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ABSTRACT 
 

In this paper, we solve this problem of finding maximum flow in extended mixed network by Revised 

preflow-push methods of Goldberg This algorithm completely different algorithm postflow-pull in [15]. 

However, we share some common theory with [15]. 
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1. INTRODUCTION 
 

In real life, we do not always have the freedom of choice that this idealized scenario suggests, 

because not all pair of reduction relationships between these problems have been proved, and 

because few optimal algorithms for solving any of the problem has yet been invente, and perhaps 

no efficient reduction that directly relates a given pair of problems has yet been devised.  

 

In this paper, We consider another approach to solving the maximum flow problem in network 

mixed network. Using a generic method known as preflow-push method, we incrementally move 

flow along the outgoing edges of vertices that have more inflow than outflow. The preflow-push 

approach was developed by A. Goldberg and R.E. Tarjan in 1986 [4] on basis of various earlier 

algorithms. It is widely used because of its simplicity, flexibility. 

 

As we did in augmenting-path algorithms, we use the residual network to keep track of the edges 

that we might push flow through. Every edge in the residual network represents a potential place 

to push flow. If a residual network edge is in the same direction as the corresponding edge in the 

flow network, we increase the flow; if it is in the opposite direction, we decrease the flow. If the 

increase fills the edge or the decrease empties the edge, the corresponding edge disappears from 

the residual network. For preflow-push algorithms, we use an additional mechanism to help 

decide which of the edges in the residual network can help us to eliminate active vertices. 

 

The problem of finding maximum flow in network mixed network is extremely interesting and 

practically applicable in many fields in our daily life, especially in transportation. The paper 

develops a model of extended mixed network that can be applied to modelling many practical 

problems more exactly and effectively. 
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Given a graph network G (V, E) with a set of vertices V and a set of edges E, where edges can be 

directed or undirected, with edge capacity ce:E→R*, so that ce(e) is adge capacity e ∈ E and 

vertices capacity cv:V→R*, so that cv(u) is vertices capacity u ∈ V. 

 

With edge cost be be: E→R*, be(e): cost must be return to transfer an unit transport on edge e  

With each v∈V, Set Ev are set edge of vertice v.  

 

Vertice cost bv:V×Ev×Ev→R*, bv(u,e,e’): cost must be return to transfer an unit transport from 

edge e to vertice u to edge e’. 

 

A set (V, E, ce, cv, be, bv) is called extended mixed network. 

 

2. FLOW EDGE ON EXTENDED MIXED NETWORK 
 

The following formatting rules must be followed strictly.  This (.doc) document may be used as a 

template for papers prepared using Microsoft Word.  Papers not conforming to these requirements 

may not be published in the conference proceedings. 

 

Given an extended mixed network G = (V, E, ce, cv, be, bv). where s is source vertex, t is sink 

vertex. A set of flows on the edges f = {f(x,y) | (x,y)∈E} is called flow edge on extended mixed 

network. So that: 

 

(i) 0 ≤f(x,y) ≤ce(x,y) ∀(x,y)∈E                             (1) 

 

(ii) For any vertex k is not a source or sink 

 

( ) ( )∑∑
∈∈

=
EvkEkv
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,,                                     (2)  

 

(iii) For any vertex k is not a source or sink 
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The maximum problem:  

 

Given an extended mixed network G(V, E, ce, cv, be, bv), where s is source vertex, t is sink 

vertex. The task required by the problem is finding the flow which has a maximum value. The 

flow value is limited by the total amount of the circulation possibility on the roads starting from 

source vertex. As a result of this, there could be a confirmation on the following theorem.  

 

3. PREFLOW-PUSH METHODS  
3.1. Some basic concept 

 
◊ Residual extended network Gf: 

 

For flow f on G = (V, E, ce, cv, be, bv), where s is source vertex, t is sink vertex. Residual 

extended network, denoted Gf is defined as the extended network with a set of vertices V and a 

set of edge Ef with the edge capacity is cef and vertices capacity is cvf as follows: 

- For any edge (u, v) ∈ E, if f(u, v)> 0, then (v, u) ∈Ef with edge capacity is cef (v,u)=f(u, v) 
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- For any edge (u,v) ∈ E, if c(u,v) -f(u, v)> 0, then (u, v) ∈Ef with edge capacity is cef(u,v) = 

ce(u,v) - f(u,v) 

 

- For any vertices v∈ V then  

 

                 cvf(v)= cv(v)− ( )∑
∈Evx

vxf
),(

,

                        

(4) 

◊ preflow: 

 

For extended mixed network G = (V, E, ce, cv, be, bv). Preflow is a set of flows on the edges f = 

{f(x, y) | (x, y)∈ G} So that 

 

(i) 0 ≤ f(x, y) ≤ ce(x, y) ∀(x, y) ∈ E 

 

(ii) for any vertex k is not a source or sink, inflow is not smaller than outflow, that is 

                    ( ) ( )∑∑
∈∈

≥
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,,

                                                           

(5) 

 

(iii) for any vertex k is not a source or sink 
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                                                            (6) 

 

Each vertex whose inflow is larger than its outflow is called the unbalanced vertex. The 

difference between a vertex’s inflow and outflow is called excess. The concept of residual 

extended network Gf is similarly defined as flow. 

