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ABSTRACT 

 

Forced Van der Pol oscillator exhibits chaotic behaviour and instability under certain parameters and this 

poses a great threat to the systems where it has been applied hence, the need to develop a control method to 

stabilize and control chaos in a Forced Van der Pol oscillator so as to avoid damage in the controlled 

system and also to prevent unmodeled dynamics from being introduced in the system. Sliding Mode control 

makes use of the regulatory variables derived from the controlled Lyapunov function to bring the new 

variables to stability. The essence of using Integral Backstepping was to prevent chattering which can 

occur in the control input and can cause instability to the system by igniting unmodeled dynamics. 

Simulation was done using MATLAB and the results were provided to show the effectiveness of the 

proposed control method. Integral Backstepping Sliding Mode control method was effective towards 

stability and chaos control. It was also robust towards matched and unmatched disturbance.  

 

KEYWORDS 

 

Chaos Control, Lyapunov Function, Van der Pol Oscillator, Sliding Mode, Integral Backstepping 

 

1. INTRODUCTION 
 

The Van der Pol Oscillator is the keystone for studying systems with limit cycle oscillations due 

to its unique nature. It can display oscillations of fixed amplitude and fixed period without 

external excitation. These oscillations are called limit cycles, or self-excited oscillations [1], [2], 

[3].  
 

Also, it has been observed that Van der Pol oscillator can exhibit chaotic behaviour depending on 

the values of its parameters and initial conditions. For stable linear systems, small differences in 

initial conditions can only cause small differences in output. Nonlinear systems however, can 

display a phenomenon called chaos, whereby the system output is extremely sensitive to initial 

conditions. The essential feature of chaos is the unpredictability of the system output [4].  
 

In many applications, chaos has been viewed as an undesirable phenomenon which may damage 

such physical systems, especially in mechanical non-linear devices such as coupled oscillators 

[5]. The first control strategy was suggested by [6] in order to stabilize the unstable periodic 

orbits. Different methods have since been developed for controlling chaotic systems [7]. [8] 

proposed an adaptive controller to control chaos in Lorenz system. [9] developed a neural 

networks-based control law for chaotic systems. However, many of these proposed methods are 

based on supposed knowledge of all the state variables which cannot always be measured due to 

noise effect on sensors. Consequently, the design of a state-observer is needed to estimate the 

unmeasured velocity signals of such a system in order to construct an adequate control law. In 

literature, several types of observers have been proposed for chaotic systems [10]. One of such is 

an observer-based backstepping control scheme to stabilize a class of chaotic systems proposed in 
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[11]. These approaches seem to give good results on controlling chaos, however, many of them 

failed for dynamical systems in the presence of external forces (perturbing terms). 
 

In this research work, Sliding Mode control based on Integral Backstepping control technique 

was used to control a chaotic forced Van der Pol Oscillator 
 

2. MATERIALS AND METHODS 
 

This section presents the structure of research methodology employed in order to realize the 

research aim and objectives. The Van der Pol system was modelled containing the states of the 

system, the damping function, the actuator and the forcing function as shown in equation 1. The 

dynamic of the system was altered during the integral backstepping algorithm and sliding mode 

control algorithm. A new control law was derived and was passed to the system through the 

actuator. 
 

2.1. Integral Backstepping Control for Forced Van der Pol Oscillator 
 

In the integral backstepping control procedure, the system equation was treated as series of two 

systems connected together, each with a single input and output. A change of coordinate was 

introduced during the recursive design process and a new state vector was formed. For the first 

system the state was chosen as a virtual control input. Controlled Lyapunov functions were used 

in order to stabilize the system. 

 

Considering the states of the system �� , �� 	���	�, the damping function 	 and the forcing function 
 cos ��, the equation of a forced Van der Pol Oscillator is generated as shown in equation 1 
 

   �� + 	��� − 1��� + � = � + 
 cos ��        (1) 

where 	, �	and 
 are known constant parameters and � is the actuator. The system can be viewed 

as a cascade of two systems as shown below, 
 

    �� = ���� + �          (2) 

    �� = � + 
	���	��          (3) 

where �	���	� are the system states, � is the control input and ���� is the known function. In 

the integrator backstepping case, � is used as an input for the stabilization of � and can therefore 

be referred to as the virtual control. 
 

