A really simple approximation of smallest grammar”, Theoretical Computer Science, 

vol. 616, pp. 141–150. 

[8] Lohrey, M. (2015) “Grammar-based tree compression”, in International Conference on Developments 

in Language Theory. Springer, pp. 46–57. 

[9] De la Higuera, C. (2010) Grammatical inference: learning automata and grammars. Cambridge 

University Press. 

[10] José Neto, J. (2001) “Adaptive rule-driven devices - general formulation and case study”, in CIAA 

2001 6th International Conference on Implementation and Application of Automata, ser. Lecture 

Notes in Computer Science, B. W. Watson and D. Wood, Eds., vol. 2494. Pretoria, South Africa: 

Springer-Verlag, pp. 234–250. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

50 

[11] Rocha, R. L. A. & José Neto, J. (2000) “Adaptive automaton, limits and complexity compared to the 

Turing machine”, in Proceedings of the I LAPTEC, pp. 33–48. 

[12] Fukunaga, S., Takabatake, Y., I, T. & Sakamoto, H. (2016) “Online grammar compression for 

frequent pattern discovery”, CoRR, vol. abs/1607.04446. 

[13] Takabatake, Y., Tabei, Y., & Sakamoto, H. (2015) Online Self-Indexed Grammar Compression. 

Springer International Publishing, pp. 258–269. 

[14] Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A. & Shelat, A. (2005) 

“The smallest grammar problem.” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2554–2576. 

[15] Nevill-Manning, C. G. & Witten, I. H. (1997) “Identifying hierarchical structure in sequences: A 

linear-time algorithm”, J. Artif. Intell. Res. (JAIR) vol. 7, pp. 67–82. 

[16] Larsson, N. J. & Moffat, A. (1999) “Offline dictionary-based compression”, in Data Compression 

Conference, 1999. Proceedings. DCC ’99, pp. 296–305. 

[17] Rytter, W. (2002) Application of Factorization to the Approximation of Grammar-Based 

Compression. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 20–31. 

[18] Ziv, J. & Lempel, A. (2006) “A universal algorithm for sequential data compression”, IEEE Trans. 

Inf. Theor., vol. 23, no. 3, pp. 337–343. 

[19] Sakamoto, H., (2005) “A fully linear-time approximation algorithm for grammar-based compression”, 

Journal of Discrete Algorithms, vol. 3, no. 2–4, pp. 416–430. 

[20] Jez, A. (2015) “Approximation of grammar-based compression via recompression”, Theoretical 

Computer Science, vol. 592, pp. 115–134. 

[21] Bille, P. & Gørtz, I. L. & Prezza, N. (2016) “Space-efficient re-pair compression,” CoRR, vol. 

abs/1611.01479. 

[22] Maruyama, S. & Tabei, Y. (2014) “Fully online grammar compression in constant space.” in DCC, 

Bilgin, A., Marcellin, M. W., Serra-Sagristà, J. & Storer, J. A. Eds. IEEE, pp. 173–182. 

[23] Cormode, G. & Muthukrishnan, S. (2007) “The string edit distance matching problem with moves”, 

ACM Transactions on Algorithms (TALG) vol. 3, no. 1, pp. 2:1–2:19. 

[24] José Neto, J. (1994) “Adaptive automata for context-sensitive languages”, SIGPLAN Notices, vol. 

29, no. 9, pp. 115–124. 

[25] José Neto, J. & Iwai, M. K. (1998) “Adaptive automata for syntax learning” in Anais da XXIV 

Conferência Latinoamericana de Informática - CLEI 98, pp. 135–149. 

[26] Matsuno, I. P. (2006) “Um estudo dos processos de inferência de gramáticas regulares e livres de 

contexto baseados em modelos adaptativos”, Master’s Thesis, Escola Politécnica da Universidade de 

São Paulo, São Paulo, Brazil (in Portuguese). 

[27] Miura, N. K. & José Neto, J. (2017) “Adaptive automata for grammar based compression” in 

Proceedings of the 4th International Conference on Computer Science and Information Technology: 

CoSIT 2017, pp. 173–183 

[28] Cereda, P. R. M. & José Neto, J. (2015) “A recommendation engine based on adaptive automata”, in 

Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 2: 

ICEIS, pp. 594–601. 

[29] Cereda, P. R. M. & José Neto, J. (2016) “AA4J: uma biblioteca para implementação de autômatos 

adaptativos” in Memórias do X Workshop de Tecnologia Adaptativa – WTA 2016, 2016, pp. 16–26 

(in Portuguese). 

[30] Ferragina, P. & González, R. & Navarro, G. & Venturini, R. (2009) “Compressed text indexes: From 

theory to practice”, Journal of Experimental Algorithmics (JEA), vol. 13, pp. 12–31. 

[31] Iwai, M. K. (2000) “Um formalismo gramatical adaptativo para linguagens dependentes de contexto”, 

PhD Thesis, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil (in Portuguese). 

 

 

 

 
 

 

 

 

 

 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017 

51 

AUTHORS 
 

Newton Kiyotaka Miura is a researcher at Olos Tecnologia e Sistemas and a PhD 

candidate in Computer Engineering at Departamento de Engenharia de Computação e 

Sistemas Digitais, Escola Politécnica da Universidade de São Paulo. He received his 

Electrical Engineering degree from Escola Politécnica da Universidade de São Paulo 

(1989) and holds a master’s degree in Systems Engineering from University of Kobe, 

Japan (1993). His research interests include adaptive technology, adaptive automata, 

adaptive devices and natural language processing. 

 

João José Neto is an associate professor at Escola Politécnica da Universidade de São 

Paulo and coordinates the Language and Adaptive Technology Laboratory of 

Departamento de Engenharia de Computação e Sistemas Digitais. He received his 

Electrical Engineering degree (1971), master's degree (1975) and PhD in Electrical 

Engineering (1980) from Escola Politécnica da Universidade de São Pa ulo. His research 

interests include adaptive devices, adaptive technology, adaptive automata and 

applications in adaptive decision making systems, natural language processing, compilers, robotics, 

computer assisted teaching, intelligent systems modelling, automatic learning processes and adaptive 

technology inferences.  
 

 


