
International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

DOI:10.5121/ijcsit.2017.9512 165

SUMMARIZATION OF SOFTWARE ARTIFACTS: A

REVIEW

Som Gupta
1
 and S.K Gupta

2

1
Research Scholar, AKTU Lucknow, UP, India,

2
Computer Science Department, BIET Jhansi, UP, India

ABSTRACT

Summarization of software artifacts is an ongoing field of research among the software engineering

community due to the benefits that summarization provides like saving of time and efforts in various

software engineering tasks like code search, duplicate bug reports detection, traceability link recovery, etc.

Summarization is to produce short and concise summaries. The paper presents the review of the state of the

art of summarization techniques in software engineering context. The paper gives a brief overview to the

software artifacts which are mostly used for summarization or have benefits from summarization. The

paper briefly describes the general process of summarization. The paper reviews the papers published from

2010 to June 2017 and classifies the works into extractive and abstractive summarization. The paper also

reviews the evaluation techniques used for summarizing software artifacts. The paper discusses the open

problems and challenges in this field of research. The paper also discusses the future scopes in this area for

new researchers.

KEYWORDS

summarization; software artifacts; mining software repositories; extractive summarization; abstractive

summarization;

1. INTRODUCTION

Summarization is to reduce the content of a document in such a manner that the important

information about the document is preserved. Summarization techniques are broadly classified

into extractive and abstractive techniques. Extractive summarization is to extract the important

sentences from a document in same way as they appear in the original document and arrange

them to create a summary of specific length. Whereas abstractive summarization is to understand

the text and apply linguistic rules to create a summary. Natural language techniques are majorly

used for abstractive summaries.

There are various software artifacts which are created during a software life cycle along with a

working source code like requirements document, design documents, bug reports, etc. These

artifacts are usually archived for future use for understanding of system during software

maintenance or evolution phase. Reading and understanding of a document is a time-consuming

task [1] but is must to support any software development task. For example, when a change is to

be implemented to the system, proper understanding of system is essential as there exists many

dependencies in a system and failure to handle them may result in bugs or system failure.

Summarization of software artifacts help save the developer’s efforts and time while performing

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

166

software engineering tasks. It has been observed that most of the times, manually written

summaries are incomplete, too-short or outdated. Summarization helps creating the documents

automatically and thus relieving the programmers from the tedious task of documentation [2].

Source code and bug reports are two major artifacts on which most of the summarization

techniques have been applied to generate the summaries. Source code summaries help know the

description of sections of code and know how a piece of code is related to other parts of source

code. Bug reports not just contain the defects but also the reasons behind the bugs, feature

enhancement ideas, steps for resolution of bugs, etc. [4]. Bug reports summarization helps user

read, investigate and understand multiple aspects of a defect and helps perform many tasks like

bug reports duplication, etc.Low time to market and tough competition have raised the need of

summarization tools to help developers. Summarization is a very complex task. Till now it has

not been very clear on what exactly should go to the summary and what should not be included in

the summary [3]. Evaluation of summaries is also a challenging task as it is difficult to find the

accurate effectiveness from human evaluation.

The structure of paper is as follows. Section 2 briefly gives an overview to a general

summarization procedure. Section 3 gives a brief overview of the methodology used for

presenting the various works in the field of software summarization. Section 4 gives a brief

introduction to the extractive summarization techniques and works performed for generating

extractive summaries for software artifacts. Section 5 gives a brief introduction to the abstractive

summarization techniques and various works performed for generating abstractive summaries for

software artifacts. Section 6 discusses the evaluation techniques used for summarizing software

artifacts. Section 7 discusses the application of software summarization. Section 8 lists down the

open problems and challenges in the field of summarization of software artifacts. Section 9

discusses the areas where there is a future scope for research. And finally, the conclusion.

2. SUMMARIZATION PROCESS: AN OVERVIEW

Fig 1: General Summarization Process

 A typical summarization process follows these steps:

1. Corpus Creation: It is to collect or extract the documents of desired granularity as per the

requirements to perform summarization [5].

2. Pre-processing of corpus: It mainly includes identification of sentence boundaries,

tokenization, stops words removal, stemming, case folding and noise removal. There are

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

167

various open source NLP toolsavailable for pre-processing of corpus like python NLTK,

Apache OpenNLP, Stanford CoreNLP, etc.

3. Summarization Algorithm Application:

3.1. Content Selection: Many Algorithms and approaches like natural language processing,

machine learning based approaches, information retrieval based approaches are applied to

select the important sentences from the artifacts to generate the summary. One of the

famous algorithm used for content selection is:

PageRank- It is a graph based algorithm used for web links for determining the ranking of web

pages. But it can be used in the software engineering context as well. In context of source code

summarization, node can represent important functions or methods in the program and edge a

relation between the methods. TextRank is an algorithm for summarization of text based on

PageRank algorithm. By applying this algorithm important functions or methods to be included in

the summary can be obtained.

3.2. Information Ordering: After the content to be added are extracted, it is important to score

the sentences. There are various sentence scoring methods available like word-based

scoring, sentence-based scoring and graph based scoring methods. In word-based scoring

method, each word is assigned some score and to compute the total score of sentence, all

the word scores are summed up. For sentence-based scoring methods, features are

analyzed using cue-phrases (sentences started by “in summary”, “in conclusion”, “our

survey”, etc.), position of sentence, resemblance of sentence to title and many other

features like these. For graph-based scoring method, TextRank, bushy path of node i.e. no

of edges connecting a node to other node and aggregate summary by counting the number

of edge connecting a node to other nodes in the bushy path are used [6].

3.3. Sentence Realization: It is to simplify the sentences. In extractive summarization, the

selected sentences are kept in the summary as in original document but in case of

abstractive summarization, natural language summaries are produced and for them

simplifying the sentences to reduce the length is required.

3.4. Removing Redundancy: It is to remove the redundant sentences. Redundancy is when

multiple sentences have same content. Sentence fusion and textual entailment are two

widely used techniques to remove the redundancy among abstractive summaries but they

can be adapted for extractive summaries as well. Maximal Marginal Relevance is also

used for removing the redundancy among the sentences.

4. Evaluation of Summaries: Last step of summarization process is to evaluate the

summaries so generated. There are two ways to evaluate the summaries: intrinsic and

extrinsic evaluation. Intrinsic evaluation is when the system is evaluated with itself and

extrinsic evaluation is when the system is evaluated in terms of how the completion of

other tasks is affected. Intrinsic evaluation mostly focuses on the informativeness and

coherence whereas extrinsic evaluation mostly focuses on the efficiency and acceptability

[7].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

168

3. METHODOLOGY

We have used IEEE Xplore for finding the relevant research papers. We have summarized the

articles according to the technique used by them for summarization and type of evaluation. We

have presented them into four columns namely name of authors, artifact on which they performed

summarization, technique used in their work and the corpus on which they performed their work.

We have classified the extractive summarization works into Information-Retrieval Based,

Machine Learning Based, and Topic Models. We have also listed the extractive summarization

works which have used Crowdsourcing approach and eye-interaction based approach.