The first backstepping variable is chosen as  

 

              � = �               (4) 
 

The virtual control is defined as  
 

                                                           	� = � +	��          (5) 

where � is the stabilizing function and �� is the new state variable. 
 

Therefore,   
 

                                                          �� = ���� + �          (6) 

Substituting (5) into (6), the equation becomes 
 

    �� = ���� + � +	��           (7) 
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It should be noted that the new state variable ��will not be used in the first step but its presence is 

needed to couple �  system to the next system. 
 

Integrator backstepping implies that the coordinates during the recursive design are changed from 
 

    � = [�				�]T
 to � = [� 	��]T 

 

A controlled Lyapunov function (CLF) is given as  
 

    # 	 =  � � � 

Hence,  

    #� = � ��                (8) 

 

Therefore from (6) we have  
 

                                            #� = � [���� + �] +	� ��         (9) 

The stabilizing function �, is chosen as a feedback linearizing controller. Therefore from (5) we 

have,  
 

     � = � −	�� 

and 

     #� = � [���� + �] =����� + ��  

If  #� ≤ −% � � where % is a positive gain then, 
 

     � = −% � − 	����         (10) 

Substituting (10) into (9) gives 
 

    #� = � [���� − % � − 	����] +	� �� 

    #� = 		−% � � 	+ 	� ��       (11) 

 

By making use of (8), we have   
 

     �� =	−% � 	+ 	��       (12) 

If �� = 0	then �  is stabilized. Hence, we focus on �� which is computed by differentiating (5) 

giving 

     �� = 	�� + ��� 

 

Recall that �� = � + 
	���	�� therefore, 

 

    ��� = 	� + 
	���	�� − ��         (13) 

The CLF for �� is given as, 

 

    #�	 = # 	 +	 � ��� 

    #�� = 	#� + �����        (14) 
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Therefore, 

   #�� = 	−% � � 	+ 	� �� + �����                    (15) 

   #�� = 	−% � � 	+ 	� �� + ���� + 
	���	�� − �� �     (16) 

 

It will be observed that � appears on the second part of the equation, therefore the choice of � is 

taken as  

   #�� = 		 � �� + ��� + ��
	���	�� − ����  
Let #� ≤ −%���� 

   � = 	−%��� − � − 
	���	�� + ��        (17) 

Substituting 17 into 16 gives 
 

   #�� = 	−% � � − %����        (18) 

To implement the control law expressions terms involving time derivatives of the states should be 

avoided. Hence, ��  will be evaluated in (17) without using the state derivatives, by differentiating 

it along the trajectory of �.  

From (10), 

 

    				� = −% � − 	����  

Therefore,   �� = − '(�)�'* �� −	% ��  
    �� = [− '(�)�'* −	% ]��      

�� = −['(�)�'* + % ]	���� + �   (19) 

Hence the final expression for the control law � is given as, 

  �	= − +'(�)�'* + % , ����� + �� − %��� − � − 
	���	��        (20) 

Substituting for �� from (12) into (20),� becomes 

 �	= − +'(�)�'* + % , ����� + ��−%���� + % � � − � − 
	���	�� 
Recall that �� = �� , therefore, 

 �	= − +'(�)�'* + % , ����� + ��−%������ + � + % � � − � − 
	���	�� 
And finally 

 �	= − +'(�)�'* + % , ����� + ��−%������ + � + % � � − � − 
	���	�� 
    �	=− +'(�)�'* + % , �−	��� − 1��� − ��−%��−	��� − 1��� − � + % � � − � − 
	���	�� 

where �� 	���	� are the states of the system, 	 is the damping function,% 	���	%� are the 

positive gain, �  is the backstepping parameter,
	���	�� is the forcing function and ���� is the 

known Van der Pol oscillator function. 
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2.2. Sliding Mode Control Algorithm 
 

In order to design the sliding surface, the system equations obtained in terms of the transferred 

coordinates are considered from equations (12) and (13) 

 �� =	−% � 	+ 	��  

    ��� = 	� + 
	���	�� − ��  
Conventional linear sliding surface design s is defined as  

