
International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 
 

DOI :10.5121/ijcsity.2016.4203                                                                                                                     21 

 

PSEUDOCODE TO SOURCE PROGRAMMING 

LANGUAGE TRANSLATOR 

 

Amal M R, Jamsheedh C V
   
and Linda Sara Mathew 

 

Department of Computer Science and Engineering, M.A College of Engineering, 

Kothamangalam, Kerala, India 
 

 

ABSTRACT 
 

Pseudocode is an artificial and informal language that helps developers to create algorithms. In this paper 

a software tool is described, for translating the pseudocode into a particular source programming 

language. This tool compiles the pseudocode given by the user and translates it to a source programming 

language.  The scope of the tool is very much wide as we can extend it to a universal programming tool 

which produces any of the specified programming language from a given pseudocode. Here we present the 

solution for translating the pseudocode to a programming language by using the different stages of a 

compiler. 

 
KEYWORDS 

 
Compiler, Pseudocode to Source code, Pseudocode Compiler, c, c++  

  

1. INTRODUCTION 
 

Generally a compiler is treated as a single unit that maps a source code into a semantically 

equivalent target program [1]. If we are analysing a little, we see that there are mainly two stages 

in this mapping: analysis and synthesis. The analysis phase splits up the source code into sub 

parts and imposes a grammatical structure on them. It then uses this grammatical structure to 

create an intermediate representation of the source code. If the analysis phase detects that the 

source code is either semantically unsound or syntactically weak, then it must provide 

informative messages to the user. The analysis phase collects information about the source code 

and stores it in the data structure called a symbol table, which is passed along with the 

intermediate representation to the synthesis phase. The synthesis phase constructs the target 

program from the intermediate code and the information from the symbol table [2], [3].The 

synthesis phase is often called the back end and the analysis phase is the front end of the 

compiler. 

 

Compilation process consists of a sequence of phases, each of which transforms one 

representation of the source code to another. Compilers have a machine-independent optimization 

phase between the front end and the back end. The purpose of this optimization phase is to 

perform transformations on the intermediate representation; so that the backend can produce a 

better target program than it would have otherwise produced from an un-optimized intermediate 

representation. 

 

 

 

 

 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

22 

 

2. COMPILING PSEUDOCODE 
 
Compiling the pseudocode consists of certain operations such as analysis and computations that 

is to be done on it. 

 

2.1. Lexical Analyser 
 

The pseudocode submitted by the user is analysed by the transition analysis algorithm in 

the Lexical Analyser module. This phase of the compiler detect the keywords, identifiers 

and tokens from the given input.    

 

2.2. Syntax Analyser 
 

The Syntax Analyser module generates the Context Free Grammar from the pseudocode given by 

the user. The grammar thus generated is then used for the creation of parse tree. The meaning of 

the grammar is obtained by the pre order traversal on the parse tree.  

 

2.3. Semantic Analyser 
 

Semantic Analyser gathers the type information and uses the information in the symbol table and 

syntax tree to check the source program for semantic consistency with the language definition. 

 

2.4. Intermediate Code Generator 
 

Intermediate code generator module generates the intermediate code of the pseudocode that is 

used for the translation of pseudocode to other languages. 

2.5. Intermediate Code Optimizer 
 

The intermediate code optimizer module optimizes the intermediate code generated in the 

previous module that is used for the translation of pseudocode to other languages. 

 

2.6. Code Generator 
 

In this module the user selects the required program in the user interface that is the available 

library file and the optimized intermediate code is mapped into the programming language 

selected by the user.  

 

2.7. Library File Manager 
 

The administrator maintains the library files of the target language and also manages the files in 

library package. 
 

3. PROBLEM STATEMENT 

3.1. Interpret the Pseudocode 

The major task in translating the pseudocode is to identify and interpret the pseudocode given by 

the user. Each user has his own style of presentation, variation in using keywords or terms (E.g.: - 

Sum, Add, etc. to find sum of two numbers), structure of sentence, etc. So initial task is make the 

tool capable of interpreting and identifying the right meaning of each line of the pseudocode. 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

23 

 

3.2. Translate the Pseudocode into Programming Language 
 

Next task involves the translation of the interpreted pseudocode into programming language. 

User can specify output in any of the available programming languages. So the tool must be able 

to support all the available programming language features (in this paper we are concentrating on 

C and C++ only). That is it must support the object oriented concepts, forms and so on. 
 