For abstractive summarization works, we have classified them into Structure Based Approach and

Semantic Based Approach.

We have also classified the works according to the evaluation techniques employed for evaluating

their summaries into intrinsic and extrinsic evaluation. We have identified the various techniques

used in the field of software summarization for evaluation.

From the various research papers obtained from IEEE Xplore, we have identified the applications

of software summarization and classified them into Bug Reports Digestion, Improving

Traceability link recovery, program comprehension, automatic documentation generation. We

have identified the future scope areas in the field of software summarization and classified them

into unit test case summarization, duplicate bug reports detection, source code summarization,

summarization using crowdsourcing, summarization using eye-tracking interactions, improving

sentence Ranking Techniques, Creating personalized summaries and Visualization.

4. EXTRACTIVE SUMMARIZATION: AN OVERVIEW IN THE CONTEXT OF

SOFTWARE ARTIFACTS

Extractive summarization is to generate summaries by extracting sentences from the original text.

They use statistical analysis of features to locate the important sentences from the text. Various

features which have been used for sentence extraction like title word feature, keyword features,

sentence length features, proper noun features, upper case features, cue-phrase features, biased

word features, font based features, pronouns, presence of non-essential features, sentence-to-

sentence cohesion and discourse analysis [8]. There are various approaches which have been used

for generating extractive summaries like IR-based approaches, Natural Language Processing,

Machine Learning based approaches, Topic Models, etc. We have analyzed the papers published

in recent previous years and classified them as per the technique they use:

• Information Retrieval Based:

� Vector Space Model(VSM): It is based on term-frequency matrix for a document and is

used for modifying the weights of indexing terms which helps in finding the relevance of

sentences or documents. Documents are represented as vectors. Dimensionality of vector

is basically the size of vocabulary. Cosine similarity is mainly used for calculating the

similarity between the document and the query.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

169

� Latent Semantic Indexing(LSI): It is mainly used for the document indexing and

retrieval. Term-Document matrix is constructed and then Singular Value

Decomposition(SVD) is applied to reduce the matrix.

� Latent Dirichlet Allocation(LDA): It is a generative probabilistic topic model. Each

document is treated as a group of topics where each topic is assigned some probability of

generating some words.

Antoniol et al. [9] have used probabilistic IR model and VSM to recover the traceability links for

C++ projects between the source code and free text documents. Sonia Haiduc et al. [10] used both

the extractive and lightweight abstractive summarization techniques to automatically generate the

source code summaries. For extractive summarization, they used VSM and LSI using log, tf-idf

and binary entropy as weighting mechanisms. Sonia Haiduc et al. [11] in their another paper used

extractive summarization using lexical and structural information about source code to generate

the summaries. They used LSI and cosine similarity to obtain the information for their

summaries.

• Machine Learning Based Approach: It is one of the widely used approach for performing

extractive summarization.

� Supervised Learning Approach: Here the likelihood of label is suggested by using labeled

training dataset [12]. Various classifiers like SVM, Naïve-Bayes, Decision trees, etc. are

used for training to extract the useful features to be included in the summary when we

have documents and their respective reference summaries.

Rastkar et al. [13] applied extractive summarization techniques for automatically

generating the summaries for bug reports using supervised machine learning. They used

binary classifiers for producing the summaries. They trained the classifiers on e-mail

threads, combination of e-mail threads and meetings, and meetings and bug reports based

on 24 features classified into 4 categories namely structural features, participant features,

length features and lexical features. Rastkar et al. [14] in another paper used extractive

multi-document summarization by identifying the sentence level features to describe the

code changes.

Rigby et al. [15] have used three feature decision tree classifiers to extract the code elements for

StackOverflow Site Discussions. Nazar et al. [16] used SVM and Naïve Bayesian classifiers to

create code fragment summaries from online FAQs. They extracted the features using data-driven

crowdsourcing mechanism. Ying et al. [17] used supervised machine learning based approach

using Naïve Bayes and SVM classifiers by considering syntactic and query related features for

generating code fragment summaries.

� Unsupervised Learning Approach: These techniques try to find out the labels from the

data. These techniques assign centrality and diversity measures to the sentences for

deciding whether to include it to the summary or not. K-means clustering is widely used

to select the features to be included in the summary [18]. Euclidean distance is used to

measure the similarity between two sentences. There are various unsupervised learning

approaches which have been used for summarizing software artifacts. Mani et al. [19]

have used centroid, Maximum Marginal Relevance, Grasshopper and DiverseRank

unsupervised techniques for summarizing bug reports. Lotufo et al. [4] used unsupervised

bug reports summarization to generate the summaries and used PageRank to calculate the

probabilities. They used number of topics shared between the sentences, number of times

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

170

sentence evaluated by other sentences and number of topics shared with title and

description of bug report to ranks the sentences from relevance perspective. Ferreira et al.

[20] used Cosine similarity, Euclidean distance, Louvain community detection and

PageRank methods to rank the comments in bugs to generate the extractive summaries.

� Semi Supervised Learning Approach: Andrea Di Sorbo [21] proposed a semi-supervised

learning approach called DECA (Development Emails Content Analyzer) where they

classified the emails according to their content into various categories like opinion

asking, information seeking, information giving, feature request, etc. by using natural

language parsing. They also used this approach to re-document the source code.

• Topic Models: It is a statistical model where each document is represented as a set of

topics. Each topic is a set of words which mostly occur together. Each topic is given

some probability based on frequencies and co-

Occurrence frequencies. Topic assignments for each token is calculated by using topic model.

Topic models follows Bayesian paradigm. HPAM (Hierarchical Pachinko Allocation Model) is

one technique for the topic models.

HPAM: Directed Acyclic Graphs(DAG) is used for representing the topics. Bag-of-words

representation is used and each document is represented as vector with V components where V is

the size of vocabulary. Few researches are found which have used NLP based techniques to create

the extractive summaries. Paul W. McBurney et al. [22] have used Topic Models to create the

source code summaries focusing on the presentation of summaries. They used HDTM algorithm

extract the hierarchy of topics from the source code. Brian P. Eddy et al. [23] proposed a topic

model based approach to summarize the source code and then compared their results with the

approaches used by Sonia Haiduc et al. [10]. Fowkes et al. [24] have created a tree based

algorithm called TASSAL (Tree Based AutoFolding Software Summarization Algorithm) which

works on Abstract Syntax Tree of source code and uses Topic Models for autofolding of source

code which is to fold the less informative code areas by focusing on the file specific tokens. They

used TopicSum model to source code where the common Java tokens, common javaDoc

comment tokens and common header comment tokens were taken as input to construct the model

and as output it categorized the token to whether specific to file, project or general Java code.

Lot of researches are done where eye-tracking interactions are used to improve the selection of

subset of keywords for summaries. Rodeghero et al. [25] have generated the extractive summaries

of java methods by finding out the important keywords based on eye tracking study of 10 java

professionals where they were asked to read and write the summaries especially for those

methods which were uncommented by focusing on eye-movements, gaze fixations and

regressions.