    � = -�                 (21) 

where - is the sliding surface parameter which depends upon the system equations. - = [- 					1]  and � = [� ��]T � = 	 - � +	�� 

               �� = 	 - �� +	���                (22) 

Substituting (12) and (13) into (22) gives 

   �� = 	−- % � 	+ 	- �� + 	� + 
	���	�� − ��      (23) 

The new CLF is obtained containing the sliding surface � 

#.	 =	12 �� � + ��� + 	��� 
    #�. =	#� + #�� + ���                                                            (24) 

Substituting for #� , #��	���	�� from (11), (16) and (23) 

 #�. = 	−% � � − %���� + ��−- % � 	+ 	- �� + 	� + 
	���	�� − �� � 
In order to force the system to stay on the sliding mode �  is chosen such that �� = 0 

Applying the sliding control   

     �0 = � − ������ 
where �0 is the final control signal and ��� is the sign function 

    ��� = 1+1										2�	� > 0	0												2�	� = 0−1									2�	� < 0 5   

Therefore 

   �0 =	- % � −	- �� − 
	���	�� − �� − ������  

Substitute for ��  
�0 =	- % � −	- �� − 
	���	�� + [6����6� + % ]	���� + � − ������ 
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 �0 =	- % � −	- �� − 
	���	�� + +'(�)�'* + % , �−	��� − 1��� − �� − ������(25) 

Where �� 	���	� are the states of the system, 	 is the damping function,- is the sliding surface 

parameter, %  is the positive gain, �  is the backstepping parameter, �� is the new state 

variable,
	���	�� is the forcing function, ���� is the known Van der Pol oscillator function, � 

is the sliding surface and ���	 is the sign function. 
 

2.3. System Simulation 
 

Stability and chaos control in an oscillator are very important in order to get the most effective 

behaviour and expected dynamics in its application. The more the stability the more the 

pleasantness in behaviour of the system.The system parameters arecwhich is the damping 

function, x0 and v0, the initial conditions, p the amplitude and ω the angular frequency. 

 

The unforced state of the Van der Pol Oscillator (VPO) system was first simulated to investigate 

the behaviour of the system with parameter valuesc=2, x0 = -2, v0 = 2, p =100 and ω=7in the 

absence of a control signal. The behaviours with the addition of integral backstepping control 

(IBC) and integral backstepping sliding mode control were then investigated through 

simulation.The process was repeated with the inclusion of a matched disturbance of 2sin(3t). 

Also, the total harmonic distortion (THD) was evaluated for all cases. 
 

3. RESULTS AND DISCUSSION 
 

The result of the effects of the Integral Backstepping control and the Integral Backstepping 

Sliding Mode control method developed and simulated were illustrated and discussed in this 

section. 
 

Figures 1(a) - (c) show that the forced Van der Pol oscillator is chaotic with parameter values 

c=2, x0 = -2, v0 = 2, p =100 and ω=7 in the absence of an applied control signal. The resulting 

signal oscillates beyond the evolving values thereby demonstrating a chaotic behaviour and 

instability even without a matched disturbance being added, with a THD of -27.50 dB giving a 

distortion factor of 4.2%. 
 

Figures 2(a)-(c) show that the Forced Van der Pol oscillator with matched disturbance added is 

more chaotic and displays a THD of -29.24 dB and a distortion factor of 5%.  
 

Figures 3(a)-(c) shows the performance of integral backstepping control method on a chaotic 

forced Van der Pol oscillator. The resulting signal shows a little deviation from the evolving 

value at position x(t)= -2.44 and x(t)=1.57 and t=0.25sec and t=0.88sec and gradually approaches 

stable oscillation between evolving values. The result of the simulation implies that the effect of 

chaos has been greatly reduced as shown in the phase portrait when compared to forced Van der 

Pol oscillator without an applied control signal. The system’s response however displays a THD 

value of -28.46 dB with a distortion factor of 8%. 
 

Figures 4(a)-(c) shows the performance of integral backstepping control method on a chaotic 

forced Van der Pol oscillator with matched disturbance. The resulting signal shows a little 

deviation from the evolving value at position x(t)= -2.434 and x(t)= 1.782  and t=0.244sec and 

t=0.868sec. It gradually approaches stable oscillation between evolving values. The result of the 

simulation implies that the control method is little less effective on chaos control as can be seen in 

Figure 4(a). 

