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ABSTRACT  
 

It is well known that solar energetic phenomena influence the Space Weather, in special those directed to 

the Earth environment. In this context, the analysis of Solar Data is a challenging task, particularly when 

are composed of Satellite Image Time Series (SITS). It is a multidisciplinary domain that generates a 
massive amount of data (several Gigabytes per year). It includes image processing, spatiotemporal 

characteristics, and the processing of semantic data. Aiming to enhance the SITS analysis, we propose an 

algorithm called "Miner of Thematic Spatiotemporal Associations for Images" (MiTSAI), which is an 

extractor of Thematic Spatiotemporal Association Rules (TSARs) from Solar SITS. Here, a description is 

given about the details of the modern algorithm MiTSAI, which is an extractor of Thematic Spatiotemporal 

Association Rules (TSARs) from solar Satellite Image Time Series (SITS). In addition, its adaptation to the 

Space Weather and discussion about the specific use in favor of forecasting activities are presented. 

Finally, some results of its application specifically to solar flare forecasting are also presented. MiTSAI 

has to extract interesting new patterns compared with the art-state algorithms.  
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1.INTRODUCTION 
 

Daily several sources generate a massive amount of spatiotemporal data. Satellites are considered 

one of these sources and their data are called Satellite Image Time Series (SITS). SITS 

encompass a complex and interdisciplinary domain composed of a series of spatiotemporal 
images and their respective semantic data. 

 

In this paper, SITS are used to support the analysis of solar data. The Solar SITS is composed of 
several solar images (acquired at different wavelengths) that can present Solar Active Regions 

(called sunspots) and semantic data that classify the image sunspots. The semantic data also gives 

the sunspots’ location (solar coordinates) and the date when the images were collected 
(spatiotemporal characteristics). 
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Motivated by providing a better understanding of the Solar SITS and also supporting forecasting 
of solar behavior, we propose the Miner of Thematic Spatiotemporal Associations for Images 

(MiTSAI) algorithm. A high-intense solar event can cause various problems with 

telecommunication and navigation systems. The prediction of solar behavior can help in 

preventive measures avoiding the instabilities of these systems. 
 

Our proposal is supported by the hypothesis that the extraction of Thematic Spatiotemporal 

Association Rules (TSARs) can aid in the analysis of the solar data. TSARs consider the temporal 

evolution of the sunspots and also the relationships among the sunspots.  
 

MiTSAI is an algorithm that extracts TSARs from Solar SITS, considering their visual features 

and their semantic information. In our experiments, MiTSAI was validated by a domain 

expert.The domain expert examined whether or not the mined rules were interesting and the 
algorithm performance is acceptable. 
 

The remainder of this paper is organized as follows: Section 2 presents the concepts, background, 

state of the art, and related works; Section 3 presents our proposed algorithm, the Miner of 
Thematic Spatiotemporal Associations for Images (MiTSAI); Section 4 presents the performed 

experiments to validated MiTSAI, and; Section 5 presents the conclusions and future works. 
 

2. THEORETICAL FRAMEWORK 
 

Solar data have a myriad of sources, being generated by detectors on both ground and space. 

Those space-based detectors are almost exclusively located on scientific satellites, which take 

part in the long-term-programs of the international space agencies (NASA, ESA, JAXA, etc). The 

database of solar phenomena used for this work is https://www.solarmonitor.org/. There are 
available solar data from the following instruments: Magnetogram and 6173 /AA images from the 

Helioseismic and Magnetic Imager (HMI) onboard the satellite Solar Dynamics Observatory 

(SDO), Fe ix/x lines at 174 /AA Sun Watcher using Active Pixel System detector and Image 
Processing (SWAP) onboard PROBA2 scientific mission, H-alpha from Kanzelhoehe 

Observatory, X-Ray Telescope (XRT) onboard Hinode satellite, and Fe XII, 193 /AA line from 

Atmospheric Imaging Assembly (AIA) onboard SDO) 
 

Spatiotemporal data are characterized by space and time properties [9, 17, 22, 34]. In a formal 

definition: the D-database is spatiotemporal only if its items have spatiotemporal characteristics. 

I.e. let i be an item of D-database, we define i as a quintuple {x, y, z, t, F}, where x, y and z are 
coordinates in Cartesian space; t is temporal coordinates; and, F is a set of thematic attributes 

(non-spatiotemporal). 
 

Examples of spatiotemporal data are: meteorological data [16, 28], sensor data [3, 31, 32], 
network traffic [24, 25], among others. An example of a spatiotemporal sensor data is{S11, W65, 

0, 20150824, 0.123mm}, where the space coordinates are 11 to the south, 65 to the west, at sea 

level, the time coordinate is August 24, 2015, and at this place and time, it was recorded 0.123 

milliliters of rain (thematic attribute). 
 