4. METHODOLOGY 
 

4.1. Lexical Analysis 
 

Lexical analysis or scanning is the first phase of our proposed tool. The lexical analyser takes the 

stream of characters and groups the characters into meaningful sequences called lexemes. The 

Lexical analyser produces tokens {token- name, attribute-value} for each lexemes. These tokens 

are passed on to the subsequent phases. In the token, the first component token- name is an 

abstract symbol that is used during syntax analysis, and the second component attribute-value 

points to an entry in the symbol table for this token. Information from the symbol-table entry 'is 

needed for semantic analysis and code generation. For example, suppose a source program 

contains the declare statement [1], [2]. 

 

Declare an integer variable called sum#      (1.1) 

The characters in this assignment could be grouped into the following lexemes and mapped into 

the following tokens passed on to the syntax analyser: 

1. Declare a, is a lexeme that would be mapped into a token (Declare, 59), where Declare is 
a keyword and 59 points to the symbol table entry for position.  

2. Integer, is a lexeme that would be mapped into a token (Integer, 112), where Integer is a 
keyword and 112 points to the symbol table entry for position. 

3. Variable, is a lexeme that would be mapped into a token (Variable, 179), where Variable 
is a keyword and 179 points to the symbol table entry for position.  

4. Called, is a lexeme that would be mapped into a token (Called, 340), where Called is a 
keyword and 340 points to the symbol table entry for position.  

5. Sum, is a lexeme that would be mapped into a token (sum, 740), where sum is an 
identifier and 740 points to the symbol table entry for position.  

 

(Blanks separating the lexemes would be discarded by the lexical analyser.) 

 

4.2. Syntax Analysis 
 

Syntax analysis or parsing is the second phase of a compiler. The parser uses the first 

components of the tokens produced by the lexical analyser to create a tree-like intermediate 

representation that depicts the grammatical structure of the token stream. A typical representation 

is a syntax tree in which each interior node represents an operation and the children of the node 

represent the arguments of the operation [12], [13]. The syntax of programming language 

constructs can be specified by context-free grammars or BNF (Backus-Naur Form) notation; 

Grammars offer significant benefits for both language designers and compiler writers. 

 

A grammar gives a precise, yet easy-to-understand, syntactic specification of a programming 

language. From certain classes of grammars, we can construct automatically an efficient parser 

that determines the syntactic structure of a source program. As a side benefit, the parser-

construction process can reveal syntactic ambiguity and trouble spots that might have slipped 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

24 

 

through the initial design phase of a language.  The structure imparted to a language by a 

properly designed grammar is useful for translating source programs into correct object code and 

for detecting errors. A grammar allows a language to be evolved or developed iteratively, by 

adding new constructs to perform new tasks. These new constructs can be integrated more easily 

into an implementation that follows the grammatical structure of the language. 

 

4.3. Context-Free Grammars 
 

Grammars were introduced to systematically describe the syntax of programming language 

constructs like expressions and statements. Using a syntactic variable ‘Stmt’ to denote statements 

and variable ‘expr’ to denote expressions, In particular, the notion of derivations is very helpful 

for discussing the order in which productions are applied during parsing. The Formal Definition 

of a Context-Free Grammar (grammar for short) consists of terminals, non-terminals, a start 

symbol, and productions. 

 

1. Terminals are the basic symbols from which strings are formed. The term "token name" 

is a synonym for "terminal" and frequently we will use the word "token" for terminal 

when it is clear that we are talking about just the token name. We assume that the 

terminals are the first components of the tokens output by the lexical analyser. 

2. Non terminals are syntactic variables that denote sets of strings. The set of string denoted 

by non-terminals helps to define the language generated by the grammar. Non terminals 

impose a hierarchical structure on the language that is the key to syntax analysis and 

translation. 

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of strings 

it denotes is the language generated by the grammar. Conventionally, the productions for 

the start symbol are listed first. 

4. The productions of a grammar specify the manner in which the terminals and non-

terminals can be combined to form strings. Each production consists of: 

a) A nonterminal called the head or left side of the production; this production defines 

some of the strings denoted by the head. 

b) The symbol --+. Sometimes:: = has been used in place of the arrow. 

c) A body or right side consisting of zero or more terminals and non-terminals. 

The Context Free Grammar generated from 1.1 by the Software tool is 

Stmt -> declare_an <DataType> variable Called <Identifier>     (1.2) 

DataType->integer  

Identifier->sum 

4.4.  Semantic Analysis 

The semantic analyser uses the syntax tree and the information in the symbol table to check the 

source program for semantic consistency with the language definition. It also gathers type 

information and saves it in either the syntax tree or the symbol table, for subsequent use during 

intermediate-code generation An important part of semantic analysis is type checking, where the 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

25 

 

compiler checks that each operator has matching operands. For example, many programming 

language definitions require an array index to be an integer; the compiler must report an error if a 

floating-point number is used to index an array .The language specification may permit some 

type conversions called coercions. For example, a binary arithmetic operator may be applied to 

either a pair of integers or to a pair of floating-point numbers. If the operator is applied to a 

floating-point number and an integer, the compiler may convert or coerce the integer into a 

floating-point number. The Parse Tree generated from 1.2 by the Software tool is by array 

representation as follows, 

The pre order traversal:  

