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ABSTRACT 
 

This paper studies the existing approaches in optimal integrated control, computation and communication 

problems. It concentrates on joint optimization problems aimed at finding communication/computation 

policy and control signal.  Different aspects including computational complexity, convexity, proposed 

methods to find optimum and other issues related to control performance are studied and compared for 

different approaches.  
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1. INTRODUCTION 
 

Data communication networks are utilized in most of modern control systems, as a mean to 

transmit measurement/control data between plant(s) and controller(s). Control systems utilizing 

communication networks are first referred to as integrated control and communication systems 

(ICCS). [1-3] The main characteristic of an ICCS is that they require data transmission for 

desirable performance using limited communication resources. An ICCS could be a distributed 

control system including distributed sensors/actuators controlled by a single controller or a group 

of controllers which is known as a Networked Control System (NCS). Also an embedded single 

loop control system with a limited communication channel or computation capacity which 

requires additional measures to be considered, is an  ICCS.  [7] surveys issues arises in an ICCS 

when integrating control and communication. Control methods used in this environment are 

studied and surveyed in [8-11]. A survey of network-induced problems which affect control 

systems is reported in [12].  
 

Another group of control systems which are similar to ICCS in several aspects are integrated 

control and computation systems. These systems control a group of plants using limited 

computational (rather than communication) resources. In these applications, a single processor is 

shared among several control tasks or have to multi-task between a single control application and 

some other tasks. Adaptive and on-line optimal control algorithms as well as estimation problems 

require significant computational overhead. In these applications, processor time should be 

scheduled in an efficient manner to yield proper control performance. Examples could be found in 

[4-6]. 
 

Therefore, control systems are emerging into control, computation and communication systems in 

which an efficient control algorithm should account for communication and computation 

resources. In a more general framework, one may refer to theses systems as Integrated Control, 

Computation and Communication Systems (ICCCS). Figure 1, depicts the scope of ICCC 

problems.   
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Figure 1: Scope of ICCC Problems 
 

The objective of an ICCC problem is to find a control algorithm alongside with management 

policies for computational and communication resources to yield best possible performance. 

There are different approaches in tackling the ICCC problem. In several applications, both 

communication and computation constraints lead to or could be assumed to result in similar 

problems (i.e. delays, outdated information, etc.) therefore most of previous works concentrated 

on only one aspect. In networked control systems, communication resources are more important 

than computational ones and therefore control and communication are considered in the problem 

and computational issues are neglected [1,2,13-17], While [4-6] and references therein consider 

only computational limitations assuming that communication channel is perfect or not present.  
 

2. ICCC PROBLEM 
 

The aim of an ICCCS is to compute a control input, a communication policy (which consists of 

bit rate selection [5] or medium access scheduling [13,14,18-21] in contention-free networks 

and/or methods to confine bandwidth usage [22,23] in contention-based networks [17]), which (in 

contention-free cases) results in a communication sequence determining which node is to be 

granted medium access and/or a computation policy which schedules different computational 

tasks to be performed. This is an integrated problem in nature as it includes interacting objectives.  

Typical objectives include quadratic forms of state and control inputs as [5,13] and network 

induced error of output [45] or state [29]. Communication and computation limitations may be 

implemented as constraints of optimization problem as in [13] , incorporated into state space 

model itself [17] or directly added to the quadratic objective as communication or computation 

costs [51].  
 

2.1. Approaches to ICCC Problem 
 
There are three approaches to solve ICCC problems. These approaches may be regarded as either 

modelling or solving approaches. 
  
The first approach is to solve control problem with regard to communication system situation 

referred to as communication aware control [24] and could be found for instance in [25-28]. 