Mining algorithms should consider space and time constraints. In the literature, these constraints 

can appear in the pre-processing time [7, 35] and in the post-processing [27, 38]. Applying the 
constraints to the pre-processing reduces the search space and the mining execution time. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.10, No.2, March 2020 

3 

However, the post-processing constraints can take advantage of previous mine results to tune-up 
the constraint values. 

 

It is also possible to apply spatiotemporal constraints during the mining process [20]. Figure 1 

shows the application of spatiotemporal constraints during the frequent itemsets generation. Since 
the item sets satisfy the spatiotemporal constraints, they are called spatiotemporal item sets.  
 

The algorithm starts generating the itemset candidates. This step combines the frequent itemsets 

generating itemset candidates that are larger than the seeds. If it is the first iteration, the frequent 
itemsets are extracted from the database. The candidate itemsets are filtered using the spatial 

constraints (set by the user) resulting in spatial itemsets candidates. Those itemsets are filtered 

using the time constraints (set by the user) resulting in spatiotemporal candidates itemsets. The 
frequency of these candidates is calculated and the frequent itemsets are filtered. The frequent 

spatiotemporal itemsets are used as the seed to the generation of the candidate itemsets in the next 

iteration. 
 

 
Figure 1. Spatiotemporal rule extraction based on Pillai et al. [20]. 

 

When it is not possible to generate frequent spatiotemporal itemsets, the found frequent itemsets 
are used to generate the spatiotemporal rules. To do so, the sub-itemsets are combined and the 

confidence of the rule is calculated. The rules that satisfy the minimum of confidence, defined by 

minconf are mined as the spatiotemporal rules.  
 

It is also possible to invert the order in which spatiotemporal constraints are applied as also 

presented in Figure 1. In this way, the temporal constraints and then the spatial constraints are 

initially applied, thus generating the space-time candidate’s itemset. In addition, regardless of the 
application order of the spatiotemporal constraints, it is also possible to iterate over the set of 

constraints.  

 
In the literature, there are three distinct types of association rules for spatiotemporal domains. 

Each type of association rules can be used to achieve different goals; they are [23]. 

 

Moving Objects: Describes the movement of objects between regions. Such type of rule means 
that an object satisfying a given condition c has migrated from one region r1 to another r2 in a 

given time period [t1, t2]. The rule format is (r1, t1, c) → (r2, t2) < sup, con >, where sup is 

support and con is the association rule confidence. For this type of rule, support isthe number of 
objects that migrated from region r1 to region r2 in the period between t1 and t2 divided by the 

number of objects satisfying c in the same period. Confidence is the number of objects that 
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migrated ("divided" ?) by the total of objects in the region r1 in time t1. Examples of works using 
’moving objects’ are Kong et al. [14], Mohan and Revesz [18] and Alamri et al. [2]. 
 

Topological Relations: Rules that involve space topologies and predicates such as overlap, 

intersection, touching. . . , as well as temporal predicates such as sequential, parallel, and so on. 
The datasets usually need to be pre-processed to find the topological relationships and to organize 

the data in the function of the found relations. Only after the pre-processing, it is possible to apply 

the techniques of data mining. The rule format is R1(obj1, obj2, t1) → R2(obj3, obj4, t2) < sup, 

con >, where R1 and R2 are space relations, obj1...4 Characteristics of the objects that 
differentiate them in time periods t1 and t2. For example, overlapping(New Y ork, rain, summer) 

→ neighboor(New Y ork, high flow rivers, autumn). An example of work that uses topological 

relations is Burbey and Martin [6]. 
 

The matic Rules: Are association rules that involve space and time properties and attributes not 

necessarily related to spatiotemporal properties. Often extracting such rules requires a 

preprocessing of the database. The pre-processing aims to expose spatiotemporal properties and 
associate them with no spatiotemporal attributes (thematic attributes). Thematic rules usually 

have the following format: a1(R1, t1) → a2(R2, t2) < sup, con >, where a1 and a2 are attributes 

of the domain to which the mining is being applied (e.g. temperature and atmospheric pressure in 
the climate domain), R1 and R2 are regions whose attributes are related to t1 and t2 the period. 

E.g. Rainf all(New Y ork, summer) → Rainf all(New Jersey, autumn) < sup, con >, this example 

shows that if it rains in New York in summer, it will rain in New Jersey in the autumn, with 

support and confidence of sup e con, respectively. An example of work using thematic rules is 
Landgrebe et al. [15]. 
 

An example of spatiotemporal association rules extractor algorithm is found in Compieta et al.  

[8]. This work is based on Apriori to mine spatiotemporal association rules. In its spatiotemporal 
data model, each item ι is associated with a set of spatial points seιin which the item occurs at a 

given time period t. A virtual point vp is defined with a spatial point that supports an itemset. An 

itemset is considered frequent, if and only if it is frequent in the set of virtual points vp’s – called 
spatial itemset. The virtual point vp has its existence associated with one or more time periods. 