In addition to IR-based approaches, Machine Learning Based approaches, Natural Language

Processing Approaches, Eye-tracking interactions, crowdsourcing is also one of the emerging

approaches for helping generate the summaries. Crowdsourcing is a web 2.0 based phenomenon

which is a data driven model based on problem solving approach in context of text

summarization. Crowdsourcing is a notion where virtually everyone can participate online. In

Crowdsourcing, the organization identifies the tasks and then post them online to a crowd to

interested people. The organization then evaluates the results by considering the contributions

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

171

from the crowd of people who submitted their results by performing the tasks. Crowdsourcing

model has been used by Lloret et al. [26]. Hong et al. [27] and Mauyama et al. [28] for text

summarization process but there are very few papers on this approach for software artifacts.

Nazar et al. [16] have used this model for extracting source code features manually for

summarization of source code fragments. Masudur Rahman et a. [29] have used crowdsourcing

for mining insightful comments from online QA site StackOverflow. Even though it can be used

for generating abstractive summaries as well but most of the researches are for extractive

summaries only.

Table 1: Summary of Studies on Extractive Summarization

Author Artifact Method Corpus

Lotufo et al. [4] Bug Reports Machine

Learning(Unsupervised)

Debian, Mozilla,

Launchpad, Chrome

Antoniol et al. [9] Source Code(C++) Information

Retrieval(VSM)

Albergate, LEDA

Haiduc et al. [10] Source Code Information Retrieval

(VSM + LSI)

ATunes

Haiduc et al. [11] Source Code Information Retrieval +

Machine Learning (LSI+

Cluster Based)

ATunes

Rastkar et al. [13] Bug Reports Machine

Learning(Supervised)

Eclipse, FireFox,

Thunderbird

Rastkar et al. [14] Source Code Machine

Learning(Supervised)

Eclipse Mylyn,

CONNECT

Nazar et al. [16] Source Code Machine Learning Eclipse, Netbeans FAQ

Ying et al. [17] Source Code Machine

Learning(Supervised)

Eclipse FAQ

Mani et al. [19] Bug Reports Machine

Learning(Unsupervised)

Eclipse, Mozilla, Gnome,

KDE

Ferreira et al. [20] Bug Reports Machine

Learning(Unsupervised)

Bootstrap, AngularJS,

jQuery

Andrea Di Sorbo et al. [21] Emails Machine Learning (Semi

Supervised)

McBurney et al. [22] Source Code Topic Models(HDTM) JHotdraw, jajuk, jEdit,

jTopas, nanoXML, siena

Fowkes et al. [24] Source Code Topic Models (extension

of TopicSum)

Storm, elasticSearch,

Spring-framework, libgdx,

bigbluebutton, netty

Rodeghero et al. [25] Source Code Eye-tracking interactions

5. ABSTRACTIVE SUMMARIZATION: AN OVERVIEW IN THE CONTEXT OF

THE SOFTWARE ARTIFACTS

Abstractive summarization is to create the summaries where there may be novel sentences which

are not present in the original document. It deals majorly with the NLP techniques and requires

deep analysis of text. It involves information integration, sentence compression and reformulation

[12]. Abstractive summarization techniques are categorized into Structured Based Approach and

Semantic Based Approach.

Structured Based Approach finds out the important information from a document using trees, lead

and body phrase structures, etc. They are classified into Tree-Based, Template-Based, Ontology-

Based, Lead and body phrase method and rule-Based method [30]. From the analysis of recent

years papers on summarization, we have observed that most of the works on abstractive

summarization in software artifacts have used Template and Rule-based methods.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

174

In Semantic Based Approach, semantic information about the document is used and is fed into the

Natural Language Generation system. Verb phrases and Noun phrases are identified and

processed by using linguistic data. They are categorized into multimodal semantic model, item

based method, and semantic graph based. Multimodal document generation is used when the

document contains both images and data. Semantic model is constructed by using knowledge

representation in the form of ontologies. Information density metric is calculated to select the

sentences to generate the summaries. In information item based approach, abstract representation

of source document is created and then is processed to generate the summaries. In semantic graph

based method, semantic graph is created where verbs and nouns are represented as nodes and

edges to semantic relation between them [30].

Buse et al. [31] generated comments from the exceptions thrown by java methods by using

symbolic execution to identify under which conditions the exceptions are thrown and then used

the templates to create the summaries. Sridhara et al. [32] found that templates used for

comments generation by Buse et al. [31] are inadequate for creating general comments and used

method signature and body as input to generate the leading descriptive natural language summary

contents for Java methods. They used lead and body phrase method to create the summaries. Buse

et al. [33] in another paper combined symbolic execution and code summarization to create

automatic summaries for describing code changes. They proposed an algorithm called

DELTADOC which takes two versions of software as input and produces human-readable

summaries describing method changes as output.

Sonia Haiduc et al. [10] used extractive and lightweight abstractive techniques for summarization.

For lightweight abstractive summaries, Structure based approach, lead and body phrase method

was used. From evaluation, they found that lead based summaries scored more than any other

methods they employed. Sarah Rastkar et al. [34] extracted structural information like how

methods interact with the concerned methods and other methods and natural language

information like what the concerned method has about and then represented them in the form of

ontologies and used RDF graph for ontologies representation. They created the summaries by

finding the similarities between the methods of concern and by finding source code important for

implementing the concerned method. Latifa Guerrouj et al. [18] generated the summary for a

code element from StackOverflow site discussions by extracting the natural language text from

developer’s discussions. They extracted the language identifiers out of natural language text by

applying island parser. They used term-proximity to find out the context of identifiers and then

create the language model from them. Cortes-Coy et al. [35] used method stereotypes to identify

the method responsibilities in a class for generating the commit messages and used templates to

generate the sentences from the classes. Laura Moreno et al. [36] used template-based

summarization to generate the natural language summaries for source code changes of a project.

One sentence was generated for each change.

Moreno et al. [37] in another paper developed an Eclipse plugin called jSummarizer to generate

the natural language summaries for Java classes by using stereotype of class. Abid et al. [38] used

method stereotypes to find out the lines of code that reflect the main action of a method and used

the separate templates for each stereotype to automatically create the summaries using static

program analysis.

Kamimura et al. [39] have used static analysis of source code by finding the key method

invocations and then generated the human-oriented summaries of unit test cases by filling the pre-

defined templates. Masudur Rahman et al. [29] have used topic modelling and PageRank

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

175

algorithm to automatically generate the code comments from StackOverflow discussions related

to source code. They used Stanford POS tagger to identify the personal pronouns and possessive

pronouns and used natural language processing tools to refine and reformulate the comments.

Christopher Vendome et al. [40] have proposed an approach called UnitTestScribe to

automatically generate the natural language unit test case summaries. They used natural language

processing, static analysis, backward slicing and code summarization techniques for

summarization and used general description of test case methods, focal methods, assertions and

internal data dependencies of variables in assertions to create the summaries. Shen et al. [41] have

proposed an approach to automatically generate the commit messages by summarizing source

code. They used template based summarization to describe the commit intents and reason for

changes in the system.