Communication aware control methods require an estimation of network traffic or delay to amend 

control policy respectively. Communication aware approach is best fitted to applications utilizing 

contention-based networks. This is due to the fact that a contention-based network may not 

provide constant available bandwidth and may suffer from packet losses or transmission delays as 

a result of varying workload [30,31], therefore it has a time-varying status which is required to be 

considered when control input is determined. In this approach, a control algorithm may be 

required to reduce its communication in order to save bandwidth. Examples include interrupt 

based control [49], event driven control [50] and joint LQG control of [51] which adds a 

communication cost to the traditional quadratic cost function.   
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The second approach is to find and pre-compute an appropriate communication policy based on 

the plant dynamics and/or other measures, in offline manner. This method may be regarded as 

control aware communication [24] in contrast to the first approach. In this approach, 

communication sequences are chosen based on control objectives. Then control inputs are 

computed online and applied via the communication sequence. This approach is appropriate for 

contention-free networks with the ability to pre-determine which nodes are to be granted medium 

access. Examples include state aware feedback scheduling [24] used in [18-22,29]. The offline 

communication sequence should be chosen in such a way that provides a minimum level of 

appropriateness. For example communication sequences which preserve controllability or 

observability of the NCS as discussed in [17,29,32-34].  
 

The third approach is to integrate both problems to find optimal/sub-optimal solutions in online or 

semi-online manner as in [4,5,13,16,20]. This approach may be utilized when abundant 

computational resources are present and communication constraints are restrictive, affecting 

control performance and stability in an adverse manner. In this method, 

computation/communication and control policies are determined via solving a joint optimization 

problem.  
 

Communication decisions may be made online or offline. Online decisions on communication 

policy includes selection of communication sequences, selection of sampling intervals, 

determination of quantization thresholds, etc. On the other hand, control input computation is 

always online due to the dynamic nature of feedback control.  Table 1, illustrates the 

aforementioned approaches.  
 

Table 1: Approaches in ICCC 
 

 
 

2.2. Computational Complexity  
 

Although there are simple methods in the literature like [35], the first approach usually requires 

the minimization of predicted cost functions [25-28]. As plant state vector is not known as a 

priori, optimizations could not be performed offline and therefore this approach is not appropriate 

for systems with fast responses and/or low computational power. To the best of the authors 

knowledge, it is the only existing approach in contention-based paradigm.  
 

The second approach is appropriate for most applications in contention-free paradigm as it pre-

computes communication sequences to fulfil communication constraints. This method may not be 

optimal with regard to performance or bandwidth usage, however it is simple and 

computationally efficient.  
 

The third approach for solving ICCC problem usually consists of optimization problems with 

complexity of high orders. Usually numerical methods should be used to solve these problems. 

[13] could be referred for an experimental and simulation example.  

 

 

 



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.6, No.4, October 2016 

 

4 
 

3. COMPARISON OF EXISTING METHODS 
 

In this section, existing approaches are studied and compared with regard to computation 

complexity, type of optimization problems and control performance considerations.  
 

3.1 Optimal Integrated Control and Scheduling  
 

In [13], a moving horizon quadratic cost function is introduced to represent control performance 

and stability concerns. Scheduling is incorporated in the model as a set of constraints forming a 

hybrid model predictive control problem (HPC) consisting of quadratic cost function of 

continuous time variables (control signal vectors) and constraints of continuous and integer 

variables.  
 

3.1.1. Optimization Problem  
 

 

The optimization problem could be stated as follows [13]:  
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(1) 

 

 

 
This model leads to a Mixed Integer Quadratic Programming (MIQP) with a convex cost function 

and nonlinear (multiplicative) constraints. Note that by relaxing integer constraint $%
�� ∈ '0,1* 
into 0 ≤ $%
�� ≤ 1, (namely QP relaxation) incorporating all variable in a time frame of N, and 

defining a new variable vector as 0
�� = 1�	
�� $	
��2	 ,this problem could be reformulated 

to form a standard Quadratically Constrained Quadratic Programming (QCQP) problem. The 

third constraint is indeed a linear inequality and the fourth could be restated as a quadratic 

equality constraint. After finding the optimum variable, scheduling sequence could be derived as 

the following, leading to a sub-optimal solution.  
 $3%
�� = 4 0				$%
�� ≤ 0.51					$%
�� > 0.5	/ 
 