Based on this, the idea of the algorithm is to avoid unnecessary processing performed by the 

Traditional Apriori algorithm. Thus, that approach only processes data with a significant 

spatiotemporal relation –virtual points. The result is a set of frequent itemsets and association 
rules. Another change made to the Traditional Apriori is: during the joining of two itemsets, ι1 

and ι2, (performed for candidate generation) it is necessary to check whether the intersection of 

the associated virtual point sets vpι1 and vpι2 is not empty,  
 

Correlated Work  
 

Kawale et al. [13] apply time-series extraction to climate data, precipitation, and temperature 
data, to determine anomalies that occur in one region and if that anomaly will happen in another 

region after some time. In this approach, the authors performed the extraction of positive and 

negative patterns using a graph-based approach (representing spatial constraints through edges). 
The idea is to group the locations such that members of a group have characteristics more similar 

than the members of other groups. That algorithm aims to find pairs relating groups with different 

characteristics. 
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Yoo and Bow [37] proposed a framework to find correlated patterns composed of two algorithms 
for mining correlated neighbors. By using the approach of filtering spatiotemporal relations and 

refinement of the shape of objects, the approach reduces the number of candidates compared to 

the traditional data mining approaches. Different ways of determining closest neighbors were also 

evaluated by the use of estimates of the relative distance of each edge of the objects. 
 

The work of Hana et al. [10] processes neighborhood relations between objects over a period of 

time by the use of spatial queries with temporal parameters. The algorithm developed in this work 

was called START and had three phases: i) calculation of spatiotemporal predicates; ii) 
generation of frequent itemsets, and; iii) extraction of spatiotemporal rules (based on Apriori). In 

this work, the spatiotemporal objects are characterized by a quadruple {ai, gi, pi, ti}. The STAR 

shows the spatiotemporal evolution of geographic objects, (X, aiti) (X, gi, ti) (X, pi, ti) → (R, cr, 
ti + ); X is the reference to an object in the database, ai is the attribute that characterizes X in the 

time ti, gi is the geometric feature of X in the time ti . pi is a topological relation that X may have 

with an object characterized by cr that has R probability of occurring close to X in time tt+. 
Example, (Rain, 0.15mm, f all)(Rain, 20km2 , autumn) (Rain, neighbourhood, autumn) → (0.8, 

increase, Autumn + 1 month). That approach did not consider the influence of multiple events in 

others, what can occur in images. Also, a pre-processor is required to define the spatiotemporal 

data predicates, e.g. a definition of the overlapping neighborhood. It may cause data loss. 
 

The work presented in Huo et al. [12] finds co-occurring spatiotemporal rules by applying a 

sliding window whose increments of data is dynamic, and the data importance reduces overtime. 

The proposed algorithm, DIAD, makes the use of hash trees for the storage and access to the 
standards, through this approach, the DIAD presented a gain of performance compared to the 

other algorithms. The DIAD distributes events into partitions and calculates the spatial distance 

between the events. As new data are added, these are distributed between the partitions and the 
events on the affected partitions are updated. The decay of importance is an adapted technique 

that aims to capture changes in the flow of events dynamically. The domain used is derived from 

social networks, which have spatial references. This approach has a limitation in relation to the 

work proposed in this paper: It does not mine complex data, e.g., images. To mine images, it is 
necessary to extract the image features. However, the domain that DIAD is very dynamic and to 

process the images would cause a delay in the processing and performance of the algorithm. 
 

Pillai et al. [20] presented a new algorithm to find spatiotemporal rules through the application of 
filters; these filters are used to restrict standards that satisfy spatiotemporal constraints. The 

algorithm also applies the refinement of geometric shapes to take into account the topology of 

events. This work used a dataset of solar images; through the application of this technique, it was 
possible to find forms of events that moved. The algorithm, based on Apriori, can handle a 

relatively large amount of data and is called FastSTCOPs-Miner. Pillai et al. [21] presented an 

evolution of the previous work on the following aspects: a new framework for mining co-
occurring patterns; spatial events are modeled as 3D objects and the evolution of their shapes are 

captured; an algorithm for the discovery of co-occurring rules based on the evolution of spatial 

relations is presented. However, both works have an important limitation: they do not extract 

association rules, but rather sequential patterns for the evolution of an event. In this way, the 
approaches do not consider the influence among events. In addition, none of the approaches 

consider thematic attributes of the domain. 
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3. MINING THEMATIC SPATIOTEMPORAL ASSOCIATION RULES IN IMAGES 
 

In this paper, we propose the Miner of Thematic Spatiotemporal Association for Images 

(MiTSAI), a new algorithm to extract thematic spatiotemporal association rules from 
spatiotemporal series of images and textual data. 
 