Stmt-> declare_an DataType integer variable Called Identifier sum    (1.3) 

4.5. Intermediate Code Generation 
 

In the process of translating a source program into target code, a compiler may construct one or 

more intermediate representations, which can have a variety of forms. Syntax trees are a form of 

intermediate representation; they are commonly used during syntax and semantic analysis. After 

syntax and semantic analysis of the source program, many compilers generate an explicit low-

level or machine-like intermediate representation, which we can think of as a program for an 

abstract machine [10], [11]. This intermediate representation should have two important 

properties: it should be easy to produce and it should be easy to translate into the target machine. 

In our software tool intermediate code is generated to convert the code to various languages from 

single pseudocode. 

The intermediate code for 1.3 is as follows  

149 i780 300o     (1.4) 

4.6. Code Generation 
 

The code generator takes as input an intermediate representation of the source program and maps 

it into the target language. If the target language is machine Code, registers or memory locations 

are selected for each of the variables used by the program. Then, the intermediate instructions are 

translated into sequences of machine instructions that perform the same task.  

The resultant program code for 1.4 is as follows:  

int sum;            (1.5) 

5. SCHEMA DESCRIPTION 
 

5.1.Input Design 
 

This is a process of converting user inputs into computer based formats. The data is fed into 

system using simple interactive forms. The forms have been supplied with messages so that user 

can enter data without facing any difficulty. The data is validated wherever it requires in the 

project. This ensures that only the correct data have been incorporated into the system. It also 

includes determining the recording media methods of input, speed of capture and entry into the 

system. The input design or user interface design is very important for any application. The 

interface design defines how the software communicates with in itself, to system that interpreted 

with it and with humans who use. 

 

 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

26 

 

The main objectives that guide input design are as follows: 

User friendly code editor- Providing line numbers and shaded graphical rows to easily identify 

each line of code. 

Arise that lead to processing delays- Input is designed so that it does not lead to bottlenecks and 

thus avoid processing delays. 

Dynamic check for errors in data-errors in data can lead to delays. Input design should be such 

that the data being entered should be free from error to the maximum possible limit. 

 

Fig:-1 System environment of the proposed software tool 

 

The proposed software tool consists of several modules which are used to process the input given 

by the user. Fig (1) consists of the system environment. 

 

Avoided extra steps-more the number of steps more is the chance of an error. Thus the number of 

steps is kept to a minimum possible. 

Kept the process simple-the process should be kept as simple as possible to avoid errors. 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

27 

 

5.2. Output Design 
 

A quality output is one, which meets the requirements of the end user and presents the 

information clearly. In the output design, it is determined how the information is to be displayed 

for immediate need and also the hard copy output. The output design should be understandable to 

the user and it must offer great convenience. The output of the proposed software tool is designed 

as opening the text file containing the translated code. 

The main objectives that guide the output design are as follows: 

(a) User can copy the code and run it in any of the IDE available. 

(b) Since the output is written in a standard text file, the user can directly call the file in the host 

program. 

(c) User can add some more code to the existing output and edit it easily. 

5.3. Data Structures Used 

5.3.1. Data Bank, Token and Token ID 

Here a table with all the tokens and there ID codes used in lexical analysis are tabulated. These 

tokens and there IDs are stored using Hash Table while implementing.  

5.3.2. Library File, for a particular Programming language: 

This is the data in the library file stored in the Library in the software tool. The file consists of all 

the keywords and header files in the language. 

For example:- 

      Library File:For ‘C’:- 

             It includes the data in the library file stored in the Library of the software tool for all the 

keywords and header files in the language ‘C’. 

6. EXPERIMENT ANALYSIS 

 

 

Figure 1. Comparison of Final Lines of Code(FLOC)and Lines of code(LOC) 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

28 

 

Analysis: The graphs are plotted with the Lines of Code (LOC) against the number of 

experiments. From the plots, it is clear that the initial LOC of the pseudocode given by the user is 

reduced proportionally in the optimized intermediate generated codes (OILOC).Then  the final 

LOC  of  the generated  code is comparatively larger in proportion of the LOC of the pseudocode 

(see fig. 1).This measures indicates the efficiency of  the tool in  the generation  of  the code of  

the specified programming  language.  This measures depends on the efficiency and compatibility 

of the new developed tool. 