 
 



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.8, No.1/2/3/4, October 2018 

     7 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

 

(c) 

 
Figure 1. Chaotic Forced Van der Pol Oscillator (a) Time series (b) Phase portrait (c)Total Harmonic 

Distortion diagram 
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(a) 

 

       (b) 

 

(c) 

Figure 2. Chaotic Forced Van der Pol Oscillator with matched disturbance (a) Time series (b) Phase portrait 

(c)Total Harmonic Distortion diagram 
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Figure 3. Chaotic Forced Van der Pol Oscillator with Integral Backstepping Controller (a) Time series (b) 

Phase portrait (c)Total Harmonic Distortion diagram 
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(c) 

Figure 4. Chaotic Forced Van der Pol Oscillator with matched disturbance and Integral Backstepping 

Controller (a) Time series (b) Phase portrait (c)Total Harmonic Distortion diagram 
 

Figure 5(a)-(c) shows the performance of integral backstepping sliding mode control method on a 

chaotic forced Van der Pol oscillator. The resulting signal shows a little deviation from the 

evolving value at position x(t)= -2.274 and x(t)=1.936 at t=0.232sec and t=0.856sec. The  

resulting signal oscillates between the evolving values. x(t) approaches (-2,2), therefore, the 

dynamic of the system is bistable. The phase portrait shows a good improvement in chaotic 

behavior of the forced Van der Pol oscillator. The result of the simulation implies that chaos has 
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been eliminated to a large extent as shown in the phase portrait compared to forced Van der Pol 

oscillator without a control signal applied. The integral backstepping sliding mode control of 

chaotic forced Van der Pol oscillator is seen to have a THD value of -16.65 dB without matched 

disturbance which this implies that the signal emission has a 14.7% distortion. 
 

Figure 6(a)-(c) show the performance of  integral backstepping sliding mode control method on a 

chaotic forced Van der Pol oscillator with matched disturbance. The resulting signal shows a little 

deviation from the evolving values at position x(t)= -2.27 and x(t)= 2.02  and t=0.22sec and 

t=0.85sec. It quickly approaches stable oscillation between evolving values. The result of the 

simulation implies that integral backstepping sliding mode control method has been able to 

eliminate chaos to a large extent as shown in the time plot and phase diagram. The integral 

backstepping sliding mode control of chaotic forced Van der Pol oscillator is seen to have a THD 

value of -16.85 dB with matched disturbance. This implies that the signal emission has a 14.4% 

distortion.  
 

The integral backstepping sliding mode control method was simulated at damping function c=2, 

amplitude p=100 and angular frequency w=7. The phase portrait shows an improvement in chaos 

control as compared to the forced Van der Pol oscillator without a control signal applied. The 

control method has thus been able to drive the oscillator to stability and is also robust towards a 

matched disturbance. 
 

4. CONCLUSIONS 
 

This research work was successful in addressing the problem of stability and chaos control in a 

forced Van der Pol oscillator. It has also showed robustness towards matched and unmatched 

disturbance. MATLAB/M-FILE was used to simulate Integral Backstepping Sliding Mode 

Control of a chaotic forced Van der Pol oscillator. The results showed that Integral Backstepping 

Sliding Mode Control method was able to reach stability in a short time and it maintained 

oscillation between the evolving values. The sliding surface parameter γ1 and the sign function 

played significant part in ensuring the stability of this control method. It can also be seen that 

Integral Backstepping Sliding Mode Control method has a 14.7% Total Harmonic Distortion 

however, Passive filters, Shunt passive filters, Series passive filters, Low pass filters, or Active 

filters can be applied to this control method to control the Harmonic Distortion. 
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(b) 

 

 

(c) 

 

Figure 5. Chaotic Forced Van der Pol Oscillator with Integral Backstepping Sliding Mode Controller (a) 

Time series (b) Phase portrait (c)Total Harmonic Distortion diagram 
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Figure 6. Chaotic Forced Van der Pol Oscillator with matched disturbance and Integral Backstepping 

Sliding Mode Control (a) Time series (b) Phase portrait (c)Total Harmonic Distortion diagram 
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