MiTSAI considers the relationship between itemsets that happen at the same moment and obeys a 

spatial constraint. It also considers the evolution of the itemsets obeying a time constraint. Both 
constraints are set by the user.  
 

MiTSAI mines association rules of the form: r : i1...n → j1...m < sup, conf, space, time >, where 

i1...n is a set of items that happens at the same time and obeys the spatio constraint. In solar 
context, the item is defined as an attribute of the sunspot (solar event) that presents 

spatiotemporal characteristics, e.g., the visual feature of a sunspot is an item, its classification is 

an item. A spatial constraint is an input parameter set by the user; it limits the distance between 
sunspots to consider be considered to join the itemsets. I.e. i1 is closer to the other items i2...n 

than the limit given by the spatial constraint. The same is valid for j1...m. The average of the 

space values is given by space. The ruling period varies from i to j using the time unit, showing 

the time evolution of the itemset. sup and conf are the support and confidence values. The sup 
and conf calculus are showed later. 
 

Algorithm 1 presents the Miner of Thematic Spatiotemporal Association for Images (MiTSAI) 

algorithm. The implementation of MiTSAI is available in Silveira-Junior [30]. MiTSAI inputs 

are: a horizontal spatiotemporal database, DB; minimum values of support and confidence, 
minSup and minConf, respectively; the spatial restriction, distance, and; the time-variation 

restriction, period. The MiTSAI process is divided into two general steps: (i) finding the spatial 

itemsets in the database DB, as presented in Line 2, and; (ii) generating the spatiotemporal 
association rules based on the spatial itemsets generated at (i)-step, as presented in Line 3.  
 
 

Data: DB: database; minSup: minimum support value; minConf : minimum confidence 
value; distance: spatial restriction; period: time restriction. 

 

Result: R: Set of spatiotemporal rules. 

 

Algorithm 1: Miner of Thematic Spatiotemporal Association rules for Images (MiTSAI) – Overview. 
 

Algorithm 2 presents the first step of MiTSAI. It is responsible for finding frequent spatial 

itemsets. An itemset I is a set of items, it is formally defined as I = {i1 . . . in} for n ∈ N | n ≥ 1 

and ia = ib for 0 < a, b ≤ n only if a = b. A spatial itemset SI = si1 . . . sin is an itemset whose 

items have spatial characteristics such as sia.location and its items obey the spatial restriction 

given by the user. An example of a spatial restriction for the item ia, ib ∈ SI can be stated using 

Euclidean distance among these items ia, ib. The spatial restriction is characterized by the 

Euclidean distance being not higher than a parameter. In MiTSAI, the distance is received as 

input. 
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Data: base: Itemset; db: Database; minSup: minimum support value; distance: spatial 

restriction. 
 

Result: R: Frequent spatial itemsets. 
 

 
Algorithm 2: MiTSAI – genItemset Function. 

 

A frequent spatial itemset F SI is a spatial itemset that often happens in the database. The 

frequency of a F SI is limited by the support value, which is calculated as support  , 

where F SI is an itemset, |F SI| is the number of occurrences of F SI’s itemset at the same 

moment, obeying the spatial restriction, and |DB| is the number of tuples in the database. A tuple 
is a quintuple {x, y, z, t, F} where x,y and z are coordinations in Cartesian space; t is the time 

coordinate, and; F is a thematic attribute. An itemset is considered frequent if its support is 

greater than the minSup, set by the user.  
 

In Algorithm 2 at Line 2, the result set is returned to Algorithm 1, and R is initialized as empty. 

In-Line 3, f i is initialized with the set of frequent spatiotemporal items in the database db. For the 

first iteration of genItemset, db shall be the whole database DB, however, for the recursive 

iteration of genItemset, db will be a projection of the database DB. This procedure is further 
detailed in the explanation of Lines 8 and 9. 

 

After that, the Algorithm 2 at Line 4 makes a loop for each item in f i. In the loop scope, the 
spatial itemset is created at Line 5, by adding base (itemset received as the input parameter) and 

the f i’s item called i. If it is the first iteration of genItemset Function, base is an empty itemset 

i.e. the operation base ⊕ i creates an itemset composed only with the item i. In the other iteration 

of genItemset, base contains the frequent spatial itemset found on the database projecting project 
db.  
 

In-Line 6, si-itemset support is calculated considering the spatial restriction, distance, set by the 

domain expert. The spatial restriction is considered by the |i.closeT odistance(base)|. This 

operation shall return the number of occurrences when i happens at the same time that the base’s 

items happen, and the Euclidean distance between i.location and base.location in the limit value.  
 

Since base itemset can have items in different spatial positions, base.location shows the center of 

this items and si.location receives the base.location updated, considering the i.location. 
 

