
International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

DOI:10.5121/ijcsit.2017.9303 31

CYBER INFRASTRUCTURE AS A SERVICE TO

EMPOWER MULTIDISCIPLINARY, DATA-DRIVEN

SCIENTIFIC RESEARCH

Xiangrong Ma
1
, Zhao Fu

1
, Yingtao Jiang

1
, Mei Yang

1
, Haroon Stephen

2

1
Department of Electrical and Computer Engineering, University of Nevada, Las Vegas,

Las Vegas, USA 89154
2
Department of Civil and Environmental Engineering and Construction

University of Nevada, Las Vegas, Las Vegas, USA 89154

ABSTRACT

In supporting its large scale, multidisciplinary scientific research efforts across all the university campuses

and by the research personnel spread over literally every corner of the state, the state of Nevada needs to

build and leverage its own Cyber infrastructure. Following the well-established as-a-service model, this

state-wide Cyber infrastructure that consists of data acquisition, data storage, advanced instruments,

visualization, computing and information processing systems, and people, all seamlessly linked together

through a high-speed network, is designed and operated to deliver the benefits of Cyber infrastructure-as-a-

Service (CaaS).There are three major service groups in this CaaS, namely (i) supporting infrastructural

services that comprise sensors, computing/storage/networking hardware, operating system, management

tools, virtualization and message passing interface (MPI); (ii) data transmission and storage services that

provide connectivity to various big data sources, as well as cached and stored datasets in a distributed

storage backend; and (iii) processing and visualization services that provide user access to rich processing

and visualization tools and packages essential to various scientific research workflows. Built on commodity

hardware and open source software packages, the Southern Nevada Research Cloud(SNRC)and a data

repository in a separate location constitute a low cost solution to deliver all these services around CaaS. The

service-oriented architecture and implementation of the SNRC are geared to encapsulate as much detail of

big data processing and cloud computing as possible away from end users; rather scientists only need to

learn and access an interactive web-based interface to conduct their collaborative, multidisciplinary, data-

intensive research. The capability and easy-to-use features of the SNRC are demonstrated through a use

case that attempts to derive a solar radiation model from a large data set by regression analysis.

KEYWORDS

Cyber infrastructure-as-a-Service; cloud computing; big data; Map Reduce; data-driven scientific research.

1. INTRODUCTION

Funded by the U.S National Science Foundation(NSF) since 2013, the Nevada Solar Nexus

project[1]marks a long term, large scale, state-wide effort to study the impacts of solar energy

generation on limited water resouces and fragile desert environment in the state of Nevada. One of

the key elements of the Nexus project, truly multidisciplinary by nature, is to build and leverage its

Cyber infrastructure(CI) to support a large array of Nexus researchers (college professors, post

docs, graduate students, undergraduate students, and community participants) for their research

endeavors. Up to date, these Nexus researchers have collected over 30GBytes of geospatial data

(atmosphere, precipitation, soil, and vegetation) and 1TB of image data from 13 sensor towers at

multiple sites, and the size of the data collected is continuously growing every day at a very fast

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

32

pace. These valuable data are all delivered and deposited directly to the Nevada Research Data

Center (NRDC), a data repository physically located at a university campus in northern Nevada.

Except the data storage and management services offered by the NRDC, the southern Nevada is

tasked to provide all the remaining cyber infrastructure services, including data integration, data

mining, data analysis/processing, and data visualization as well as other needed computing and

information processing services, through a private cloud, named as the Southern Nevada Research

Cloud(SNRC). All the sensors and the CI services provided by NRDC and SNRC are seamlessly

linked together by high-speed networks. If fully realized, this Nexus CI will drive the entire

research community to take advantage of all its capabilities to pursue their data-intensive,

multidisciplinary research ambitions.

Design, implementation, and operation of the Nexus CI follows the increasingly prevalent “as a

service” model, hereafter dubbed as Cyber infrastructure-as-a-Service (CaaS). With CaaS as the

delivery model, the SNRC is specially designed to bring traditionally separate High Performance

Computing(HPC) and Big data processing platforms together to create unified cloud platform. In

addition, through a web-based service endpoint, integration of SNRC and NRDC allow send users

to effortlessly access and process remote large datasets through high-speed networks and advanced

data processing and storage capabilities. The CaaS can be divided into three major service groups:

Figure1. The major service groups and servcies of the CaaS model.