 

The idea of this methods is balancing inflow and outflow at the balanced vertices by pushing 

along an outgoing edge and pushing against an incoming edge. Process of balancing is repeated 

until no more the unbalanced vertex then we get maximum flow. We store the unbalanced 

vertices on a generalized queue. A tool called a height function is used to help select the edge 

available in residual network to eliminate the unbalanced vertices. Now we assume that a set of 

the network is denoted as V={0,1,...,|V|-1}. 

 

◊ height function of the pre-flow in the extended mixed network G = (V, E, ce, cv, be, bv), is a set 

of non-negative vertex weights h(0), ..., h(|V| −1) such that h(z) = 0 for z and h(u) ≤ h(v) + 1 for 

every edge (u,v) in the residual extended network for the flow. An eligible edge is an edge (u,v) 

in the residual extended network with h(u)=h(v) + 1. 

 

A trivial height function is h(0) = h(1) = ... = h(|V| − 1) = 0. Then if we set h(a)= 1, any positive 

edge to a is the priority edge. 

 

We define a more interesting height function by assigning to each vertex the latter’s shortest –

path distance to the sink (its distance to the root in any BFS tree of the network rooted at z. This 

height function is valid because h(z)= 0, and for any pair of vertices u and v connected by an edge 

(u,v) in residual network Gf, then h(u) ≤ h(v) + 1, because the path from u to z with edge (u,v) 

(h(v)+1 must be not shorter than the shortest path from u to z is h(u)). 

 

3.2. Preflow-push algorithm 

 
This is a particular algorithm in Preflow-push method. Here the unbalanced vertices are spushed 

into the queue. With each vertex from the queue, we will push the flow in the priority edge until 
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the flow becomes either balanced or does not have any priority edge. If it does not exist priority 

edge but there are unbalanced vertices, then we increase the height and push it into the queue. 

This algorithm inplements the genetic vertex- based preflow-push maxflow algorithm, using a 

generalized queue that disallows duplicates for active nodes. 

 

The shortest-paths function is used to initialize vertex heights in the array h, to shortest- paths 

distances from the sink. The array contains each vertex’s excess flow and therefore implicitly 

defines the set of active vertices. By convention, s is initially active but never goes back on the 

queue and t is nener active. 

 

The main loop choose an active vertex v, then pushes flow through each of its eligible edges 

(adding vertices that receive the flow to the active list, if necessary), until either v become 

inactive or all its edges have been considered. In the latter case, v’s height is incremented and it 

goes back into the queue. 

 

Initially, the only preflow is in the edges for the source vertices is the following: 

f(s,v)=min{ce(s,v),cv(v)} and other flows are 0. Then the first vertices of those edges directed to 

the source are unbalanced. With any unbalanced vertex v, we have (v, s) ∈Ef and (s,v) ∉Ef, 

inferred there exists paths from v to a, and there are no directed paths from source vertex a to sink 

vertex in the residual network Gf. So the properity is true with the initial flow. 

Now we can describe the Preflow-push algorithm as follows: 

 

-------------------------------------------------------------------- 

 
Input: Extended mixed network G(V, E, ce, cv, be, bv).  with source s, sink t.  

Output: Maximum flow  

            

                                 

{ 

Initialize:  

 =0 

,  f(s,v)= min{ce(s,v), cv(v)}                             

Select any available heigth function h in the extended mixed network G. 

Q�u| u . 

While Q  do 

{  

Get u from Q.  

If  (u, v) ∈ Ef is priority edge then  

{  

Unbalanced vertex u:  

If f(v,u)>0 then push along the edge (u,v) a flow with value min{excess(u),cef(u,v)}). 

If (u,v)∈E and cvf(v)>0) then push along the edge (u,v) a flow with value 

min{excess(u), cef(u,v), cvf(v)} 

If excess(v)  then  Q=Q . 