Figure 2 presents an example of spatial restriction applied during support calculation. For this 
figure, consider A, B and C as spatial items and e is a spatial restriction; the distance between 

A.location and B.location are smaller than e-value, i.e. A.closeT odistance(B) < e. So, as {A, B}-

itemset obey the spatial restriction, it is considered a valid spatial-itemset occurrence, and it will 
be count for support({A, B}) calculation. The A.closeT odistance(C) > e, that way, {A, C}-

itemset does not obey the spatial restriction; it is not considered a valid spatial itemset occurrence 

and it will no be counted during support({A, C}) calculation. 
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Figure 2. Example of support calculation considering the spatial data characteristic. 

 
 

In-Line 7, it checks and filters the si-frequency from the DB-database perspective. If si is not 

frequent, it is discarded, and the loop continues for the next item i ∈ f i. If si is frequent, Line 8, a 
projection p of the db-database is generated based on si. The p-projection is composed only of the 

database registries where si happens (valid occurrences of si). Furthermore, R-set is updated 

adding to itself si and getItemset(si, p) result. getItemset(si, p) is a recursive call to genItemset, 
using si as base-input parameter and p as db-input parameter. By that recursively way, it is 

possible to find all combinations of si with the frequent items in the projected database. The 

recursive loop ends when no more generated candidate itemset si is frequent (passed by si.support 

≥ minSup condition at Line 7). 
 

A generic example of projection is presented in Table 1. In this example, the spatial characteristic 

is not considered. The database DB is composed of 5 registries, which IDs are 20150101 . . . 

20150105. DB shows the items that composed the registry, for instance, the items A, B, c, and d 
composes the registry whose ID is 20150101. The projection p of this database is performed for 

Iitemset equals to {A, B}. The p-projection is composed of the registries whose IDs are 

20150101, 20150102 and 20150105. The getItemset(si, p) call will use p as db parameter, 
considering only the 3 items for it recursively processing. 
 

 
 

Table 1. Example of database DB and the projection for the itemset I = {A, B}. 
 

Algorithm 3 presents the second step of Algorithm1, genRules. The genRules-function receives 
the frequent spatial itemsets generated by Algorithm 2. As a result, it returns a set of thematic 

spatiotemporal association rules. 
 

Data: itemsets: Set of spatial itemsets; minConf : minimum confidence value period: 

time restriction. 
 

Result: R: Set of thematic spatiotemporal rules. 
 

 
 

Algorithm 3: MiTSAI – genRules Function. 
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In the Algorithm 3 at Line 2, the set of rules result R is initialized with an empty set. At Line 3, 
there is a loop that combines tuples of itemset, i and j being i 6= j. For each combination of i and j 

a rule r is created as r =< i → j >, Line 4. Since, all combinations is considered, both rules shall 

be created: r1 =< i → j > and r2 =< j → i >. 

 
After the rule generation, its confidence is calculated at Line 5. For the confidence calculation, 

the time restrictions are considered: an occurrence of the rule i → j is considered for the 

confidence calculation only if it obeys to i.date < j.date ≤ i.date + period, where period is a 
parameter set by the data-domain expert. The |j.closeT operiod(i)|-function returns the number of 

occurrences of i and j that obeys the time restriction. The confidence calculation is performed by 

|j.closeT operiod(i)| divided by the number of occurrence of i-itemset. Figure 3 presents a 
timeline that exemplifies this scenario. For this Figure, it is employed i = A, j = B and d is the 

period. 

 
 

Figure 3. Example of confidence calculation considering the data temporal characteristic. 

 

When the rule’s confidence value is higher than minConf (set by the data domain expert), the rule 
is to add to the result-set, R (see Lines 6 and 7). Otherwise, the rule is discarded. That way, it is 

possible to extract rules from the spatiotemporal domain.  

 
The extracted rules has the following format: {ia . . . ib} → {ix . . . iy} < support, conf idence, 

average delta time, average delta spatial >, where {ia . . . ib} and {ix . . . iy} are frequent spatial 

itemsets, support is the average of {ia . . . ib}-support and {ix . . . iy}- support, conf idence is the 
rules confidence value, average delta time are the average period between {ia . . . ib} and {ix . . . 

iy} occurrences, and average delta spatial is the spatial average in-between {ia . . . ib} added the 

spatial average in-between {ix . . . iy}. 
 

For the traditional rules i → j always obeys the property i∩j = ∅. However, for the 
Spatiotemporal Rules extracted by the MiTSAI approach this property is no longer valid. It 

happens to increase the rule flexibility in the spatiotemporal domain. That way, it is possible to 

have items happens in both itemsets but occurring in a different period.  
 

That way, the MiTSAI rules show the relation between items and their evolution during a period. 

Since the attributes considered during the processing are not only the spatiotemporal ones, those 
extracted rules are considered thematics because they use thematics attributes. Subsection 3.1 

presents the Temporal Series of Solar Images used in the experiments for the MiTSAI.  

