
International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

DOI:10.5121/ijcsit.2017.9209 99

A MELIORATED KASHIDA-BASED APPROACH FOR

ARABIC TEXT STEGANOGRAPHY

Ala'a M. Alhusban

and Jehad Q. Odeh Alnihoud

Computer Science Dept, Al al-Bayt University, Mafraq, Jordan

ABSTRACT

Steganography is an art of hiding a secret message within some cover media such as: images, audios,

videos, and texts. Many algorithms have been proposed for Arabic text steganography exploiting some

features of Arabic language such as: diacritics, extension character (kashida), and pointed letters. In this

research we propose a new method to enhance a kashida-based methods for text steganography. In which

each existing kashida can hide two bits instead of only one bit. In addition, security measures is increased

through embedding the secret bits into the cover text by two different ways since the cover text is divided

into two blocks; each one of them is being treated in different way. Moreover, the original kashida in the

cover text is ignored by the extractor. A system is designed to achieve the embedding as well as the

extracting with high degree of security through authentication operation used in its interface. The proposed

approach is tested and compared with the most related kashida-based approaches in terms of capacity and

the results are promising. Furthermore, it overcomes the limitations of other approaches, maintain a

reasonable increases in the files size, and enhances security measures.

KEYWORDS

Arabic text, Steganography, Kashida, Pointed characters, Zero-width character.

1. INTRODUCTION

In general text is considered as one of the hardest cover media type, due to the limited options it

has, these limitations related to the nature of the direct appearance of the letters in their original

representations [14].

Many techniques have been introduced to hide a secret message in English language. However,

fewer methods have been proposed for Steganography in Arabic language. These methods have

mainly focused on some features of Arabic language such as diacritics, extensions (kashidas),

pointed and un-pointed letters and other techniques such as line shifting as well as spaces between

letters [5].

Kashida-based methods are concerned with the extension letter named kashida, which can be

added to the majority of Arabic letters, depending on their positions in the word. Such extension

cannot be added before the first letter of the word or after the last letter of the word, but it can

rather be added between two letters. Moreover, there are certain characters that do not accept

adding kashida after them: (،ؤ،ئ،ر،ز،و،آا،ء،أ،إ), even if they come in the middle of the word [4].

There are two main types of Steganography; linguistic steganography and technical

steganography. Linguistic steganography refers to any form of steganography that uses language

in the cover. There are several examples of linguistic steganography. One of these is called open

codes, in which the readable text can contain certain secret text which can be in certain places in

the text, or can be hidden vertically or in reversed position. Technical steganography is the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

100

method of steganography which uses a tool, a device or a method to conceal the message. Unlike

Linguistic steganography, dealing with the written words is not a must in Technical

Steganography [1]. Steganography process consists of two phases: embedding (hiding the secret

message) and extracting (retrieving the secret message) [11].

2. LITERATURE REVIEW

In [2], Gutub and Fattani proposed adding an extension to a pointed letter to represent a secret bit

of value (1) and adding an extension to a non-pointed letter to represent a secret bit of value (0).

By applying this method, you may add kashidas before or after the letters. Both options of adding

extensions before and after letters can be used within the same document but in different

paragraphs or lines. This method has some problems such as the large number of kashidas

required to represent the secret message, since a kashida represents only one bit, so that the size

of the document will increase significantly. Furthermore, extensive use of kashidas affects

security measure.

In [3], Shahreza and M. Shahreza used a method that is structured as follows; If the representative

forms of "Lam" (its Unicode is 0644) and "Alef" (its Unicode is 0627) letters are used in writing

"La" word, the text viewer sees the "La" word in its special form (" اـل "). In this case, we conclude

that bit (1) is hidden. However, by writing "La" in the normal form instead of inserting the Arabic

extension character between "Lam" (its Unicode is FEEO) and "Alef" (its Unicode is FE8E)

characters, it is written by using the code of the correct shape of each character ("لا"). We,

therefore, conclude that bit (0) is hidden. This method is so limited because it is implemented

only within the "La" word only.