 

 

Figure 2. Comparison of Lines of Code(LOC)and Optimized Intermediate Lines of code(LOC) 
 

7.CONCLUSIONS 
 

Our software tool helps the beginners in programming with user friendly environment. They can 

easily build a source code in a user specified language from a pseudocode without considering 

the factor of knowledge about the syntax of that particular source language. A beginner level 

programmer familiar with pseudocode can implement his logic in any particular language with 

the help of this translator tool. The main advantage of this tool is that, user can build program 

code in any language from a single pseudocode. For a beginner in programming, it is difficult to 

learn the syntax of a particular language at the very first time. The user can implement his logic 

in a pseudocode and the pseudocode required for this software tool requires simple syntax. A 

formulated pseudocode is simple to be generated by a beginner. Then this pseudocode is simply 

submitted to the text area in our tool. Then specify the language of the output required. Then after 

processing he will get the resultant programming code in a file, which is much simpler with user 

friendly interface. Then the resultant code can be executed in its programming platform. The 

library files in the software tool can be manipulated to add more syntaxes into the database. 

Future versions can be built with giving support to more languages. We can develop this software 

tool to a universal programming tool, which can be used to build programming code in any of the 

programming language, from simple, single pseudocode generated by the user. It reduces the 

user’s overhead to be known about the syntax of various languages. 
 

 

 

 

 



International Journal of Computational Science and Information Technology (IJCSITY) Vol.4,No.2,May 2016 

 

29 

 

REFERENCES  

 

[1] G Alfred V.Aho,Monica S.Lam,Ravi Sethi,Jeffrey D.Ullman,Compilers Principles,Techniques and 

Tools, Second edition 2007 

[2] Allen Holub, “Compiler Design in C”, Prentice Hall of India, 1993. 

[3] Kenneth C Louden, “Compiler Construction Principles and Practice”,Cenage Learning Indian 

Edition.. 

[4] V  Raghavan,  “Priniples of  Compiler  Design”,Tata  McGraw  Hill,India, 2010 

[5] Arthur  B.  Pyster,  “Compiler  design  and  construction:  tools and techniques with C and Pascal”, 

2nd Edition, Van Nostrand Reinhold Co. New York, NY, USA. 

[6] D  M  Dhamdhare,  System programming  and  operating  system, Tata McGraw Hill & Company 

[7] Tremblay  and  Sorenson,  The  Theory  and  Practice  of  Compiler Writing - Tata McGraw Hill & 

Company. 

[8] Steven  S. Muchnick, “Advanced  Compiler Design  & plementation”, Morgan Kaufmann 

Pulishers, 2000.  

[9] Dhamdhere,  “System Programming  &  Operating  Systems”,  2nd edition, Tata McGraw Hill, India.  

[10] John  Hopcroft,  Rajeev  Motwani  &  Jeffry  Ullman:  Introduction  to Automata Theory Languages 

& Computation , Pearson Edn.  

[11] Raymond Greenlaw,H. James Hoover, Fundamentals of Theory of          

Computation,Elsevier,Gurgaon,Haryana,2009  

[12] John  C  Martin,  Introducing  to  languages and  The  Theory  of Computation, 3rd Edition, Tata 

McGraw Hill,New Delhi,2010  

[13] Kamala  Krithivasan,  Rama  R,  Introduction  to  Formal 

Languages,Automata  Theory  and  Computation,  Pearson  Education Asia,2009.  

[14] Rajesh  K.  Shukla,  Theory  of  Computation,  Cengage  Learning,  New Delhi,2009.  

[15] K V N Sunitha, N Kalyani: Formal Languages and Automata Theory, Tata McGraw Hill,New 

Delhi,2010.  

 

 

Authors  

Amal M R is currently   pursuing  M.Tech  in  Computer Science and Engineering in  

Mar  Athanasius College of  Engineering, Kothamangalam. He completed his B.Tech 

from Lourdes Matha College of Science and Technology Thiruvananthapuram. His 

areas of research are Compiler  and Cloud Computing. 

 

 

 
 Jamsheedh C V  is   currently  pursuing  M.Tech in Computer  Science   and   

Engineering   in  Mar  Athanasius  College   of  Engineering, Kothamangalam. He 

completed his B.Tech from Govt.  Engineering  College  Idukki. His areas of research 

are Networking and Cloud Computing                     

 

 

Linda Sara Mathew received her B.Tech degree in Computer Science and   

Engineering from   Mar Athanasius   College   of    Engineering, 

Kothamangaam,Kerala in 2002 and ME degree in Computer Science and   

Engineering Coimbatore in 2011.  She is  currently, working as Assistant  Professor,  

with  Department  of  Computer  Science  and  Engineering    in   Mar   Athanasius   

College  of  Engineering, Kothamangalam and has a teaching experience of 8 years. 

Her area of interests include digital signal processing, Image Processing and Soft Computing.                    

 