 

Subsection 3.2 presents an example of the MiTSAI execution for the Temporal Series of Solar 
Images. Subsection 3.3 presents optimization implemented in the MiTSAI algorithm to get better 

performance results. 
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3.1. Temporal Series Of Solar Images  
 

Figure 4 and Figure 5 presents the solar images of one day obtained from site Solar Monitor [19]. 

Each image data comes from a specific instrument and shows information recorded in different 

wavelengths or height of the solar atmosphere as illustrated in Bobra and Couvidat [5]. The Solar 
Monitor information is also composed of textual data that describe each Solar Active Region 

characteristics, as can be seen in Figure 5. The textual data brings information on NOAA number 

attributed to each Solar Active Region, as well as its corresponding latest position, Hale class, 

McIntosh class, area, number of spots and recently produced flares for a given date. 
 

 
 

Figure 4. Example of solar images from one day taken from the NOAA [19]. 

 

 
 

Figure 5. Example of textual data that shows information of active regions corresponding to the solar 

images of Figure 4. 

 

In this work, the Hale Class was excluded from the rule extraction, because it is a simplified 

version of a McIntosh Class. 

 

The data from NOAA [19] were extracted and pre-processed using SETL Architecture [33]. The 
extraction retrieved the six images with different wavelengths for each day. Each image was 

processed to extract its feature vector using the SURF-algorithm [4], Haralick [11], and 

Histogram. 
 

The feature vector was discretized using the Omega-algorithm [26]. This process was necessary 

because MiTSAI uses discrete data as input. The Omega algorithm was employed because it is 
designed to preprocess data for the association rule task. It reduces the number of intervals 

generated and also reduces the data entropy. Those characteristics facilitate the association rules 

extraction process. 
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Figure 6. Example of a Solar Active Region tuple. 

 

The pre-processing also separates the sunspots creating a registry for each one. Figure 6 shows an 

example of one sunspot after the pre-processing. It contains information about the date and active 
region number together with its location, area, McIntosh-class and image parameters.  

 

Domain Constraint: It is expected that the domain expert determines if the sunspot is in the 
rule’s cause and consequence. This constraint is considered during the confidence calculation: the 

occurrence of a rule is counted using only the time restriction and if the occurrences of cause and 

consequence have a sunspot in common. 

 

3.2. Example Of Mining Thematic Spatiotemporal Association Rules For Series Of 

Solar Images  
 

MiTSAI starts reading the data from the database. Each sunspot (database records) are split into 

spatiotemporal items. A spatiotemporal item has spatiotemporal characteristics and a thematic 

attribute. For instance, spatiotemporal , where 20150825 is the date, 
(417, −345) is the sunspot location, and F kc is the thematic attribute; and, the sunspot id is also 

stored.  

 
MiTSAI counts the occurrence of each item considering only its values (not the spatiotemporal 

characteristic). That way is possible to determine which are the frequent items, generating the 1-

size frequent itemsets. For instance, itemset I = {F kc}. 

 
For each itemset, MiTSAI makes a database projection p. In each projection p, only the date 

when the itemset occurs is recorded. The recurrence call for genItemset finds the frequent items 

in the projection and creates one itemset for each frequent item concatenated to the base itemset 
(itemset whose projection is based on). If the created itemset is frequent, it is considered for the 

result. That way, the 2-size itemsets are created, and also, by the recursion, the larger size 

itemsets are generated too. For instance, the itemset I2 = {F kc [0.1 − 0.5)[0.1 − 0.5) − 0930} 
shows the association between F kc and a visual characteristic whose sunspot are is 0930. I.e., the 

F kc and the visual characteristic often happens at the same time, and they obey the spatial 

restriction. 
 

The second step, genRules, combines all frequent spatial itemsets generating the rules. During the 
rule confidence calculation, the time restriction and the domain constraint are considered. For 

instance, r : I → I2 < 0.05 0.8 1 0 > show that {F kc}-itemset and {F kc [0.1 − 0.5)[0.1 − 0.5) − 

0930}-itemset happen in at least 5% of the database; in 80% of the time when a sunspot is 
classified as F kc (Itemset I), in the next day (1-value in the average delta time), the same sunspot 
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keeps the classification F kc ,but presents the visual characteristic [0.1−0.5)[0.1−0.5) associated 
to an area of 930 one-ten-thousand of solar disc. The average delta spatial is zero because the 

generated pattern is regarding only one sunspot. That way, the time restriction is respected and 

also the domain constraint.  
 

3.3. MiTSAI Optimizations 
 
During the database projection, the database items are not copied, instead of it, a bitmap is 

created for the occurrence of the items. The projection passes the bitmap as a reference and filters 

the interesting items already respecting the spatial restriction. That way, the projection is 
composed only of the items that already is in the valid area from the initial item occurrence. This 

is the same strategy that is used by the ARMADA algorithm, proposed in [36].  