In [4], Al-Nazer and Gutub proposed a steganography method that utilizes the extension character

(kashida) in Arabic language has been built to hide a secret message. The main goal is to

maximize the capacity by utilizing all possible locations for kashida in Arabic letters. A kashida is

put where it is applicable and the bit representation of the secret message has a value of (1). In

other words, if the extendable character must carry a secret bit of value (1), the kashida is

inserted. Otherwise, it is not inserted. Unfortunately, this method uses a kashida to hold a single

bit every time.

In [5], Al-Haidari. et. al. developed an approach, in which the number of kashidas in one word is

delimited by some equations to improve security. This method enhances the security over the

previous kashida -based methods, but it still stores one bit in each kashida.

In [6], Gutub. et. al. use a secret key to generate random kashida characters added to words where

a secret message is then embedded in the words as a watermarking code. The first addition of

random kashidas is designed for a confusion purpose to ensure security. After that, selected

kashidas are embedded based on the needed secret data to form the watermarking process in order

to save its applications. This method uses extra kashidas to ensure security. Nonetheless, this

maximizes the size of the cover text needed to hide the secret message.

In [7], Mahfoodh. et. al. presented method added one kashida to represent the secret bit (0) and

two consecutive kashidas when the hidden bit is (1). The number of kashidas needed using this

approach is huge. Besides the noticeable increasing in the file size, the extensive use of kashidas

affects the security.

Odeh and Elleithy [8], proposed a letter connectivity and extension to hide one bit approach.

Moreover, they used zero-width letter, which is a letter used to connect two letters with a small

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

101

effect on the shape of the two connected letters and no effect on the meaning of the word, to hide

two bits in each connective character. Table 1 shows the coding deployed in this method.

Table 1. Coding of method

Extension Zero Width Code Letter effect

No No 00 No effect

Yes No 01 Extension

No Yes 10 Zero Width

Yes Yes 11 Extension + Zero

Width

This method merges two techniques to achieve the goal of hiding a secret message in some cover

media prior to the encoding process. The first technique is to add a kashida and the second is to

add a letter named 'zero-width letter', which has its own Unicode symbol (U+200D). This

character causes the previous letter to appear as a connected letter. In this study, we develop a

new method in which a letter can hide up to two bits by using only kashidas instead of using

kashidas technique as well as zero-width technique.

In [9], Alginahi. et. al. inserted kashidas before a specific list of characters. If a kashida is

inserted before any of these characters, it means that there is a secret bit (1), and if there is one of

these characters without a kashida before it, this means that there is a secret bit (0). This method

gives better security than others, but it provides less capacity due to the addition of kashidas

before a specific number of characters as well as the representation of only one bit at a time.

In [10], Odeh. et. al. applied four scenarios randomly in order to improve data privacy. These four

scenarios are. First scenario, adding Kashida after pointed letters to hide one, otherwise, hide

zero. Second scenario, adding Kashida after non-pointed letters to hide one, otherwise, hide zero.

Third scenario, adding Kashida after letters to hide one, otherwise, hide zero. Fourth scenario,

adding Kashida after letters to hide zero, otherwise, hide one. Then, random selection is deployed

to select one of these scenarios. However, each one of these scenarios can hide one bit at a time

(either 1 or 0) in each extendable character.

In [12], Alginahi. et. al. encoded the original text depending on a predefined key. A kashida is

placed after a set of characters considering whether the letter is assumed to have high frequency

of recurrence in general or not. Each letter hides only one bit at a time.

In [15], Jabri and Ibrahim converted the secret message to an encrypted bits set. Then, they

exploited the spaces and the extendable characters to hide the encrypted bits. If the secret bit to be

embedded is one and the current character in the cover text is an extendable character, this letter

is extended by a kashida, and no kashida is added if the secret bit to be embedded is zero. In the

same way, if the current character in the cover text is a space between two words and the secret

bit to be embedded is one, an additional space is added after the original one, and no additional

space is added if the secret bit to be embedded is zero. This method uses the extendable characters

as well as the spaces between letters to hide one bit at a time.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

102

3. THE PROPOSED APPROACH

3.1. EMBEDDING PHASE

The proposed method depends on the nature of the letter before and after the kashida instead of

the nature of just one of the surrounding letters as used in the previous methods.

In Arabic language, 15 letters out of 28 alphabet letters are pointed by one, two or three points.