1) Supporting Infrastructural Services that comprise all types of hardware, operating system,

management tools, virtualization, and message passing interface(MPI);

2) Data Transmission and Storage Services that provide the connectivity to Big data sources,

as well as cached and stored datasets in a distributed storage backend;

3) Processing and Visualization Services that provide user an access to computing resources

and tools essential to process and visualize large datasets.

All the major services in each of the three service groups in CaaS are shown in Figure 1. End user

can access all of these services through a web-based interface. Note that majority of the services

are built upon open source projects, which considerably cuts down the development cost and time.

The time and financial resources thus saved are rather diverted to the components unique to the

Nexus CI, such as the data caching and system management. In what follows, Section 2 details the

design and implementations related to the infrastructural level services, such as hardware,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

33

Operating System, virtualization and networking. Section 3 and Section 4 cover the design and

implementation issues of the storage and processing subsystems, respectively. The capability and

easy-to-use feature of the SNRC are demonstrated through a use case described in Section

5.Finally, the paper is summarized in Section 6.

2. SUPPORTING INFRASTRUCTURAL SERVICES

2.1. Hardware Resources

All the hardware components needed by the SNRC were determined by evaluating various factors,

tradeoffs and scenarios, including cost, turn-around time, estimation and prediction of current and

future data volumes, number of users to be supported, vendor reputation, and type and level of

technical support from vendors. The major hardware components of the SNRC are listed in Figure

2, and they are housed in a server rack shown in the Figure.

Figure2. The hardware components of SNRC.

2.2. Operating System

Traditional GNU/Linux distributions have some limitations in a cloud-computing context, for

reasons summarized below.

• Compatibility: Most traditional Enterprise Linux distributions have release a cycle spanning

three to five years, depending on certain Long-term support kernel and foundational tools

and libraries (e.g. C libraries). While a new distribution is still under development, often

those outstanding distributions may have already become obsolete, making them

incompatible with many tools which are desired or must be supported for scientific research.

• Unnecessary bloat: The one-size-fits-all design tends to make the distributions

unnecessarily large and bloat, which leads to an enlarged test matrix for a new release.

• Unoptimization: Since all the binary distributions attempt to support as many platforms as

possible, they usually target the most popular micro-architectures in the market. Thus, new

instructions and other less popular hardware resources are typically poorly supported, or

even left out unsupported.

These limitations forced us to develop a new distribution to meet the needs of the SNRC. The new

distribution was based on Gen too Linux [6], a source-based rolling release meta distribution

which offers a large degree of flexibility for distribution customization and optimization. Our

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

34

distribution was highly customized to include just the essentials and User land applications, while

performance optimization was performed to reflect the specific processor architectures and

application environment that we were working with. Security was enhanced with kernel hardening

[7].The distribution already saw an average of 2% performance gain with compiler flags tuning

only. Introducing faster libraries had another huge impacts on application performance; we noticed

up to 36X speedup on matrix operations when choosing Open BLAS[8]over net lib[9]. However,

deployment of the new distribution on physical computing nodes met some practical problems.

First, this distribution experienced resistance from the system administrative stuff that did not

possess the skill set and understanding of the underline operating system internals. Secondly,

support of physical hardware required more device drivers and administrative tools, which were

not always useful in user application environment. Instead, Centos 7 was finally a dopted to be the

base OS running on the physical machines (Figure 1) upon its public release, and the new

distribution was later repacked to include cloud image, running inside the virtual machines and

containers.

2.3. Virtualization and Networking

Virtualization helps improve the scalability, efficiency and availability of resources. Traditional

virtualization tools, such as libvirt, were found to have poor scalability from our own experimental

study.

.

Figure 3. The Network Architecture.

As the number of virtual instances increases, the network performance could drop dramatically. In

our experiment,40 virtual instances were setup by libvirt with KVM[10], but2 out of the 40 nodes

suffered a packet lose rate of more than90% constantly. This serious problem was solved by

adding Open Stack[11] and Open vSwitch (OVS) [12]. OVS supports standard management

interfaces and protocols and enables network automation through programmatic extension. To

isolate traffic between data processing and cluster control/management services, networks were

segmented into three different Virtual LANs (VLANs) as illustrated in Figure3.