CrowdSourcing has been used for generating the abstractive summaries as well. Badihi et al. [24]

have created a tool called CrowdSummarizer which uses crowdsourcing, gamification and natural

language processing to generate the accurate and comprehensive natural language summaries for

java program methods. They used template based method to generate the abstractive summaries.

6. Evaluation Techniques for Software Artifacts Summarization

Evaluation of summaries is a challenging task as it is hard to come up with the notion of what the

correct output is. Also, summarization is about compression, so compression ratio should be

considered while evaluating the summaries. Visualization is one of the important part of

summarization. Compression ratio and visualization when taken together makes evaluation a

difficult task. Evaluation techniques are broadly classified into intrinsic and extrinsic evaluation.

Intrinsic evaluation is performed on the system itself whereas Extrinsic evaluation is when the

impact of system is evaluated like relevance assessment, traceability link recovery in case of

software artifacts, reading comprehension, etc.

6.1 Intrinsic Evaluation

Intrinsic Evaluation techniques are more popular in software artifacts summarization. Intrinsic

evaluation is to evaluate the automatically generated summaries of the system by comparing them

against the gold-set standard summaries for the same system. Intrinsic evaluation techniques

mostly focus on redundancy, irrelevant content, coherence and informativeness [42] [43].

Intrinsic evaluation techniques may either involve human intervention or may be automatic. For

automatic evaluation, gold-set standard summaries are first created for the artifacts

Table 2: Summary of Studies on Abstractive Summarization

Author Artifact Method Corpus

Buse et al. [31] Source Code Template Based Azureous, DrJava, FindBugs,

FreeCol, hsqldb, jEdit,

jFreeChart, Risk, tvBrowser

and Weka

Buse et al. [33] Source Code Template Based FreeCol, jFreeChart, iText,

Phex, and jabref

Sridhara et al. [32] Source Code Lead and Body Phrase Megamek, SweetHome3D,

jHotDraw, Jajuk

Rastkar et al. [34] Source Code Ontology Based+

Information Item Based

jHotDraw, Drupal and Jex

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

176

Guerrouj et al. [18] Question Answer Site’s

Discussions

Rule Based Discussions of Android.*

package

Haiduc et al. [10] Source Code Lead and Body Phrase ATunes

Cortes-Coy et al. [35] Source Code Template Based ElasticSearch, Spring Social,

jFreeChart, Apache Solr,

Apache Felix and Retrofit

Moreno et al. [36] Source Code Template Based +

Information Item Based

41 Apache community open

source projects and 14 other

projects like FindBugs,

FireFox, Google Web

Toolkit, etc

Abid et al. [38] Source Code Template Based HippoDraw

Kamimura et al. [39] Unit Test Case Source Code Template Based jFreeChart

Moreno et al. [37] Source Code Stereotype Based+ Template

Based

ATunes

Badihi et al. [24] Source Code Template Based 11 open source java

applications

Vendome et al. [40] Unit Test Case Source Code Template Based srcML.NET, Sando,

Glimpse, Google-api-dotnet

Shen et al. [41] Source Code Template Based Elastic Sesarch, Spring

Social and Apache Solr

and then the automatically created summaries are compared against them. Precision, Recall, F-

Score, Cosine Similarity, etc. are used as measures to compute the performance in case of

extractive summaries whereas Relevance-Assessment, Pyramid Scores are used in case of

abstractive summaries.

Precision: It refers to the fraction of a total number of sentences in the generated summary which

belongs to the gold-set standard summary. It is the measure of how accurate the summaries are. It

generally refers to the usefulness in the context of summarization [43].

Precision= (No of lines selected from GSL) \ (No of sentences in the generated summary)

Where GSL refers to Gold-Set Standard Summary Lines

R-Precision: It works well with the variable length summaries. It is the ratio of number of top-R

correct words to the number of top-R relevant words returned by the automatic approach.

Recall: It is how much percentage of the sentences in the gold-set standard summaries are present

in the generated summary. Recall refers to the completeness in the context of summarization and

represents the ability of algorithm to select the sentences from the generated summary [19].

Recall= (No of lines selected from GSL) \ (No of lines in GSL)

Pyramid Score: It is used for assessing the content selection quality in summarization where

multiple annotators are available. It is a recall-oriented evaluation metric. It is semantically driven

analysis concerned with analyzing the variations in human summaries. It is mainly used for

abstractive summaries. Pyramid scores tell how often content units from peer summaries occur in

reference summaries.

A=weight of content expressed in the summary

B= weight of an ideally informative summary (Gold-set standard summary) with same number of

summary content unit(SCU)

Information with same meaning, even if expressed with different words sis termed as same SCU.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

177

Pyramid Score=A \ B

Pyramid precision is the fraction of sentences present in the summary that are present in atleast

one of the golden set summary. Pyramid Recall is the fraction of sentences present in one of the

golden-set summaries that are present in the generated summary.

F-Score: There is always a trade-off between precision and recall. F-Score combines the results of

both precision and recall. F-Measure acts as a harmonic mean to solve the precision and recall

trade-off problem.

F-Score= (2 * (Precision * Recall)) \ (Precision + Recall)

ROUGE (Recall Oriented Understudy for Gisting Evaluation): It is recall oriented metric for

evaluation of summaries by comparing the automatically generated summaries against the

reference summaries by calculating the number of overlapping units like N-Grams. It measures

the quality and correctness of the summary [44]. It is cheap and easy to perform. But it has been

found that it should be used only when the large amount of test data is available [45].

Cosine Similarity:

Cosine Similarity (D, E) = (D. E) \ (|D|. |E|)

Where D and E are the word frequency vectors of two text documents. It lies between 0 to 1. If

the value is 1, it means documents are nearly identical.

Relative-Utility [45]: Precision and Recall which are used for statistical evaluation suffers from

the problem of human variation and semantic equivalence problem,to address this problem,

relative utility method is used where multiple judges score each sentence in the summary. Based

on their ranks to various sentences, quality of summary is evaluated. This technique requires a lot

of manual efforts for sentence tagging.

Sonia Haiduc et al. [10] used intrinsic online evaluation that is Relative Utility method for

evaluating their extractive and lightweight abstractive summaries so generated by automatically

summarizing the source code. The summaries were evaluated by four developers who answered

the questions on 4-likert scale. They also used follow-up questionnaire to understand how

developers performed evaluation. Eddy et al. [46] also used the same intrinsic online, relative

utility method that is 4-scale Likert-scale evaluation technique as used by Sonia Haiduc [10] to

evaluate their source code summaries. Sonia Haiduc et al. [11] in their other paper evaluated their

summaries using Pyramid method. Pyramid Evaluation helped find out if the automatically

generated summaries are like the set of manually generated summaries. Latifa Gueerrouj et al.