Hence, we can use the pointed letters to hide some secret bits and the unpointed letters to hide

some other bits. In this study, the nature of the letter, if it is a pointed letter or an unpointed letter,

is exploited to hide some secret bits in an extension (kashida) between two letters. It is used as a

formatting technique in order to lengthen a specific letter without having any change on the

meaning of the word. For example, the word "كان" consists of three letters ("ك","ا","ن"). If we add

a kashida after the first letter, the word will be:"كـان". The word still has the same meaning it had

before adding the kashida despite the fact that it consists now of four letters ("ك","ـ","ا","ن").

The embedding process starts with dividing the cover text into two blocks in which each block is

being dealt with using a special table. The dividing process is achieved by counting the number of

words of the cover text (m words), then dividing the number of words by two. After that, we take

the integer number resulted (n). The words from 1 to n are then being treated using a special table,

while the words from n+1 to m are being treated using another special table. In addition, the

secret message is divided into small blocks. Each one of them consists of two bits. Table 2, shows

the coding used for the first block.

Table 2. Embedding Code of the First Block

Secret

Bits

The Letter before

Kashida

The Letter

after Kashida

00 Pointed Pointed

01 Pointed Unpointed

10 Unpointed Unpointed

11 Unpointed Pointed

While for the second block, Table 3 is deployed.

Table 3.Embedding Code of the Second Block

For instance, to hide the secret message: "110100010011" in the cover text:

" بلغت الاستثمارات السعودية في الأردن نحو عشرة مليارات دولار ", we divide the secret message into blocks,

each two bits by their own:

Secret

Bits

The Letter before

Kashida

The Letter

after

Kashida

00 Unpointed Unpointed

01 Unpointed Pointed

10 Pointed Pointed

11 Pointed Unpointed

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

103

Table 4. Secret Message

110100010011

11 01 00 01 00 11

The cover text is divided into two blocks by dividing the number of the words of the cover text by

two:
Table 5. Cover Text

 (cover text) بلغت الاستثمارات السعودية في الأردن نحو عشرة مليارات دولار

 الأردن نحو عشرة مليارات دولار
(block no.2)

 بلغت الاستثمارات السعودية في
(block no.1)

The embedding process starts from right to left by taking the first two bits which are "11", and

then we search for an un-pointed letter followed by a pointed letter in the first block of the cover

text, to put a kashida between them, since "11"means that there must be a kashida between an un-

pointed letter and a pointed letter (according to the table specified for the first block). The first

case we find is that the letter "ل" is followed by the letter "غ", and thus we insert a kashida

between the two letters and move on to the next two bits which are "00". We then search for a

pointed letter followed by another pointed letter starting from the letter which is placed after the

kashida we have inserted "غ". The first un-pointed letter followed by a pointed letter we find here

is the letter "غ" followed by the letter "ت". Then, we continue to the next two bits "01" and search

for a pointed letter followed by an un-pointed letter. Here, we find that the letter "ث" is followed

by the letter "م", so we insert a kashida between them. After that, we take the next two bits which

are "00", and search for a pointed letter followed by another pointed letter in the cover text to put

a kashida between them. The first case we find is that the letter "ي" is followed by the letter "ة",

so we insert a kashida between the two letters and move on to the next two bits which are "01".

We now search for a pointed letter followed by an un-pointed letter. While we search, we reach

the end of the first block without finding a pointed letter followed by an un-pointed letter, so we

move to the second block. According to the table specified for the second block, "01" means that

there must be a kashida between an un-pointed letter and a pointed letter. The first case we find is

the letter "ع" and the letter "ش", so we put a kashida between them. After that, we continue to the

last two bits "11" and search for a pointed letter followed by an un-pointed letter. Here, we find

that the letter "ش" is followed by the letter "ر". Consequently, we insert a kashida between them.

At this point, the embedding process comes to an end since all the secret bits have been embedded

within the cover text.