Figure 4 shows how traffic is routed from the North to the South (i.e., traffic between a virtual

instance and the external network). Firewall and packet state tracking are handled by the security

groups, which can be configured within Open Stack. To send packets from a virtual instance to the

external network (the Internet in our case), firstly, the instance tap interface forwards packets to the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

35

Linux bridge (qbr), after which the packets pass through the OVS integration bridge (br-int) port

(qvb). Patch ports, a pair of virtual devices that act as a patch cable, pair the integration bridge and

tunnel bridge. The tunnel bridge sends the data packets to the controller node over a physical

interface using the Generic Routing Encapsulation (GRE) [13], as our payload protocols are

compatible, but payload addresses are not. The controller next forwards the data packets from the

tunnel bridge to the integration bridge. Since there might be multiple virtual networks, a

namespace router is included. This router forwards packets from the integration bridge to its

gateway (qg), which is patched with the external bridge. The external bridge sends the data packets

to the physical gateway that connects to the Internet.

Figure 4. Network traffic flow (North-South).

2.4. Management

Not only do management tools help reduce the human labor needed, they actually are a key piece

to the success of this project. Various tools have been deployed to ease the configuration and

management task throughout the development. In specific, hardware resources are managed

through Open Stack and IPMI tools, while users are managed through LDAP. Besides these

existing tools, a number of scripts were developed in-house to automate the management tasks.

The script developed for OS installation and configuration, for instance, enables the MAC

address to be hashed into the hostnames and internal IP address, and then it generates Kick Start

files based on the customized templates. TFTP and other services were configured to allow

computing nodes to boot from the Intel Preboote Xecution Environment (PXE), loading the OS

image from the head node through the network and then completing the installation.

3. DATA TRANSMISSION AND STORAGE SERVICES

3.1. Data Transmission

Data transmission is one central service that needs to be provided bythe CaaS. Allowing users to

have seamless access to external datasets saves them huge amount of time otherwise spent on

data preparation. An efficient data transmission model shall minimize redundant data

transmissions and optimize the network connection query to give users best possible Quality-of-

Service (QoS) experiences. In SNRC, we implemented a transmission scheme that involves

resource caching and connection tracking and management, as illustrated in Figure 5.

The data transmission unit consists of five major components: REST clients, a global connection

manager (CM), a caching server, a sanitizer, and persistent local storage (e.g., a database or a file

system). A REST client serves as an adapter to different data sources, and provides user API to

query and download datasets stored in a remote site. Acaching server saves a REST request and

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

36

its corresponding response asone key/value pair to avertredundant transmissions. The CM puts all

the external network requests into a queue, schedules them based on their QoS requirements, and

monitors the connection status. To service one data request, following steps are typically

involved.

• The system first checks if the data are already in the local storage system. If yes, the location

of that data will be immediately returned.

• If the data are found not locally available, check if it is in caching server. If it is a hit, return

the data.

• Otherwise (it is a miss), send a request to the CM, and the CM will queue and execute that

request. Upon fulfilling that request, the data will be sent back to the caller that initiated the

request.

• The sanitizer will validate the data and store it into a local storage system.

Figure5. The workflow to servcice a data loading request.

3.2. Distributed Storage Subsystem

A typical distributed storage system, like Red Hat Global File System (GFS) and Oracle Cluster

File System (OCFS), segments and stores data into different blobs among the hosts, while leaving

processingtoend user. A MapReduce[14] based system(Google GFS and Hadoop) is more

feasible for our purposes as it seamlessly integrates storage and processing.The MapReduce

model involves applying a map operation to key/value pairs, then a reduce operation to all the

values sharing the same key, and a merge operation to process the result. Hadoop [15] is a

framework for running applications on large clusters built from commodity hardware. It takes

advantage of data locality [16] to reduce the communication cost in parallel processing. Hadoop

implements the MapReduce paradigm and provides a distributed filesystem – the Hadoop

Distributed File System(HDFS). However, when data are stored on a single storage cluster and

shared among users, access control and QoS can be addressed by setting up two storage clusters

(Figure 6): TheVirtual Storage Cluster(VSC) and the Physical Storage Cluster(PSC).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