 } 

       Else 

 { 

 h(u)= 1 + min {h (v) | (u, v) ∈ Ef}         

          v �Q 

 } 

     } 

( ) ( ) EfF ij ∈= ji, ,
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 Prinf f is maximum flow 

} 

-------------------------------------------------------------------- 
 

There are many optionsto explore in developing preflow-push implementations. We have already 

discussed three major choices: 
 

- Edge-based versus vertex-based generic algorithm 

- Generalized queue implementation 

- Initial assignment of heights 

 

If a vertex’s height is greater then |V|, then there is no path from that vertex to the sink in the 

residual extended network Gf. 

 

Theorem 3.1. The complexity of the preflow-push method is O (|V|
2
| E|) [5].  

 

Proof: We bound the number of phases using a potential function. This argument is a simple 

example of a powerful technique in the analysis of algorithm and data structures. 

 
Define the quantity Q to be 0 if there are no active vertices and to be the maximun height of the 

active vertices otherwise, then consider the effect of each phase on the value of Q. Let h0(s) be the 

initial height of the source. At the beginning, Q= h0(s); at the end, Q=0. 

 

First, we note that the number of phases where the height of some vertex increases is no more 

than 2|V|2-h0(s), since each of the V vertex heights can be increased to a value of at  most 2|V|, by 

the corollary: “Vertex’s height is always less than 2.|V|”.  

 

While Preflow-push algorithm is in execution, there always exists a directed path from sink 

vertex to the unbalanced vertex in the residual extended network, and there are no directed paths 

from source vertex to sink vertex in the residual extended network. 

 

We need to consider only unbalanced vertices, the height of each unbalanced vertex is either the 

same as or 1 greater than it was the last time that the vertex was balanced. By the same argument, 

the path from a source vertex to a given unbalanced vertex in the residual extended network Gf  

implies that unbalanced vertex’s height is not greater than the source vertex’s height plus |V| -2 

(the sink vertex can not be on the path). Since the height of the source never changes, and it is 

initially not greater than |V|, the given unbalanced vertex’s height is not greater than 2.|V| - 2, and 

no vertex has height 2|V| or greater. 

 

Since Q can increase only if the height of some vertex increases, the number of phases where Q 

increases is no more than 2|V|2- h0(s). 

 

 If, however, no vertex’s height is incremented during a phase, the Q must decrease by at least 1, 

sine the effect of the phase was to push all excess flow from each active vertex to vertices that 

have smaller height. 

 

Together, these facts imply that the number of phases must be less than 4|V|2: The value of Q is h-

0(s) at the beginning and can be incremented at most 2|V|2- h0(s) times and therefore can be 

decremented at most 2|V|
2
 times. The worst case for each phase is that all vertices are on the 

queue  and all of their edges are examined, leading to the stated bound on the total running time. 

 

This bound is tight. The number of phases used by the preflow-push algorithm is proportional to 

|V|2. 
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Example: Finding the max flow for the following extended mixed network G (Figure 1). The 

order of the vertices is 1, 2, 3, 4, 5, 6.   

 

Table 1. Edge capacity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Vertex capacity 

        
          

 

 

 Table 3. Height function 

 

 

 

 
The steps of the algorithm described in the following figure: 

 

 
 

Figure 1. Network G 
 

 
 

Figure 2. Initialze flow 

 

Queue Q: > 3 | 2 >. Get unbalanced vertex 2 from the queue (Balanced 2): 

Push along the edge (2, 5) a flow with value 7, We have preflow as in figure 3. 

 

Edge ce 

(1,2) 10 

(1,3) 9 

(2,3) 5 

(2,5) 7 

(3,4) 7 

(3,5) 6 

(4,6) 10 

(4,5) 5 

(5,6) 9 

Vertex 1 2 3 4 5 6 

Cv ∞ 10 9 10 9 ∞ 

Edge 1 2 3 4 5 6 

H 3 2 2 1 1 0 
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Table 4. Height function 

 

 

 

 

 
Figure 3. Preflow 

 
We increase the heigth of the vertex 2 as follows: h(2) = 1 + 3 = 4. Height function change as in 

table 4 

 

Push along the edge (2, 1) a flow with value 3, We have preflow as in figure 4. 

 
Figure 4. Preflow 

 

Push unbalanced vertex 5 to Queue Q. Queue Q: >5 | 3 > 

- Get unbalanced vertex 3 from the queue (Balanced 3): 

 Push along the priority edge (3, 4) a flow with value 7, We have preflow as in figure 5. 

 
Figure 5. Preflow 

 

Push along the priority edge (3, 5) a flow with value 2. We have preflow as in figure 6. 

 

 
Figure 6. Preflow 

 

Edge 1 2 3 4 5 6 

h 3 4 2 1 1 0 
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Figure 7. Preflow 

 

Push unbalanced vertex 4 to Queue Q. 