- Original Kashida Case:

In order to distinguish between the original kashida in the text and the added kashidasin the

embedding process, an additional kashida is added after any original kashida in the sentence. For

example, if the cover text is" ينـادي الإسلام للسلام بين الناس، ويدعو إلى التسامح ونبذ التعصب ", and there is an

original kashida in the word "ينـادي" between the letters "ن" and "ا", the system, in this case, adds

another kashida after this kashida in order to notify the extractor to ignore it when extracting the

hidden bits. If we enter this sentence as the cover text and enter the secret message "01", "01"

means that there must be a kashida between a pointed letter and an un-pointed letter, according to

the table specified for the first block. The first case the extractor finds is the letter "ن" followed by

the letter "ا" in the first word ("ينـادي"), but since there is an original kashida between them, it adds

another kashida after the original one to inform the extractor that this is an original kashida, then

continues searching for a pointed letter followed by an un-pointed letter. It finds the letter "ن"

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

104

followed by the letter "ا" in the fifth word ("الناس"), so it adds a kashida between them. Since there

are no more bits in the secret message, the embedding process ends.

- Embedding Algorithm:

The embedding process deals with four groups of letters:

- Pointed letters that accept a kashida after them (PL1):

)ش، ث، ي، ق، ت، ن، ف، غ، ظ، ض، خ، ب(

- Pointed letters that accept a kashida before them (PL2):

)، ج، بة، ش، ث، ي، ق، ت، ن، ف، غ، ظ، ض، ز، ذ، خ(

- Un-pointed letters that accept a kashida after them (UPL1):

)ص، ط، ع، ك، ل، ه، س، م، ح(

- Un-pointed letters that accept a kashida before them (UPL2):

)ك، ل، م، س، ه، و، ص، ط، ع، ر، د، ح، أ، ا، آ(

Figure 1, shows the proposed embedding algorithm.

Emb_Alg

Input : Cover Text (CT), Secret Message (SM)

Output: Stego Text (ST)

1) Let i:= -1, c:= -1, m = No. of words in CT

2) If m:= 1

 Block 1 := one word

Block2 := empty

Else

 Block 1 := words(1 To n = trun(m/2))

Block2 := words (n+1 To m)

3) i:= i + 2

Read 2 bits (b1, b2) SM, at positions i, i+1.

4) c:= c + 1

read 2 characters CT, at positions c, c+1.

If {

If {

 If {

- insert (-) after x1

- If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) } }

 Else go to (4)

Else if {

If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) } }

 Else go to (4)

Else if {

 If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

105

Else go to (3) } }

 Else go to (4)

 Else

 If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) }

 Else go to (4) }// End of Block 1

Else // x1 && x2 belongs to block 2

If {

 If {

- insert (-) after x1

- If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) } }

 Else go to (4)

Else if {

 If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) } }

 Else go to (4)

Else if {

 If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) } }

 Else go to (4)

 Else

 If {

 -insert (-) after x1

 - If (i := length (SM) || c:= length (CT) then EXIT

Else go to (3) }

 Else go to (4) }// End of Block 2

Figure 1. Embedding Algorithm

3.2. EXTRACTING PHASE

In a similar way to the embedding process, the extracting of the secret message from the stego

text starts by dividing the message (stego text) into two blocks in which each block is being

considered using a special table. The dividing process is achieved by counting the number of

words of the cover text (m words). Then we divide the number of words by two to get the

integer number (n). The words from 1 to n are then being treated using a special table and the

words from n+1 to m are being treated using another special table. The extractor starts dealing

with the first block by searching from right to left for a kashida. If a kashida is found, the

extractor takes the letter before the kashida as well as the letter after it and looks in the

extracting table specified for the first block in order to extract the two bits which the founded

kashida represents. These two bits are inserted in the secret message obtained. Then, the

extractor continues searching for another kashida in the first block. If the extractor finds a

kashida, it looks for the nature of the letters surrounding the kashida and looks in the first

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

106

block extracting table to extract the two bits that the kashida represents. If the first block is

finished, the extractor moves to the second block and starts searching for kashidas in the same

way. If any kashida is found, the extractor looks at the table of the second block to interpret

what the kashida represents. For example, if we have the stego text: " ورحمـة الـله الـسلام عليـكم
 this sentence consists of five words. Each one of these words has one kashida (the ,"وبركاتـه

word "الـسلام " has a kashida between the letters "ل" and "س". The word "عليـكم" has a kashida

between the letters "ي" and "ك". The word " ورحمـة" has a kashida between the letters "م" and

 The decoder divides .("ل" and "ل" has a kashida between the letters "الـله" and the word ,"ة"

this sentence into two blocks by dividing the number (5) by (2). The integer number it gets is

(2), so the first block consists of the first two words and the second block consists of the rest

words of the sentence.