Instance
Instances

Instance
Instances

Instance
Instances

Instance
InstanceInstances

VHDFS

Volume

VHDFS

Volume

VHDFS

Volume

VHDFS

Volume

Virtual Storage

Namespace

Virtual Storage

Cluster

VSC resides in a virtual cluster managed by the OpenStack, and can be accessed by users. With an

essentially identical architecture as VCS, PSC can provide similar functionalities, but it

mainlyservices the persistent storage needs. MapReduce jobs initiated by users will be dispatched

to the intermediate cluster, while streaming sensor data will be stored in the persistent cluster.Note

that as high as an order of magnitude of performance penalty

is adopted, mandating the system to be fine

study, to maximize the I/O throughput, each physical hard drive

the cinder volume and the HDFS volu

As illustrated in Figure 6, HDFS volumes are configured as

cluster using LVM, while cinder volumesare managed by

OpenStack), and both are exposed to

System Interface). In this context, virtual instances shouldbe built (withwritten scripts) toensure

that an instancehas been granted access only to the disk in its hosted node.

diversity of the real-world scientific computational

network performance and distributed parallel data processing performance.Since the primary focus

of SNRC is on scientific big data processing, the HiBench [18] benchma

overall system performance in terms of speed (i.e., job running time), throughput, I/O bandwidth.

HiBench consists of a set of workloads

In our test, four workloads(Database join,

clustering) were selected to cover typical application scenarios in scienti

popular micro benchmarks were

used for assessing the system performance

Table

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

Compute Nodes
Cinder

Storage

Service

HDFS

Volume

Cinder

Volume

HDFS

Volume

Cinder

Volume

HDFS

Volume

Cinder

Volume

HDFS

Volume

Cinder

Volume

Physical Storage

Namespace

(Name Node)

VHDFS

Volume

VHDFS

Volume

Virtual Storage

Namespace

Nova

Compute

Service

Neutron

Network

Service

Physical Storage

Cluster

Figure6. Storage System Design

virtual cluster managed by the OpenStack, and can be accessed by users. With an

essentially identical architecture as VCS, PSC can provide similar functionalities, but it

persistent storage needs. MapReduce jobs initiated by users will be dispatched

to the intermediate cluster, while streaming sensor data will be stored in the persistent cluster.Note

an order of magnitude of performance penalty canbe paid if a wrong storage scheme

is adopted, mandating the system to be fine-tuned to support I/O intensive applications. In this

study, to maximize the I/O throughput, each physical hard drive was partitioned into two volumes:

HDFS volume.

, HDFS volumes are configured as a block storage device for persistent

cluster using LVM, while cinder volumesare managed by the cinder (the block storage service for

OpenStack), and both are exposed to the virtual instances through iSCSI (Internet Small Computer

System Interface). In this context, virtual instances shouldbe built (withwritten scripts) toensure

an instancehas been granted access only to the disk in its hosted node. With respect

world scientific computational needs, the SNRC was tested

network performance and distributed parallel data processing performance.Since the primary focus

fic big data processing, the HiBench [18] benchmark suite wa

overall system performance in terms of speed (i.e., job running time), throughput, I/O bandwidth.

HiBench consists of a set of workloads from both synthetic and real-world application

In our test, four workloads(Database join, aggregation, Bayesian classification and K

selected to cover typical application scenarios in scientific data processing, three

 included, and two HDFS benchmarks (DFS read and write)

system performance of the HDFS.

Table I Distributed Processing Perforamnce

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

37

virtual cluster managed by the OpenStack, and can be accessed by users. With an

essentially identical architecture as VCS, PSC can provide similar functionalities, but it

persistent storage needs. MapReduce jobs initiated by users will be dispatched

to the intermediate cluster, while streaming sensor data will be stored in the persistent cluster.Note

f a wrong storage scheme

tuned to support I/O intensive applications. In this

s partitioned into two volumes:

block storage device for persistent

cinder (the block storage service for

virtual instances through iSCSI (Internet Small Computer

System Interface). In this context, virtual instances shouldbe built (withwritten scripts) toensure

respect to the

tested in terms of

network performance and distributed parallel data processing performance.Since the primary focus

was used to test

overall system performance in terms of speed (i.e., job running time), throughput, I/O bandwidth.

world applications.

fication and K-means

fic data processing, three

(DFS read and write) were

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

38

Tests were performed on the physical storage cluster among 10 data nodes, and results were

tabulated in Table I. The HDFS workload test showed that the throughput of HDFS could reach up

to 294 MB/s on read, and 251 MB/s on write.When dealing with the work load of “sort” (Table 1),

the system could process a total of 3.29GB of data in about 35 seconds, a mere throughput of

92.68 MB/s. When the better map-reduce-based algorithms were used, the TeraSort could process

32GB of data in only 116 seconds, boosting the throughput to 274.40 MB/s, which is close to DFS

I/O peak throughput.