 
Other optimization, it is possible to have projections that are redundancy. For instance, the 

itemsets A and B, it is possible that A be part of B projection and B part of A. Those 

redundancies are found in the recursion, and for those cases, the recursion is aborted. 
 

Those optimizations were implemented in the original algorithm MiTSAI and brought a better 

performance and reduced memory usage considerably. Those optimizations made it possible to 

process almost ten years of solar data and images without the need for distributed processing, as it 
is shown in Section 4 spending adequate time as attested by the domain experts. MiTSAI 

complexity is n×ln(n) being n the database input size: Each time a projection is done, it reduces 

the search-solution space; that way, the complexity of MiTSAI algorithm can be calculated in 
function of its input.  
 

4. EXPERIMENTS, RESULTS AND DISCUSSIONS 
 

In this section, we present three sets of experiments, for each database feature extractor 

(Histogram, Haralick, and SURF), with the same configuration: Support minimum of 1%; 
confidence minimum of 75%; maximum of space variance of 150 by 10, 000 parts of the solar 

disk, and; maximum of time variance of 20 days. The feature extractor has been chosen because 

each one extract features based on different kind of characteristics: Histogram is based on the 

image color, Haralick is based on texture-based feature extractor, and SURF is form-based 
feature extractor. MiTSAI allows that different feature extractors can be used joined; however, 

MiTSAI will not compare cross-feature extractor types.  

 
The database is composed of more than 10300 sunspot records split by day for the period starting 

on August 25, 2007, and ending on August 24, 2016, i.e., over 70000 feature vectors was 

submitted to MiTSAI. 
 

Experiment with Histogram as Feature Extractor  
 

The rules presented in Figure 7 were mined using the database represented by the Histogram 

feature extractor. Figure 7 presents three rules, R1, R2 and R3. R1 shows a visual feature of a 
sunspot whose size is 20 parts of solar disk. The visual feature happens at the same time of Bxo-

McIntosh and Cho-McIntosh. For this cause, there are two possible scenarios: (i) they are two 

sunspots; one has the visual feature and Bxo/Cho-McIntosh classification and there is another 

closer sunspot with Cho/Bxo-McIntosh classification; (ii) there are three sunspots, one 
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represented by the visual feature, one represented by Bxo-McIntosh and one represented by 
ChoMcIntosh. The distance in-between the sunspots are, on average, 116.171 parts of the solar 

disk. The consequent presents the visual feature that is the evolution of the cause’s visual feature, 

in a time-variance average of 2.869 days. This pattern happens in at least 3.9% of the data and the 

confidence is 95.8%. Figure 8 presents an example of the occurrence of this in the solar 

Scenario (i). 
 

 

 
 

Figure 7. Rules extracted from the Histogram features database. 

 

 
 

Figure 8. Example of an occurrence of R1. Image adapted from NOAA [19] 
 

R2 exhibits the same feature vector of R1’s cause associated with Bxo-McIntosh, Hsx-McIntosh, 
and Cso-McIntosh. In the case, there are two possible scenarios: (i) the feature vector and the of 

McIntosh classification is of the same sunspot (giving three possibilities), and; (ii) there are four 

sunspots. The average space variance in-between the sunspots is 135.042 parts of the solar disk. 
The R2’s consequent shows a different visual feature comparing to R1’s consequent. It shows 

that the association of the feature vector that appears in R1 and R2’s produces, with different 

sunspots results, a different evolution of the sunspot. R3 shows two sunspots, one represented by 

the feature vector and the second one by the CroMcIntosh, the distance average in-between them 
is 25.703. The consequent shows the evolution of the sunspot associated with the feature vector, 

evolving to the consequent feature vector. 
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Experiment with Haralick as Feature Extractor 

 

 

 
Figure 9. Rules extracted from the Haralick features database. 

 

Figure 9 shows the rules extracted from a database whose images were processed by the Haralick 

feature extractor. R4’s cause presents two sunspots, the first one is represented by the visual 

feature vector and the second one is classified as Cso-McIntosh, the average spatial distance 
between them is 1.249 parts of the solar disk. The sunspot represented by the feature vector 

evolves to a Hsx-McIntosh in an average time of 9.227 days. The rule is found in 4.9% of the 

database with the confidence of 75.9%. Figure 10 presents an example of the occurrence of these 

rules. In that example, there is the 11204-sunspot that is close to the 11203-sunspot; 11203-
sunspot is classified as Cso and presents the visual feature of R4’s cause. 11203-sunspot evolves 

in one day to Hsx-classification. That way, we can show a real example in which the R4-rule is 

validated: the pattern happens, and it is obeying the spatiotemporal constraints. 
 