 The first block"الـسلام عليـكم" is treated using Table 6.

Table 6. Extracting Table of the First Block

Secret Bits The Letter before Kashida The Letter after Kashida

00 Pointed Pointed

01 Pointed Un-pointed

10 Un-pointed Un-Pointed

11 Un-pointed Pointed

The Extracting process starts from the right to the left searching for a kashida. If the kashida is

found and the surrounding letters of it belong to one of the two sets (pointed or un-pointed

letters), it looks for the two bits this kashida represents. The first kashida we find here is placed in

the first word which belongs to the first block ("الـسلام") between the letter "ل" and the letter "س",

which are an un-pointed letter and another un-pointed letter, so the extractor looks into the table

to find the two bits represented. These two bits are "10", so these bits are inserted in the secret

message extracted by the extractor. After that, we move to the left, searching for another kashida.

We will find another one in the second word ("عليـكم") between the letter "ي" and the letter" ك" ,

which are a pointed letter and an un-pointed letter, according to the table. This reflects the two

bits: "01". This is the last existing kashida in the first block. Consequently, the next kashidas

found will be extracted using Table 7, which specified for the second block:

Table 7. Extracting Table of the Second Block

Secret Bits The Letter before Kashida The Letter after Kashida

00 Un-pointed Un-pointed

01 Un-pointed Pointed

10 Pointed Pointed

11 Pointed Un-pointed

The first kashida found in the second block is placed in the word "ورحمـة" between the letters"م"

and "ة", which represents the two bits: "01". Since it is located between an un-pointed letter and a

pointed letter, the next kashida we find is the kashida in the word "الـله" between the letters "ل"

and "ل". We add the two bits:"00" to the secret message extracted because the kashida was found

between an un-pointed letter and another un-pointed letter. The last kashida in the second block is

placed in the word "وبركاتـه" between the pointed letter "ت" and the un-pointed letter "ه", so we

add "11" to the secret message extracted. The secret message obtained is: "11 00 01 01 10".

Figure 2, shows the proposed extracting algorithm.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

107

- Extracting Algorithm:

Input: Stego text, pointed characters list, un-pointed characters list

Output: Secret message

Abbreviations: pointed characters list: PL, un-pointed characters list: UPL, character:

char

1. Get stego text

2. If the number of the words of the cover text is 1

 The first block of the cover text consists of the word number one

 The second block is empty

Else

 Divide the cover text into two blocks from right to left:

 N:= number of the words of the cover text

 J:= integer value results from dividing

 The first block of the cover text: (words from 1 to J)

 The second block of the cover text: (words from J+1 to N)

3. While a character in the first block exists (from right to left):

If the character is "_":

 If the character before it PL

 If the character after it PL

 Add 00 to the secret message

 Else if the character after it UPL

 Add 01 to the secret message

 Else if the character before it UPL

 If the character after it UPL

 Add 10 to the secret message

 Else if the character after it PL

 Add 11 to the secret message

4. While a character in the second block exists(from right to left):

If the character is "_":

 If the character before it UPL

 If the character after it UPL

 Add 00 to the secret message

 Else if the character after it PL

 Add 01 to the secret message

 Else if the character before it PL

 If the character after it PL

 Add 10 to the secret message

 Else if the character after it UPL

 Add 11 to the secret message

5. Output: secret message

Figure 2. Extracting Algorithm

3.3. SYSTEM DESIGN

The implementation of the proposed method is represented by a system designed using c#. This

system is called "ATSKS", which refers to "Arabic Text Steganography using kashida System".

The system processes the operations of embedding as well as extracting, but before that there is a

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

108

hashing phase used to secure the system. If a user passes it correctly, they will enter the correct

system. Otherwise, they will enter a fake system. Three tables are used in this system; one table

for hashing and two for embedding as well as extracting.

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1. CAPACITY

The capacity ratio is computed by dividing the amount of hidden bytes over the size of cover text

media in bytes as in [5]. One of the major contributions of the proposed method introduced in this

research is to hide two bits using only one kashida depending on its position between two letters.