3.1.2. Computational Complexity 
 

Optimization problem (1), should be solved by extending variable vectors for all times within the 

prediction horizon (N). This enlarges the problem as � × 29  variables (all �%
��, $%
��, � =0,…�). For a fixed set of scheduling variables, the problem is a QP which could be solved using 

simple analytical and numerical methods. Therefore, (1) is of combinatorial complexity as it 

include solving a QP of size � ×9   (a predictive optimization with 9 variables and a horizon of �) for all possible combinations of $%
���	considering (1.3). Number of possible combinations 

for scheduling variables could be computed from figure 1:  
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Figure 2. Communication Sequence 
 

which is ;9- <�possible combinations. Assuming linear complexity for QP problems, the 

computation time for a complete search over all possible communication sequences will be:  
 ;9- <� × =>?
2�9� 

 =>?
@� represents computational complexity of a constrained quadratic programming problem 

with dimension l. Increasing the prediction horizon will enlarge dimensions in an exponential 

manner. Unfortunately increasing the horizon is the most common way in predictive approaches 

to guarantee stability or enhance stability robustness [36]. In fact formal proofs for stability of 

MPCs is only proposed for infinite horizon cases. [37,13]. For a simple case of two inputs and a 

unity bandwidth network, a horizon of 10, results in 1024 combinations which is barely practical 

to be computed within each sample time.  

 

To reduce computational overhead, one may restrict communication sequences to a few proper 

choices. For this purpose a simplified method namely OPP is proposed by [13]. OPP restricts the 

search space of communication sequences to m. In other words, a constant periodic 

communication sequence is formed and the algorithm only chooses the starting point. Therefore 

number of combinations reduce from ;9- <�to 9.  

 

3.1.3. Existing Methods for Solution  
 

MIQP problems are usually solved via one of the common approaches known as Cutting plane 

methods, decomposition methods, logic-based methods and branch and bound methods [38-40]. 

Branch and bound methods are known to be the most efficient approaches for convex MIQP[41] 

and used in [13]. Branch and Bound methods, usually use QP relaxation as mentioned in section 

A.1. In this method, ordinary constrained QP problems are derived via relaxing the integer 

constraints to interval constraints. The created ordinary QP problems are solved in the nodes. As 

the method makes progress down in the tree, fixed integer variables are eliminated from the 

problem. This means that the number of optimization variables in the relaxed sub-problems 

decreases by one for each level passed on the way down the tree. [40] For non-convex MIQP 

problems, spatial branch and bound methods could be used. MATLAB, CPLEX and YALMIP are 

of the existing software to solve this type of problem. [42] 
 

3.1.4. Other Issues  
 

Note that (1) should be performed on-line during each period, this makes the algorithm agile, 

capable of yielding high performance in presence of disturbances and adaptability with respect to 

model changes. However implementing (1) is computationally impractical. There is no 

guarantee for stability unless for infinite horizon[13]. OPP is simpler and still better than 

static scheduling [13]. Also note that (1) greedily demands for bandwidth usage as there 

is no constraint on the frequency of input updates.   
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3.2. Optimal Offline Periodic Scheduling  
 

In [29], the problem of scheduling a set of actuators belonging to a set of processes is 

investigated. The aim is to find optimal LQ gain for each process to implement a state feedback 

controller as well as finding optimal communication logics. This is a special case of the general 

problem in which sensors and actuators are subject to communication constraints and plants are 

not necessarily disjoint.  
 