4. PROCESSING AND VISUALIZATION

The multidisciplinary research flavor in Nexus requires diverse tool and programming language

support. For decades, scientists have been using imperative programming language such as C, C++

or Fortran to code and run their scientific models ,after which they submit their programs to a

place like Portable Batch System(PBS); parallelism is achieved by using multi-thread and message

passing library. As the programming paradigm shifts, declarative programming languages, such as

Matlab/Octave and R, have gained popularity. They offer comparable performance but demand

much shorter development time.

As the world is going to rely on more distributed storage, it puts additional burden on users to

acquire deeper understanding of Map Reduce and even require them to learn a both new and old

language: Java. The Resilient Distributed Datasets (RDD) abstract parallel data structures

[17]allow users to explicitly persist intermediate results in memory, encapsulate implementation

details away from users, and offer a rich set of operators for data processing. Spark [18], based on

the concept of RDD, is easier to program and performs better when all the data can fit into the

memory; it also performs real-time processing using the existing machine-learning libraries and

other toolboxes.

The IPyth on Notebook (now known as the Jupyter Notebook) can integrate multiple computing

kernels into one single computational environment, combining code execution, rich text, plots and

rich media into an interactive document. The notebooks servers can be deployed in hypervisor-

based VM or Linux Container (e.g., docker) with near to native performance. These processing

framework and tools (and many others) were bundled together and integrated into our cloud

distribution. Figure 7 shows the organization of these components. From a remote device, a user

logs into the notebook system, calling a REST client to import data from a remote site into the

HDFS. The data are saved in the HDFS and cached as a RDD in memory using Spark. The RDD

can be processed in Octave, R, or Python using any machine learning libraries or other packages,

final and immediate results can all be visualized within the notebook instantly.

Figure7. Theprocessing and visualization framework.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

39

5. USECASE STUDY: BUILDING A SOLAR RADIATION MODEL

The objective of this use case is to showcase how to build a solar radiation model that can guide

the allocation of solar energy resources in different geographical locations of Nevada at different

times. This model will be built upon from the Geospatial datasets collected from the 13 sensor

stations over six years of time,stored in NRDC, and processed using the SNRC platform.

5.1. Data Preparation and Analysis

There are 2236 measurementsperformed every minute, bringing a total of 7 billionplus data

records in the dataset. These data can be transferred from the NRDC to the SNRC Jupyter

notebook with the data transmission API given below:

Since our focus is limited to solar radiation measured in photovoltaics (PV) panels, all irrelevant

data records would have to be purged. After purging, the resulting CSV file would contain all the

solar radiation data of the past six years, with the first nine rows as the headers, followed by rows

of numerical values arranged according to their timestamp indices. Pandas library provides a two-

dimensional heterogeneous tabular data structure named as Data Frame[19], and arithmetic

operations can be performed on both rows and columns. Note that most of the functions provided

by Pandas’ Data frame have their equivalentsin Spark, which is also supported by SNRC.

The downloaded CSV file can be parsed into Data Frame by running the following:

In our case, parsing the downloaded file (2.2 GB) into the Data Frame took less than 1 minute to

complete. We chose to study monthly mean radiation at 12:00 AM (Pacific Time),which involved

down-sampling of the radiation data. Since the time series data are indexed by their timestamps,

we can locate values using the Data built-in functions provided by pandas, and have such data later

converted to a dictionary data structure with year as its key.

Now we can visualize the processed data in bar diagram as shown in Figure 8.a

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

Figure 8. a) montly ave

5.2. Model Curve Fitting

Figure 8.b helps scientists tovisualize how

theoretical study would generate a physics

solar position and the reflect rate.

one can quickly derive and fine tune a numerical model using these observed data. Simple

inspection of the data plotted in

maintains a sinusoidal relationship with respect to time. That is,

where X is the timestamp in minutes, Y

estimated. These parameters, for instance, can be easily obtained with

by calling a function from the Notebook.

The regression model thus obtained can be readily compared with the observed data (

plotting them together in Figure 9. Apparently, this regression model fits the observed data really

well.

Figure 9. Results obtained from the regression model are compared against the observed data.

6. SUMMARY

This paper described various services and features

support a large research team engaging in

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

Figure 8. a) montly average solar radiation, and b) daily radiation by month.