Queue Q: > 4 | 5> 

 

- Get unbalanced vertex 5 from the queue (Balanced 5): 

Push along the priority edge (5, 6) a flow with value 9, We have preflow as in figure 7.   

 

- Get unbalanced vertex 4 from the queue (Balanced 4): 

Push along the priority edge (4, 6) a flow with value 7, We have preflow as in figure 8.   

Queue Q = ∅ (no more the unbalanced vertex), ended and the final flow is the maximum 

flow with value is 16 

 
 

Figure 8. Preflow 

 

4. BUILDING THE PARALLEL ALGORITHM 
 
Inputs: Extended mixed network G with source s, sink t m processors (P0, P1,…, Pm-1), where P0 

is the main processor. 

 

Output: Maximum flow  

                            
                                                 

 

 
Step 1: The main processor P0 performs 

(1.1). initialize: e, h, f, cf, Q: set of unbalanced vertices (excluding the vertices s and t) are 

the vertices with positive excess. 

 

(1.2). divide set of vertices V into sub-processors: 

 

 Let Pi be the i
th
 sub-processor (i = 1,2, ..., m-1) 

 Pi will receive the set of vertices Vi so that   

 

       

  

(1.3). The main processor sends h, e, cf to sub-processors 

 

( ) ( ) EfF ij ∈= ji, ,

{ } )  and j,i if ( i VVVV iji =∪≠=∩ φ
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Step 2: The Condition to terminate: If Q = ∅, then postflow f becomes maximum flow, end. Else; 

choose unbalanced vertex u from Q. If exists priority edge (u, v) ∈ Ef then go to step 3, else 

go to step 4. 

 

Step 3: m-1 sub-processors (P1, P2, …,Pm-1) implement 

 

(3.1) Receive e, cf, h and the set of vertices from the main processor 

 

(3.2) Handling unbalanced vertice v (push and replace label). Get unbalanced vertexs u 

(e(u)>0) from Q and u∈Vi (i= 1,2, ..., m-1).  

 

If f(v,u)>0, then push along the edge (u,v) a flow with value min{delta,cef(u,v)}(where delta 

is the excess of the vertex u). 

 

If (u,v)∈E and cvf(v)>0, then push along the edge (u,v) a flow with value min{delta, cef(u,v), 

cvf(v)} 

 

Step 4 : Increased the height of the vertex u as follows: 

 

          h(u): = 1 + min {h (v) | (u, v) ∈ Ef}  

              

Step 5: Send e, cf, h to the main processor 

 

Step 6: The main processor implements 

 

(6.1) Receive e, cf, h from step 5 

 

(6.2) This step is distinctive from the sequential algorithms to synchronize our data, after 

receiving the data in (6.1), the main processor checks if all the edges ( ) Evu ∈, that have 

h(u)> h(v)+1, the main processor will relabel for vertices u, v as follows: 

 

- e(u):= e(u)+cef(u,v), e(v):= e(v)-cef(u,v)  

- If f(v,u)>0, then f(u,v):= min{delta,cef(u,v)} 

(where delta is the excess of the vertex u). 

- If (u,v)∈E and cvf(v)>0,  

then f(u,v):= min{delta, cef(u,v), cvf(v)} 

  Put the new unbalanced vertex into set Q 

(6.3) If Vu ∈∀ e(u)=0, eliminate u from active set Q. 

Back to step 2. 

 

Theorem 4.1. Postflow-pull parallel algorithm is true and has complexity O(|V|2 |E|). 

 

Proof: Preflow-push parallel algorithm is build in accordance with other parallel computing 

system such as: PRAM, Cluster system, CUDA, RMI, threads,… Push and replace label using 

atomic, due to support of atomic ‘read-modify-write’ instructions, are executed atomically by the 

architecture. Other than the two execution characteristics provided by the architecture, we do not 

impose any order in which executions from multiple sub-processors can or should be interleaved, 

as it will be left for the sequential consistency property of the architecture to decide.  

 

The outcome of the execution reduces to only a few simplified scenarios. By analyzing these 

scenarios, we can show that function f is maintained as a valid height function. A valid d 

guarantees that there does not exist any paths from s to t throughout the execution of the 
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algorithm, and hence guarantees the optimality of the final solution if the algorithm terminates. 

The termination of the algorithm is also guaranteed by the validatity of h, as it bounds the number 

of push and relabel operations to O(|V |
2
|E|).   

  

5. CONCLUSIONS 

 
The detail result of this paper is building sequential and parallel algorithm by preflow-push 

methods to find maximum flow in extended mixed network. The results of this paper are basically 

systematized and proven. 
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