3.2.1. Optimization Problem  
 

A quadratic cost function is derived via sampling of a continuous time cost function. The 

optimization problem could be state as follows:  
 

min�A%B%
��+
%��  

�. �. C 		� ∈ D	 	9 ≤ E ≤ E+FG / 
 

 
2)( 

 

D	  is the set of possible  p-periodic communication sequences for sensors. The cost function is a 

weighted sum of maximum deviation of each process quadratic cost function from the optimal 

cost function derived via solving a Ricatti equation. i.e.:  
 

B%
�� ≜ max‖G‖L�
�	 ∑ 1EN�
��D��� ��	NO� − 1				  

(3) 

  NO  is the positive definite solution to continuous time Ricatti equation of the original continuous 

time system and  N�
�� is the solution to Ricatti equation associated with the following LQ 

problem.  
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������
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���
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This problem consists of two optimizations. (2) is a combinatorial optimization problem and 

could be restated as a Binary Linear Programming by defining the elements of sequence S as 

optimization variables, if all possible sequences are admitted. (4) is a quadratic non-constrained 

problem having an analytical solution based on Ricatti equation. [17] utilized Genetic Algorithms  

and Particle swarm optimization to compute the optimal communication sequence. Then it 

compared its methods with that of [29] via simulations.  

 

3.2.2. Computational Complexity 
 

Due to combinatorial nature of (2), it becomes exponentially complicated when the period of 

communication sequence increases. (2) requires searching through a set of ∑ 2PDQRSP�+  each time 

solving a LQ problem of dimensions equal to original system dimensions. Computation 

complexity will be:  
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=T>
U� � 2PDQRS
P�+  

 =T>
U� is the computational complexity of a Linear Quadratic Control problem which is usually 

performed by solving a Ricatti equation. Note that if E+FG is not known or fixed as a priori, 

computations may grow until a feasible sequence is achieved. [29] (3) and (4) could be performed 

off-line or semi-online to result in periodic communication sequences of period p. Therefore 

computational complexity is not a concern as it is in [13].  
 

3.2.3. Existing Methods for Solution 
 

[17] used GA and PSO to search for the optimal communication sequence. [29] uses a simpler but 

less accurate method. In [17] the results are compared.   
 

3.2.4. Other Issues 
 

(2) is only appropriate for sensor scheduling and only applies to a situation in which a number of 

plants are scheduled via a shared bus. When the plants have interaction (i.e. several output 

channels of a single MIMO process are to be scheduled) or when the network bandwidth is more 

than unity, the formulation should be extended.  
 

3.3. Optimal Sample Period Assignment  
 

[5] proposes a method for on-line sample period assignment in a feedback scheduling time 

window  to control several plants connected to a shared processor. Sample time assignment is in 

fact an inherent way to schedule network access or assign bandwidth proportions to nodes. 

Therefore this situation is similar to that of case 3.2.However [5] assumes that both sensors and 

actuators of each plant have the same sampling frequency.  
 

3.3.1. Optimization Problem 
 

The cost function is the sum of individual quadratic cost functions for each plant. It could 

also be a weighted sum of all cost functions. There are constraints regarding 

schedulability and minimum sampling intervals. It is desired to find sample intervals for 

each plant in order to minimize the overall cost function.  
 

min�V%	+
%��ℎ�…ℎX  

 

(5) 

�. �. Y�Z%ℎ%
+
%�� ≤ [\D −[]\																											ℎ+%X ≤ ℎ% ≤ ℎ+FG 						^ = 1, . . 9		 / 

 
 

(5.1) 

(5.2) 

[\D is the utilization set point of processor and []\ is the utilization occupied by overhead 

computations. Z% is the execution time of control task associated with ith
 plant.[5].  

 

The problem is convex with regard to 
�_` if (5.2) is relaxed. Therefore one may relax (5.2) and 

solve (5) as a QCQP. After solving the problem, if the resultant ℎ% does not fulfill (5.2), it should 

be replaced by ℎ+%X/ ℎ+FG. Note that (5.2) could be extended to n constraints each of which 

associated with each plant. (i.e. ℎ%+%X ≤ ℎ% ≤ ℎ%+FG)  
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3.3.2. Computational Complexity 
 

(5) should be solved every a]b\ step which is similar to prediction horizon N in [13]. N contrast 

to  methods investigated in sections A and B, this problem is computationally simple and consists 

of a near-standard optimization problem. The problem is not of a combinatorial complexity and 

increasing a]b\ does not adversely affect the complexity. 