This method is supposed to increase the capacity of the hidden message since a kashida can hide

two bits. In addition, there is no need to merge two methods to hide two bits in one kashida. We

have used 10 different essays as cover text files of various sizes to hide secret data. Then capacity

ratio of each cover text file is computed. Table 8, shows the capacity ratio of the proposed

method. We have also calculated the maximum possible capacity (optimistic case).

Table 8. Capacity ratio of the proposed method

Essay

No.

Website Address Cover Text

Size

(Bytes)

No. of

Hidden

Bits

Capacity

Ratio

 (%)

1 http://motaded.net/show-2567052.html 362 352 12.15

2 http://www.shorouknews.com/news/view.

aspx?cdate=04032016&id=944d3cee-

c368-4864-8420-8b5e6839fb65

674 664 12.31

3 http://www.alanbatnews.net/print.php?nid

=120388

924 896 12.12

4 http://assabeel.net/culture/item/161130 1036 1056 12.74

5 http://www.al-

ayyam.ps/ar_page.php?id=109f47edy278

874093Y109f47ed

1174 1192 12.70

6 http://www.alriyadh.com/1134698 1203 1224 12.72

7 http://www.elkhabar.com/press/article/10

1630

2061 2056 12.47

8 http://www.ahram.org.eg/NewsQ/483345.

aspx

2361 2408 12.74

9 http://www.alwatannews.net/NewsViewer

.aspx?ID=118537

5442 5544 12.73

10 http://www.alrai.com/article/771518.html 20435 20400 12.48

The capacity ratio of the proposed approach for each one of the essays doubles the capacity ratio

of most of the previous kashida approaches that hided one bit at a time. For example, the

extendable characters found in essay number 1 are 178. These characters are able to store 356 bits

at best using the proposed method, while they can store only 178 bits at best using the previous

kashida approaches which store 1 bit at each extendable location.

In contrast with [8], we do not need to add another character beside the kashida to represent two

bits. Each single existing kashida using the proposed method hides two bits by its own without

merging it with a zero-width character which is used in this study just to distinguish between the

original kashida and the kashida used to store secret bits. Table 9, shows the capacity ratio values

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

109

of three other methods using the10 essays in Table 8 as cover text files. We have also calculated

the maximum possible capacity (optimistic case):

Table 9. Capacity ratio of methods [9, 15]

Essay

No.

Cover

Text

Size

(bytes)

No. of

Hidden

Bits

Using

Method

[9]

Capacity

Ratio

Using

Method

[9] (%)

No. of

Hidden

Bits

Using

Method

[15]

Capacity

Ratio

Using

Method

[15] (%)

1 362 72 2.49 248 8.56

2 674 152 2.81 464 8.61

3 924 192 2.60 616 8.33

4 1036 232 2.80 720 8.69

5 1174 232 2.47 824 8.78

6 1203 216 2.24 856 8.89

7 2061 448 2.72 1488 9.02

8 2361 480 2.54 1472 7.79

9 5442 952 2.19 3824 8.78

10 20435 4712 2.88 14392 8.80

The average capacity ratio of method [9, 15] is 2.57%, and 8.63% respectively. The average

capacity ratio of the proposed method is 12.52%. It is obvious that the capacity ratio of the

proposed method outperforms the capacity ratio achieved by [9, 15].

We have calculated the results by taking all the extendable characters in the cover text. Then, we

divided them by 8 to get the number of secret bytes that we may hide within the cover text. After

that, we divided the size of secret message (bytes) by the size of cover text (bytes) to get the

capacity ratio. By contrast, in [15], they took all the extendable characters as well as the

whitespaces as secret message carriers. Then, they divided them directly by the total number of

characters and whitespaces. It is obvious that this way of calculation is incorrect and yield to

misleading results.