[18] used R-precision as an evaluation metric to evaluate how close the generated summaries are

with gold-set standard summaries. Rastkar et al. [13] used both the intrinsic and extrinsic

evaluation metrics for evaluating the summaries. They evaluated their classifiers using Area

Under ROC Curve(AUROC), pyramid precision, precision, recall, and F-Score.

McBurney et al. [2] in their first cross-validation assessment, compared their source code

summaries with summaries generated by JavaDoc. They evaluated their summaries based on

accuracy, content adequacy and conciseness. McBurney et al. [22] in other paper used human

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

178

based intrinsic evaluation by recruiting 3 participants to find out the accuracy and effectiveness of

the extractive summaries generated for source code of a project.

Mani et al. [19] used precision, recall, pyramid score, and F-score to determine the effectiveness

of unsupervised learning approaches for summarizing bug reports and comparing them with the

supervised learning based approaches used by Rastkar et al. [13]. Li et al. [40] used human based

intrinsic evaluation to find how concise, expressive and complete are the unit test cases

summaries generated by unit test source code. Cortes-coy et al. [47] and Shen et al. [41]

evaluated the commit messages generated by code changes based on correctness, content

adequacy and expressiveness. Badihi et al. [24] evaluated their code summaries in terms of

precision, recall, F-score and overall accuracy. They used 3-scale likert scale to rate the

summaries in terms of conciseness, content adequacy and accuracy. Lotufo et al. [4] in the first

part of their evaluation used intrinsic evaluations and compared summaries produced by Rastkar

et al. [13] by using precision, recall, pyramid score and F-score.

6.2 Extrinsic Evaluation

Extrinsic evaluation techniques are used where the effect of summarization is analyzed on a

decision process. They are mostly used for judging the acceptability and accuracy of created

summaries. For example, effects of summarization on analyzing the traceability links, analyzing

the effects of summarization on question answering sites, etc. They are usually expensive, time-

consuming and requires good amount of planning. Thus, are not used extensively for evaluation.

Relevance-Prediction [42] is one measure to measure the effectiveness of summaries on a specific

task. It is determining if users can make accurate decisions with generated summaries. Reading

Comprehension task is also used for extrinsic

Table 3: Summary of Studies on Evaluation Techniques for Software Summarization

Author Artifact Evaluation Method Criteria (if used)

Rastkar et al. [1] Bug Reports Intrinsic

McBurney et al. [2] Source Code Intrinsic + Extrinsic Accuracy, Content

Adequacy, Conciseness

Lotufo et al. [4] Bug Reports Intrinsic (Precision,

Recall and Pyramid

Score) + Extrinsic

(Likert scale)

Usefulness

Haiduc et al. [10] Source Code Intrinsic (Relative

Utility)

Haiduc et al. [11] Source Code Intrinsic (Content

Similarity, Pyramid

Score)

Rastkar et al. [13] Source Code Extrinsic (Task Based)

+ Intrinsic (AUROC,

Pyramid Precision,

Precision, Recall, F-

Score)

Accuracy, Time to

Completion, Participant

Satisfaction

Rastkar et al. [14] Source Code Intrinsic (F-Score)

Nazar et al. [16] Source Code Intrinsic (ROC, AUC,

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

179

Precision, Recall, F-

Measure)

Ying et al. [17] Source Code Intrinsic (R-Precision,

ROC)

Guerrouj et al. [18] Source Code from

StackOverflow Sites

Intrinsic (Content

Similarity, ROUGE)

Mani et al. [19] Bug Reports Intrinsic

Ferreira et al. [20] Bug Reports Intrinsic (Precision,

Recall, F-Score)

McBurney et al. [22] Source Code Intrinsic (Human

Evaluation)

Accuracy,

Effectiveness

Badihi et al. [24] Source Code Intrinsic (Precision, F-

Score)

Conciseness, Content

Adequacy, Accuracy

Sridhara et al. [32] Source Code Intrinsic (Human-

Based)

Accuracy, Content

Adequacy, Conciseness

Buse et al. [33] Source Code Extrinsic Information,

Conciseness

Rastkar et al. [34] Source Code Intrinsic

Cortes Coy et al. [35] Source Code Intrinsic Content Adequacy,

Conciseness,

Expressiveness,

Preferability

Moreno et al. [36] Source Code + Issue

Reports + Commit

Messages

Extrinsic Completeness,

Importance,

Applicability

Kamimura et al. [39] Unit Test Cases Intrinsic

Li et al. [40] Source Code Intrinsic + Extrinsic Conciseness,

Expressiveness,

Completeness

Eddy et al. [46] Source Code Intrinsic (Relative

Utility)

Masudur Rahman et

al. [29]

Question Answering

Site Discussions on

Source Code

Extrinsic Accuracy, Preciseness,

Usefulness

Fowkes et al. [48] Source Code Intrinsic (Precision,

Accuracy, Recall, F-

Measure) + Extrinsic

Usefulness,

Conciseness

evaluation. Rastkar et al. [13] used extrinsic task based evaluation to evaluate if the summaries so

generated helps perform duplicate bug reports detection task. They evaluated their system with

the help of 12 developers with at least 5 years of experience. They evaluated their system in terms

of accuracy, time to completion and participants satisfaction. They used linear regression model

and Chi-Square test to find out the accuracy and time to completion.

Masudur Rahman et al. [29] used extrinsic evaluation to evaluate if the automatic comments

generated from StackOverflow source code discussions are found to be accurate, useful and

precise in terms of describing potential issues, deficiencies and suggesting the future scopes for

further improvement. McBurney et al. [2] in their second cross-validation assessment, assessed

whether the contextual information about the methods in the summaries help programmers

understand the behavior of method. They used cross-validation study method for evaluation.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

180

Li et al. [40] along with the intrinsic evaluation, assessed their unit test cases summaries

extrinsically by assessing how their summaries help developers understand the test cases. Moreno

et al. [36] assessed their system using extrinsic evaluation in terms of completeness, importance

and applicability. Lotufo et al. [4] in second part of their evaluation, assessed the quality of

summaries in terms of usefulness while looking for solution around the bug for duplicate bug

reports detection, understanding the bug reports in terms of status and open issues, bug

prioritization, etc.

7. APPLICATIONS

7.1 Bug Reports Digestion

Bug reports are often too lengthy and involve discussions among multiple team members. Easily

digestible bug reports mean that the user who consults the bug reports should be able to

understand it easily and be able to seek the desired information quickly. In open source projects,

the bug reports receive inputs from many contributors, which makes the bug reports difficult to

understand. Summarization of bug reports help understand the bug reports easily. Ankolekar et al.

[49] work aimed at bug reports digestion by developing a prototype semantic web interface,

Dhruv for bug resolution messages. They identified the important information by aiming at why,

who, what from the bug reports. Dit et al. [5] proposed a system to help developers find the

comments related to their comments for improving the readability and understandability of

thread. Lotufo eta l. [4] proposed unsupervised bug report summarization to facilitate the bug

reports digestion.