8.b helps scientists tovisualize how solar radiation varies with the hourson a day

generate a physics-backed model to explain the relationship between

reflect rate. On the other hand, since we already have enough observed data,

quickly derive and fine tune a numerical model using these observed data. Simple

inspection of the data plotted in Figure 8.bcan lead to a hypothesis that the solar radiation

maintains a sinusoidal relationship with respect to time. That is,

where X is the timestamp in minutes, Y is the radiation, and A, B, C, D are parameters

estimated. These parameters, for instance, can be easily obtained with least square approximation

by calling a function from the Notebook.

The regression model thus obtained can be readily compared with the observed data (

plotting them together in Figure 9. Apparently, this regression model fits the observed data really

Results obtained from the regression model are compared against the observed data.

rvices and features of the SNRC, a platform specially

support a large research team engaging in multidisciplinary, data-driven research efforts.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

40

varies with the hourson a day. A

the relationship between the

, since we already have enough observed data,

quickly derive and fine tune a numerical model using these observed data. Simple

ure 8.bcan lead to a hypothesis that the solar radiation

and A, B, C, D are parameters to be

approximation

The regression model thus obtained can be readily compared with the observed data (Figure 9) by

plotting them together in Figure 9. Apparently, this regression model fits the observed data really

Results obtained from the regression model are compared against the observed data.

specially developed to

research efforts.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 3, June 2017

41

Organized around the delivery model of cyber infrastructure-as-a-service (CaaS), the SNRC

currently can store and process tens of Tera Bytes of data and support over 100 researchers

scattered around multiple campuses and remote sites. Capability of SNRC can be easily scaled up

to process hundreds to thousands Tera Bytes of data and support significantly more users, with

installation of additional commodity hardware resources.

REFERENCE

[1] Nvsolarnexus.org, “The Solar-Energy-Water-Environment Nexus Project,” [Online]. Available:

http://nvsolarnexus.org.

[2] S. Dascalu, F. C. Harris Jr, M. McMahon Jr, E. Fritzinger, S. Strachan, and R. Kelley, “An Overview

of the Nevada Climate Change Portal,” Proc. 7th International Congress on Environmental Modelling

and Software (iEMSs), 2014, vol. 1, no. 2014, pp. 75–82.

[3] V. D. Le, M. M. Neff, R. V Stewart, R. Kelley, E. Fritzinger, S. M. Dascalu, and F. C. Harris,

“Microservice-based architecture for the NRDC,” Proc. IEEE International Conference on Industrial

Informatics(INDIN), 2015, pp. 1659–1664.

[4] G. Foundation Inc, “Gentoo Linux Project,” [Online]. Available: http//www. gentoo. org.

[5] A. Chuvakin, “Linux Kernel Hardening,” [Online]. Available:

 http://www.symantec.com/connect/articles/linux-kernel-hardening.

[6] Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS” [Online]. Available: http//xianyi. github.

io/OpenBLAS.

[7] S. Browne, J. Dongarra, E. Grosse, and T. Rowan, “The Netlib mathematical software repository,” D-

Lib Magazine, vol. 1, no. 3 Sep. 1995.

[8] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the Linux Virtual Machine

Monitor,” Proc. Linux Symposium, 2007, vol. 1, pp. 225–230.

[9] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: Toward an Open-Source Solution for Cloud

Computing,” International Journal of Computer Applications, vol. 55, no. 3, pp. 38–42, Oct. 2012.

[10] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer, P.

Shelar, and others, “The design and implementation of open vswitch,” Proc. 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2015, pp. 117–130.

[11] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic routing encapsulation (GRE),” RFC

2784, Mar. 2000.

[12] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no.1, pp. 1–13,Jan, 2008.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” Proc. 26th

IEEE Symposium on Massive Storage Systems and Technologies, 2010.

[14] A. Rogers and K. Pingali, "Process decomposition through locality of reference," ACM SIGPLAN

Notices, vol. 24, no. 7, pp. 69–80, Jul. 1989.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I.

Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,”

Proc. 9th USENIX conference on Networked Systems Design and Implementation, 2012, pp. 2-2.

[16] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang, “The HiBench benchmark suite:

characterization of the MapReduce-based data analysis,” Proc. 26th International Conference on Data

Engineering Workshops, Mar. 2010.

[17] http://pandas.pydata.org/pandas-docs