4.2. EMBEDDING RATIO

Another measurement used to evaluate the proposed approach is the "Embedding Ratio(ER)", as

in [13] which is used to determine the total fitness of the hidden text that can be embedded in

cover text:

 X 100% …..(1)

 X 100% …..(2)

We have calculated the embedding ratio of the same essays:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

110

Table 10. Embedding Ratio Values of the Proposed Method

Essay No. Cover Text Size

(bytes)

Number of

Embedded Bits

Embedding Ratio

(%)

1 362 352 10.84

2 674 664 10.96

3 924 896 10.81

4 1036 1056 11.30

5 1174 1192 11.26

6 1203 1224 11.28

7 2061 2056 11.09

8 2361 2408 11.30

9 5442 5544 11.30

10 20435 20400 11.09

These embedding ratio values exceed the values of the embedding ratio for the previous methods

which hide one bit at a time, because the proposed method uses less number of kashidas to embed

the same number of secret bits within the same cover text. The following table shows the

embedding ratio values of the same 10 essays used as cover text files which have been used in

Table 10 for two other methods:

Table 11. Embedding Ratio Values of Three Previous Methods

Essay

No.

Cover

Text Size

(bytes)

No. of

Embedded

Bits

Using

Method [9]

Embedding

Ratio

Using

Method [9]

(%)

No. of

Embedded

Bits

Using

Method [15]

Embeddi

ng Ratio

Using

Method

[15] (%)

1 362 72 2.43 248 7.88

2 674 152 2.74 464 7.92

3 924 192 2.53 616 7.69

4 1036 232 2.72 720 7.99

5 1174 232 2.41 824 8.06

6 1203 216 2.19 856 8.17

7 2061 448 2.65 1488 8.28

8 2361 480 2.83 1472 7.23

9 5442 952 2.14 3824 8.07

10 20435 4712 2.80 14392 8.09

The average embedding ratio of method [9, 15] is 2.54%, and 7.94% respectively. While, the

proposed method achieves 11.12% as average embedding ratio. This was expected, since a

capacity ratio affects positively or negatively the embedding ratio.

5. CONCLUSION

A new method to hide secret message within Arabic texts has been proposed. This method

depends primarily on the nature of letters; whether they are pointed or un-pointed letters. We have

exploited this feature of Arabic text to add a kashida (-). Since there are two cases of each letter;

pointed or un-pointed, a table of four cases is used to add a kashida between two letters every

time to hide two bits in each kashida. The most common kashida-based methods hided just one

bit in each kashida or used a kashida as well as a zero-width character to hide two bits, while the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

111

proposed method hided two bits using kashida without the need to add the zero-width character.

Adding zero-width character increases the file size dramatically, which affects the security

measures. By hiding two bits in each kashida, the capacity is remarkably increased as compared

with some of the well-known kashida-based approaches. The dependency on the nature of both of

the surrounding letters of the kashida as well as dividing the cover text into two blocks, each one

is being dealt with in a different way, increases the security of the proposed method. Since,

intruders are not able to expect the method of extraction. Furthermore, the original kashida case is

considered. Ignoring the original kashida in the cover text affects the accuracy of extraction

phase. A system of embedding the secret message within a cover text and extracting the secret

message from a stego text has been built. This system has a hashing phase in order to distinguish

between the authorized user and the un-authorized user, which may increase the robustness of the

system. In some cases, the capacity ratio of the proposed method may affected by the sequences

of the secret bits, and suitable appearances of the targeted kashida(-). This might be considered as

limitation that may yield to undesirable results in such cases. As a future work, we should

overcome this drawback by proposing a suitable method to make use of all kashidas irrespective

to the sequences of the secret bits.

REFERENCES

[1] G. Kipper, (2003) Invistigator's Guide to Steganography, Auerbach Publications, ISBN

9780849324338, October 27.

[2] Gutub, A. and M. M. Fattani, (2007) "A Novel Arabic Text Steganography Method Using Letter

Points and Extensions", International Journal of Computer, Electrical, Automation, Control and

Information Engineering Vol: 1, No: 3.

[3] M. S. Shahreza and M. H. Shahreza, (2008) "An Improved Version of Persian/Arabic Text

Steganography Using "La" Word", Proceedings of IEEE 2008 6th National Conference on

Telecommunication Technologies and IEEE 2008 2nd Malaysian conference on Photonics, 26-27

August, Putrajaya, Malaysia, pp: 372-376.