7.2 Improving Traceability Link Recovery

Recovering and managing traceability links for software artifacts is an important but difficult and

time-consuming process as the size of software artifacts is usually large. Traceability link

recovery helps improve the program comprehension, software maintenance, ensuring the

completeness of project with respect to proper test coverage available or not, impact analysis and

during code reuse. Most of the traceability link recovery works have used information-retrieval

approaches.

Antoniol et al. [9] have used IR-based approaches to recover the traceability links between the

source code and natural language based documents like requirements document, design

documents, error logs, etc. Sridhara et al. [32] automatically created the comments to help aid the

program comprehension and software maintenance. Aponte et al. [43] have used text

summarization IR-based approaches to generate the summaries for software artifacts like

requirements document, source code, design documents, test cases and bug reports to identify the

candidate links for traceability recovery. Baccheli et al. [51] discussed about recovering

traceability links between the source code and emails using text matching. Rigby et al. [15]

proposed a novel traceability recovery approach to automatically determine the code elements

from Question Answering site, StackOverflow’s discussions. Marcus et al. [52] proposed an

approach to recover the traceability links between source code and documents by using LSI.

7.3 Program Comprehension

During software maintenance and evolution, a programmer has to go through the source code if

proper documentation is not available. Going through the whole source code to make changes in a

software is a time-consuming task. Software source code summaries help know quickly what the

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

181

source code is doing. Buse et al. [33] proposed an algorithm called DELTADOC which uses

symbolic execution information from log messages and code summarization techniques to find

the code changes. For maintain the legacy systems, especially for design recovery, lot of

documents should be looked up. With text summarization, understanding the legacy systems

become easy [9].

Analyzing the code is a non-trivial task especially for beginners. Source code comments not just

help in comprehending the source code but also give insights about the quality, issues and future

scope. Edmund Wong et al. [53] proposed an approach called CloCom to automatically generate

the comments for target software projects by detecting the code clones.

Kamimura et al. [39] automatically generated the summaries for unit test cases which are

important. When the source code evolves, it is essential to modify the unit test cases as well.

Summaries will ease the comprehension of unit test cases which are usually difficult to

understand. Panichella et al. [54] extracted the method description from bug reports and email-

threads to help developers understand the source code. Fowkes et al. [24] presented the automatic

method for code folding based on code’s content which aids in program comprehension while

developers want to understand the new code bases, locate the relevant source code and perform

code reviews. Hill et al. [51] used context of words around the query terms, method signatures

and applied natural language processing techniques to extract the natural language phrases to

distinguish between the relevant and non-relevant searches. Automatic formulation of queries

using this contextual search helps locate the relevant code elements easily.

7.4 Automatic Documentation Generation

Documentation is expensive to produce and generate as with the change in requirements due to

continuous changes in the system, the documentation should be updated timely. But due to lack

of time and resources, it becomes difficult for programmers to write the documentation often [3].

Automatic summarization helps in automatically generating the documents. Lot of work has been

done in the field. McBurney [3] in his paper has discussed the objectives to improve the

automatic documents generation. With their summarization, few of the works where documents

are prepared automatically from summarization are mentioned below.

7.4.1 Release Notes Generation

Release notes describe the changes to the system from the previous release to the current release.

They describe the changes in terms of documentation changes, license changes, code changes and

library upgradations, fixed bugs, modified features, etc. ARENA is one approach towards

automatic release notes generation where source code changes are integrated with issue tracker to

capture the changes [36].

7.4.2 Commit Notes Generation

Commit notes describe the code changes in the system. They help developers understand how a

change to the system spanned across the system’s various artifacts and thus help developers

support software maintenance tasks like bug triaging, code changes, impact analysis, traceability

link recovery, etc. Cortes-Coy et al. [47] presented an approach called “ChangeScribe” to

automatically generate the natural language descriptive commit messages describing the change

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

182

stereotypes, type of changes and impact of changes using code summarization. Shen et al. [41]

proposed an approach like one developer by Cortes-Coy et al. [47] to automatically generate the

commit messages describing not just what all changes have been implemented in the system but

also the motivation behind the code change. They used ChangeDistiller to find out the change set

of source code changes, then identified the what part of information by using stereotype of

methods and classified the commit messages according to the type of maintenance supported to

explain the why part of information for a commit message.

8. OPEN PROBLEMS AND CHALLENGES

• For evaluation purpose, the generated summaries are usually compared against gold-set

standard summaries which are human generated and many times this evaluation is

performed by humans itself. Stress, fatigue, or experience can affect the results.

• There are no well-defined standards for good documentation. It is not very clear what the

good summary is.

• In conversation related artifacts, due to informal nature of artifacts and presence of source

code, segmentation of sentences becomes a challenging task. Sentence Chunking is a

non-trivial problem for informal texts like comments in source code, bug reports and

email-threads [4].

• As in extractive summarization, the sentences are extracted as in original document and

are arranged in the summary as they appear in original document, it is possible to have

more redundancy and long length of summaries. Overlapping information may not be

captured properly. If pronouns are not properly handled considering the context, then

there are chances of erroneous representation of text.

• Whether extractive summarization is most appropriate way to summarization or

abstractive, is still an open question [1].

• Representation of abstractive summaries is yet a problem as there is no fixed

representation for a text.

• Supervised machine learning based approaches require large training dataset. Gold-set

standard summaries are created manually and requires a significant amount of time and

efforts. Manually creating a large training dataset is a hindrance towards machine

learning for summarization [4]. In summarization process the training dataset is mostly

labelled manually and sometimes can be biased towards data on which model was learnt

[19]. Quality of corpus affects the quality of summaries and thus good quality corpus is

essential for this approach if targeting the quality summaries.

• Summarization of code fragments poses lot of challenges as code fragments are not

complete code.

• Heterogeneous and multi-dimensional nature of complex artifacts poses a lot of

challenges in summarizing complex software artifacts as they contain various types of

fragments like xml, source code, text, etc. and each type of fragment contributes

differently to overall knowledge [55].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

183

9. FUTURE SCOPE

9.1 Unit Test Cases Summarization

More work is required for creating the truly useable unit test case summaries. More work on

understanding how the summarization of unit test cases eases the work of developers, how to use

them in test case generation tools, how to locate the test cases when software fails due to code

changes, how will they help in supporting different tasks like testing support is required [39].

9.2 Duplicate Bug Reports Detection

More work on improving the effectiveness of systems for duplicate bug reports detection and for

recommending the similar changes to help in software evolution is required.

9.3 Source Code Summarization:

More work on summarization of heterogeneous complex artifacts is required. Most of the focus

of studies in source code summarization is for C++ and Java language. Studies can be extended

for generating the summaries for other object-oriented languages as well [38]. More work on

assessing the quality and effectiveness of summaries for maintenance tasks like feature location

or debugging is required [24]. More work on summarizing source code fragments from various

sources like online forums is required [21]. The benefits of source code summarization to various

other tasks like automatic reverse engineering and re-documentation need to be explored further

[11]. More work on creating the techniques which consider the structural information from source

code is required [10]. Term based techniques for quickly eliminating the irrelevant entities and

NLP based techniques for better evaluation of relevance of remaining entities can be combined to

create source code summaries [46].