 

[5] proposed to form a pre-computed table (table 1, [5]) of cost functions and sample periods to 

save processor utilization. The table is computed off-line and is used as a look up, during on-line 

optimization. Linear search is applied to compute the look up table which seems sufficient though 

other search methods could be utilized. The optimization problem is of order =
9c� (linear 

order) in which 9 is the number of plants (control tasks) and c is the number of possible 

sampling periods for each plants.  
 

3.3.3. Existing Methods for Solution 
 

Solving (5) does not need complicated methods and is simple enough to be implemented on 

embedded systems and simple firmware.  
 

3.3.4. Other Issues  
 

Although (5) is simple, it can’t be directly implemented to tackle problems as for section A or 

3.2.[5] aims to find sampling intervals for control tasks which is scheduling of the processor time 

while A and B are seeking to schedule network access. Network access schedules could not be 

pre-emptive. Also information of states (and even output) are not always available.  
 

A common drawback of methods introduced in sections B and C is that they consider a number of 

disjoint plants and it is assumed that network bandwidth is enough to almost instantly transmit 

each plant information to/from controller. This contradicts with many realistic situations in which 

many interacting input/output channels are to be scheduled to have access to network. Also it is 

shown in previous works (e.g. [13]) that the insertion of a shared network results in interactions 

between disjoint plants.  
 

Another limitation of (5) is that it relies on the concept of sampling interval which assumes that 

all sensors and actuators of a specific plant are sampled via the same sample time. In practice it 

may be desired for an output channel to be sampled more frequently than the other.  
 

3.4. Integrated Control and Scheduling Based on Network Induced Error  
 

[44] considers the relative network induced error of state as the cost function, which is similar to 

the idea of Maximum Error First (MLF) of [45] but uses relative state error rather than absolute 

output error.  
 

3.4.1. Optimization Problem 
 

The optimization problem is as follows:  
 

min�|�%
�� − �e%
��||�e%
��|
+
%��

�. �. Y�Z%ℎ%
+
%�� + #%ℎ% ≤ 9
2�/+ − 1�																											

ℎ% ≤ ℎ+FG − #% 												^ = 1, . . 9		 / 
  6)(                       

 

 

(6.1) 
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�e%
�� is the updated state vector existing within the controller while �%
�� is the actual state 

vector for ith plant. #% is the worst case time during which a signal may be blocked from being 

transmitted.  (6.1) is the schedulability criteria for non-preemptive  rate monotonic scheduling. 

This problem is  non-convex as �e%
�� depends on sample time and is incorporated in a non-

convex manner into (6). (6.1) is a convex constraint with regard to 
�_` and (6.2) is convex in ℎ%. 

(This issue could be resolved using the technique discussed in section 3.3.) 
 

3.4.2. Computational Complexity 
 

The computational complexity of this problem is similar to that of section 3.3. Especially when a 

look-up table is pre-computed, the problem becomes simpler. This problem is semi-online similar 

to that of section 3.3.  
 

D.3. Existing methods for solution 
 

[44] used Genetic Algorithm to solve (6). Methods similar to those discussed in section C could 

also be utilized.  
 

3.4.4. Other Issues  
 

From a control point of view, (6) is not the best performance index to be minimized. A small 

relative error guarantees that communication medium is providing fresh data but it does not 

guarantee that control performance is desirable. In fact, (6) relies on the inherent assumption that 

paying more attention to the plant with enlarged network induced error will cause better 

performance. This depends on the effectiveness of control algorithm implemented in the 

controller.  Approaches similar to [44] are frequently discussed in the literature. Examples include 

[45]-[48].  
 

4. CONCLUSIONS 
 

Integrated approaches for communication and control usually lead to combinatorial optimization 

problems and have to be simplified in order to be performed on-line. Among existing methods, 

LQR approach of [5] is the most promising as it is computationally simple however it does not 

account for shared network which is an important subject. The approach taken in [13] is based on 

realistic assumptions on network bandwidth limitations and interactions between different 

input/output channels ,however it leads to complicated combinatorial optimization which takes 

significant time to be performed.  
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