[4] A. Al-Nazer, A. Gutub, (2009) "Exploit Kashida Adding to Arabic E-Text for High Capacity

Steganography", Proceedings of Third IEEE International Conference on Network and System

Security, Pages: 447-451. DOI: 10.1109/NSS.2009.21.

[5] F. Al-Haidari, A. Gutub, K. Al-Kahsah, and J. Hamodi, (2009) "Improving Security and Capacity for

Arabic Text Steganography Using 'Kashida' Extensions", Proceedings of IEEE/ACS International

Conference on Computer Systems and Applications.pp: 396-399.DOI:

10.1109/AICCSA.2009.5069355

[6] A. Gutub, F. Al-Haidari, K. Al-Kahsah, and J. Hamodi, (2010) "E-Text Watermarking: Utilizing

'Kashida' Extensions in Arabic Language Electronic Writing", Journal of Emerging Technologies in

Web Intelligence, Vol. 2, No. 1, Pages: 48-55. DOI: 10.4304/jetwi.2.1.48-55.

[7] A. Gutub, W. Al-Alwani, and A. Bin Mahfoodh, (2010) "Improved Method of Arabic Text

Steganography Using the Extension ‘Kashida’ Character", Bahria University Journal of Information

& Communication Technology Vol. 3, Issue 1, pp: 68-72.

[8] A. Odeh and K. Elleithy, (2012) "Steganography in Arabic Text Using Zero Width and Kashidha

Letters", International Journal of Computer Science & Information Technology (IJCSIT), Vol. 4,

Pages: 1-11. DOI: 10.5121/ijcsit.2012.4301.

[9] Y. M. Alginahi, M. N. Kabir and O. Tayan, (2013) "An Enhanced Kashida-Based Watermarking

Approach for Increased Protection in Arabic Text-Documents", Proceedings of International

Conference on Electronics, Computer and Computation (ICECCO). DOI:

10.1109/ICECCO.2013.6718288

[10] A. Odeh, K. Elleithy and M. Faezipour, (2013) "Steganography in Arabic Text Using Kashida

Variation Algorithm (KVA)", Proceedings of the 2013 IEEE Systems, Applications and Technology

Conference (LISAT). DOI: 10.1109/LISAT.2013.6578239.

[11] Mersal, S., Alhazmi S., R. Alamoudi and N. Almuzaini, (2014) "Arabic Text Steganography in

Smartphone", International Journal of Computer and Information Technology (ISSN: 2279 – 0764),

Vol. 03, No. 02, pp. 441-445.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

112

[12]Y. Alginahi, M. Kabir and O. Tayan, (2014) "An Enhanced Kashida-Based Watermarking Approach

for Increased Protection in Arabic Text- Documents Based on Frequency Recurrence of Characters",

International Journal of Computer and Electrical Engineering, Vol.6, No. 5. DOI:

10.177706/ijcee.2014.v6.857.

[13] B. Osman, R. Din and M. R. Idrus, (2015) "Capacity Performance of Steganography Method in Text

Based Domain", ARPN Journal of Engineering and Applied Sciences, Vol. 10, No.

3.http://repo.uum.edu.my/id/eprint/14832.

[14] R. Saluja, K. Kanwal and S. Dahyia, (2014) "Review on Steganography for Hiding Data",

International Journal of Computer Science and Mobile Computing, Vol.3 No. 4, pp: 225-229. ISSN

2320–088X.

[15] R. Jabri and B. Ibrahim, (2016) "Capacity Improved Arabic Text Steganography Technique Utilizing

‘Kashida’ with Whitespaces", Proceedings of the Third International Conference on Mathematical

Sciences and Computer Engineering (ICMSCE2016), pp: 38-44, Langkawi, Malaysia.

AUTHORS

Jehad Q. Odeh received his Ph.D. of Computer Science from University Putra Malaysia in

2004. Currently, Dr. Jehad is an Associate Professor at the Faculty of Information

Technology in Al al-bayt University, Jordan. His research areas include image retrieval and

indexing, image processing, and steganography. He has published a number of papers

related to these areas, in addition to supervision on many MSc theses in different computer

science fields.

Ala'a M. Alhusban received here MSc. of computer Science from Al al-Bayt university in

2017. Her research areas include text retrieval and indexing, and steganography.