Multi-document source code summarization considering the packages and classes is required

[10]. TASSAL [48] is one of the example of content based model for creating source code

summaries but deep learning and other techniques can be used for content based model to create

good coverage summaries which to capture the class relationships and other semantic information

of source code. Fowkes et al. [48] autofolded the source code at file level, autofolding at

statement level can be considered for future work. Automatic documents generation tools which

produce documents by summarizing source code are not very expressive [41], work is required to

produce more readable and expressive messages. More work on finding what is the most

important information to be included in the automatic documents generation summaries and how

to classify them is required [36].

9.4 Summarization Using Crowdsourcing

There are very few works on utilizing the crowdsourcing approach for summarizing software

artifacts. Nazar et al. [16] have used crowdsourcing for summarization of code fragments in small

scale. More work on extending it to large scale is required. More areas where crowdsourcing can

be utilized for summarization like corpus creation, features extraction, debugging needs to be

identified.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

184

9.5 Summarization Using Eye-Tracking interactions

More work on analyzing the effects of gaze-time, fixations and regressions on long and multi-

word identifiers for identifying the important keywords is required. Eye-tracking studies from

different roles like testers, security experts, database experts, etc. need to be compared [38].

9.6 Improving Sentence Ranking Techniques

More work on improving the precision of ranking techniques is required. More work on

evaluating the influence of text preprocessing in on the quality of ranking techniques is required.

More work on improving the estimation of sentence relevance is required [4] as improving the

sentence relevance will improve the quality of summary. More characteristics of bug reports and

other artifacts need to be considered for summarization to increase sentence relevance.More work

on integrating the summarization algorithms and the presentation of summaries with the IDEs is

required [41] [4] [36]. Highlighting the important information in the summaries can be done to

improve the summary visualization [36].

9.7. Creating Personalized Summaries

Most of the summaries generated till now are general purpose summaries. According to the role

of person, the requirements from a document changes. For example, a developer looking for

duplicate bug report needs different information than a person looking for bug triaging. By

identifying the topics or terms relevant to person, the summary contents can be changed. More

work on generating personalized and targeted summaries specific to a role of person or related to

some specific software engineering task like bug localization or code review is one of the very

potential future research area [17] [24] [48].

9.8. Summary Visualization

For large documents, proper summary visualization helps understand, locate and navigate the

summaries easily [4]. More work on creating the optimal interfaces to support navigation based

on summaries is required [4]. More work on integrating the summarization algorithms and the

presentation of summaries with the IDEs is required [41] [4] [36]. Highlighting the important

information in the summaries can be done to improve the summary visualization [36].

CONCLUSION

Summarization of software artifacts help support number of software engineering tasks like

duplicate bug reports detection, program comprehension, code search, software maintenance and

evolution, automatic documents generation, finding traceability links, etc. The paper gives an

overview of the state of the art of summarization techniques mainly in terms of extractive and

abstractive summarization. Summaries are either evaluated intrinsically on itself or extrinsically

on task basis. The paper gives an overview of evaluation techniques used for summarizing

software artifacts. Heterogeneous complex data in software artifacts, in-complete code in code

fragments, no well-defined standards for summaries poses challenges during summarization. The

paper has also discussed the areas where there is scope of future work like creating personalized

summaries according to roles and tasks, improving summary visualization, improving automatic

documents generation, unit test cases summarization, etc.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

185

REFERENCES

[1] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software artifacts: A case study of bug

reports,” in ICSE, 2010, pp. 505–514.

[2] P. W. McBurney and C. McMillan, “Automatic source code summarization of context for java

methods,” Transactions on Software Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[3] P. W. McBurney, “Automation documentation generation via source code summarization,” in

International Conference on Research Advances in Integrated Navigation System, l 2015, pp. 35–44.

[4] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ’hurried’ bug report reading process to

summarize bug reports,” in Inter-National Conference on Software Maintenance, 2012, pp. 430–439.

[5] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A literature review,” Springer Journal

of Computer Science and Technology, pp. 883–909, 2016.

[6] R. Ferreria, F. Freitas, L. de Souza Cabral, R. D. Lins, R. Lima, G. Franca, S. Jsimske, and L. Favaro,

“A context based text summarization,” in 11th IAPR International Workshop on Document Analysis

System, 2014, pp. 66–70.

[7] M. Indu and K. K. V, “Review on text summarization evaluation methods,” in International

Conference on Research Advances in Integrated Navigation System, April 2016.

[8] S. Saziyabegum and P. S. Sajja, “Literature review on extractive text summarization approaches,”

International Journal of Computer Applications (0975-8887), vol. 156, no. 12, Dec 2016.

[9] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo, “Recovering traceability links

between code and documentation,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol.

28, no. 10, pp. 970–983, Oct 2002.

[10] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text summarization

techniques for summarizing source code,” in 17th Working Conference on Reverse Engineering, 2010,

pp. 35–44.

[11] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension with source code

summarization,” in ICSE 2010, May 2010, pp. 223–226.

[12] N. Rahman and B. Borah, “A survey on existing extractive techniques for query-based text

summarization,” in International Symposium on Advanced Computing and Communication, 2015.

[13] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of bug reports,” Transactions on

Software Engineering, vol. 40, no. 4, 2014.

[14] S. Rastkar and G. C. Murphy, “Why did this code change?” in ICSE 2013, 2013, pp. 1193–1196.

[15] P. C. Rigby and M. P. Robillard, “Discovering essential code elements in informal documentation,” in

ICSE 2013, San Francisco, CA, USA, 2013, pp. 832–841.

[16] N. NAZAR, H. JIANG, G. GAO, T. ZHANG, X. LI, and Z. REN, “Source code fragment

summarization with small-scale crowd-sourcing based features,” Front. Comput. Sci.), Oct 2015.

[17] A. T. T. Ying and M. P. Robillard, “Code fragment summarization,” in ESEC/FSE’13, 2013, pp. 655–

658.

[18] L. Guerrouj, D. Bourque, and P. C. Rigby, “Leveraging informal documentation to summarize classes

and methods in context,” in 37th International Conference on Software Engineering, 2015, pp. 639–

642.

[19] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: Approach for unsupervised bug report

summarization,” in SIGSOFT’12/FSE-20, 2012, pp. 1–11.

[20] I. Ferreira, E. Cirilo, V. Vieira, and F. Mourao, “Bug report summarization: An evaluation of ranking

techniques,” in 2016 X Brazilian Symposium on Components, Architectures and Reuse Software,

2016, pp. 101–110.

[21] A. D. Sorbo, S. Panichella, C. A. Visaggio, M. D. Penta, G. Canfora, and H. C. Gall, “Development

emails content analyzer: Intention mining in developer discussions,” in 30th IEEE/ACM International

Conference on Automated Software Engineering, 2015, pp. 12–23.

[22] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Improving topic model source code

summarization,” in ICPC 2014, June 2014.

[23] B. P. Eddy, J. A. Robinson, N. A.Kraft, and J. C. Carver, “Eval-uating source code summarization

techniques: Replication and expansion,” in ICPC 2013, 2013, pp. 13–22.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

186

[24] S. Badihi and A. Heydarnoori, “Crowdsummarizer :automated generation of code summaries for java

programs through crowd-sourcing,” IEEE Software, pp. 71–80, 2017.

[25] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-tracking study of java

programmers and application to source code summarization,” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, pp. 1038–1054, 2015.

[26] E. Lloret, L. Plaza, and A. Aker, “Analyzing the capabilities of crowdsourcing services for text

summarization,” Springer Sci-ence+Business Media B.V. 2012, pp. 338–369, 2012.

[27] S. G. Hong, S. Shin, and M. Y. Yi, “Contextual keyword extrac-tion by building sentences with

crowdsourcing,” Springer Science+Business Media New York 2012, 2012.

[28] H. Mizuyama, K. Yamashita, K. Hitomi, and M. Anse, “A proto-type crowdsourcing approach for

document summarization service,” in IFIP International Conference on Advances in Production

Management Systems, 2013, pp. 435–442.

[29] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending insightful comments for source code

using crowdsourced knowledge,” in SCAM 2015, Bremen, Germany, 2015, pp. 81–90.

[30] H. T. Le and T. M. Le, “An approach to abstractive text summa-rization,” in International Conference

of Soft Computing and Pattern Recognition, 2013, pp. 371–376.

[31] R. P. Buse and W. R. Weimer, “Automatic documentation inference for exceptions,” in ISSTA 2008,

2008, pp. 273–281.

[32] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards automatically

generating summary comments for java methods,” in ASE 2010, 2010, pp. 43–52.

[33] R. P. Buse and W. Weimer, “Automatically documenting program changes,” in ASE’10, 2010, pp. 33–

42.

[34] S. Rastkar, G. C. Murphy, and A. W. Bradley, “Generating natural language summaries for

crosscutting source code concerns,” in 27th International Conference on Software Maintenance, 2011,

pp. 103– 112.

[35] L. F. Cortes-Coy, M. Linares-Vasquez, J. Aponte, and D. Poshy-vanyk, “On automatically generating

commit messages via sum-marization of source code changes,” in 14th IEEE Working Conference on

Source Code Analysis and Manipulation, 2014, pp. 275–284.

[36] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and G. Canfora, “Arena: An approach for

the automated generation of release notes,” Transactions on Software Engineering, 2016.

[37] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsummarizer: An automatic generator of

natural language summaries for java classes,” in ICPC 2013, San Francisco, CA, USA, 2013, pp. 230–

232.

[38] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using stereotypes in the automatic generation

of natural language summaries for c++ methods,” in ICSME 2015, Bremen, Germany, 2015, pp. 561–

565.

[39] M. Kamimura and G. C. Murphy, “Towards generating human-oriented summaries of unit test cases,”

in ICPC 2013, San Francisco, CA, USA, 2013, pp. 215–218.

[40] H. Li, C. Vendome, M. L. Vasquez, D. Poshyvanyk, and N. A. Kraft, “Automatically documenting

unit test cases,” in International Con-ference on Software Testing, Verification and Validation, 2016,

pp. 341– 352.

[41] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization of what and why

infoormation in source code changes,” in 40th Annual Computer Software and Applications

Conference, 2016, pp. 103–112.

[42] B. J. Dorr, C. Monz, S. President, R. Schwartz, and D. Zajic, “A methodology for extrinsic evaluation

of text summarization: Does rouge correlate?” in Proceedings of the ACL Workshop on Intrinsic and

Extrinsic Evaluation Measures for Machine Translation and/or Summarization, June 2005, pp. 1–8.

[43] J. Aponte and A. Marcus, “Improving traceability link recovery methods through software artifact

summarization,” in TEFSE 2011, May 2011, pp. 46–49.

[44] V. Gupta, “A survey of various summary evaluation techniques,” International Journal of Advanced

Research in Computer Science and Software Engineering, pp. 159–162, 2014.

[45] A. Nenkova, “Summarization evaluation for text and speech: Issues and approaches,” in

INTERSPEECH 2006, Sep 2006.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 5, October 2017

187

[46] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating source code summarization

techniques: Replication and expansion,” in ICPC, 2013, pp. 13–22.

[47] L. F. Cortes-Coy, M. Linares-Vasquex, J. Aponte, and D. Poshyvanyk, “On automatically generating

commit messages via sum-marization of source code changes,” in International Working Con-ference

on Source Code Analysis and Manipulation, 2014, pp. 275–284.

[48] J. Fowkes, P. Chanthirasegaran, and R. Ranca, “Autofolding for source code summarization,” IEEE

Transactions on Software Engi-neering, 2016.

[49] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, “Sup-porting online problem-solving

communities with the semantic web,” in WWW ’06 Proceedings of the 15th international conference

on World Wide Web, 2006, pp. 575–584.

[50] B. Dit and A. Marcus, “Improving the readability of defect re-ports,” in RSSE ’08 Proceedings of the

2008 international workshop on Recommendation systems for software engineering, 2008, pp. 47–49.

[51] E. Hill, L. Pollock, and K. V. Shanker, “Automatically capturing source code context of nl- queries for

software maintenance and reuse,” in ICSE 2009, 2009, pp. 232–242.

[52] A. Marcus and J. I. Maletic, “Recovery of traceability links between software documentation and

source code,” International Journal of Software Engineering and Knowledge Engineering, vol. 15, no.

5, pp. 811–836, 2015.

[53] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for automatic comment

generation,” in SANER 2015, Montreal, Canada, 2015, pp. 388–389.

[54] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora, “Mining source code descriptions

from developer communications,” in ICPC 2012, Passau, Germany, 2012, pp. 63–72.

[55] N.Moratanch and S.Chitrakala, “A survey on abstractive text summarization,” in International

Conference on Abstractive Summarization, 2016.

[56] L. Ponzanelli, A. Mocci, and M. Lanza, “Summarizing complex development artifacts by mining

heterogeneous data,” in 12th Working Conference of Mining Software Repositories, 2015, pp. 401–

405.

Authors’ Profiles

SomGuptais a Research Scholar in Computer Science Department in AKTU Lucknow. She has done

MTech from IIIT Bangalore and BE in Computer Engineering from Gujarat University. She has 2 years of

working experience. She has worked with American Express Technologies, Gurgaon; taught in Chandigarh

University and has trained Graduates Java and Android technologies. Her area of interest includes natural

language processing, machine learning, software engineering and databases.

Dr. S. K. Gupta is presently working as A.P. in Comp. Sc. & Engg. Deptt. of BIET, Jhansi, U.P., INDIA.

Initially graduating in Computer Science & Engineering from H.B.T.I., Kanpur, U.P., INDIA and then

M.E. from M.N.R.E.C., Allahabad, U.P., INDIA and after that completed Ph.D. in Computer Science &

Engineering from Bundelkhand University, Jhansi, U.P., INDIA. His area of interest includes image

processing and data mining.