 
 

Figure 10. Example of an occurrence of R4. Image adapted from NOAA [19] 
 

R5 shows, in its cause, a sunspot represented by a visual feature vector. In its consequence, a 
similar visual feature occurs in the same sunspot associated with other sunspot classified as 

AxxMcIntosh. The average distance between that sunspot is 40.564 parts of the solar disk. The 

period average between cause and consequence is 2 days. The support is 2.4% and confidence is 

87.5%. R6 shows two sunspots whose average distance is 92.801 parts of the solar disk. The 
cause shows a visual feature associated with a sunspot classified as Cao-McIntosh. That means 

that the sunspots represented by the visual feature evolve to Dso-classification when they are 

associated with a Cao-McIntosh sunspot. The period average of this process is 2.588 days. 
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Experiment with SURF as Feature Extractor 
 

Figure 11 shows the rules extracted from the database whose images were processed by SURF 

feature extractor. R7 shows a sunspot classified as Hsx that evolves to Dso-McIntosh when it is 

associated with another sunspot with the same visual feature. The distance between the sunspots 
is on average 33.22 parts of the solar disk. The average time for this association happen is 6.5 

days. It happens in 16.4% of the data, and its confidence is 80%. Figure 12 presents a real 

occurrence of R7-rule, in the occurrence, the Hsx-classification below to 11895-sunspot and the 
visual feature below to the 11897-sunspot, in that occurrence the 11897-sunspot evolves to the 

Dso-classification. The R7-rule represents as i) Hsx and the visual feature below to the same 

sunspot and it evolves to Dso-classification, or; ii) Hsx and the visual feature below to different 
sunspots as presented in the Figure 12. 

 

 
 

Figure 11. Rules extracted from the SURF features database. 

 

R8 also presents two sunspots in its cause, the distance between them is 22.2 parts of the solar 

disk. The sunspot that is related to the visual feature evolves to a R8-McIntosh in a time average 

of 13 days. It happens when it is associated with a Bxo-McIntosh sunspot. R8 has the support of 
10.7% and confidence of 79%.  

 

R9 case presents two sunspots, and the distance between them is 30.248 parts of the solar disk. 
The sunspot that presents the visual characteristic that appears in the cause evolves to one that is 

classified as Hsx-McIntosh, in an average time of 4 days. That sunspot can present one of the two 

visual characteristics, or it can be from other sunspots close to it in an average of 30.248 parts of 

the solar disk. Also, it is possible the presence of at least another sunspot associated with the 
previous sunspot. 
 

 
 

Figure 12. Example of an occurrence of R7. Image adapted from NOAA [19] 
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Discussions  
 

The rules show that sunspot’s behaviors can directly be connected among themselves. To verify 

the results and to validate the prediction results, we used a smaller database of images containing 

a half year of images an average of 3 sunspots each day –579 sunspots– and compared if the 
extracted rules appeared the non-training. That way as possible to tell which rules were true 

positive and false positive, and by comparing with previews rule-set results from Apriori, 

considering the spatiotemporal constraints, it was possible to calculate the false negatives. For 

histogram 75.7% of precision, for Haralick 69.1%, for SURF 78.8%. The recall values are 89.1%, 
93.1%, and 87.3% for the histogram, Haralick, and SURf, respectively. The algorithm searches 

ever possible combination of itemsets that seems to be profitable; however, the recall is not 100% 

since the solar domain has a domain constraint the sunspot in the rules’ cause must be the same in 
the rules’ consequence. That way, some patterns are living out from the result. That constraint is 

needed since the rules will be used to generate a predictive learning model, as future work.  

 
MiTSAI has presented an acceptable performance according to the domain expert even without 

distributed processing. The MiTSAI’s performance variates according to the user inputs: 

minimum support, minimum confidence, space constraint, and time constraint. As less restrictive 

the constraints are, more patterns are extracted decreasing MiTSAI’s performance; however, for 
the solar images domain, in the worse scenarios of constraints, we were able to process the 10 

years of data in less than two hours. 

 
In conclusion, we can say that MiTSAI has brought new and valuable patterns for the solar 

domain according to our solar domain experts, showing that MiTSAI is appropriate for SITS 

domain. MiTSAI can also be extended to other spatiotemporal domains. 

 

5. CONCLUSION AND FUTURE WORKS  
 

Satellite Images Temporal Series (SITS) is a challenge and multidisciplinary domain. Its analysis 

involves image processing, spatiotemporal characteristics, and additional semantic data 
processing. Despite the huge amount of usage possibilities, its analysis is still complex and 

limited, as the literature suggests. 

 

Aiming to support the SITS analysis, MiTSAI was proposed in this paper and applied to Solar 
SITS. MiTSAI extracts Thematic Spatiotemporal Association Rules (TSAR) that considers the 

relationship in-between events that are happening at the same time and also their evolving in a 

period of time. In our experiments, we show that MiTSAI was able to extract the TSAR from the 
Solar STIS and this result was analyzed by the domain expert as new and relevant patterns for the 

Solar SITS.  

 

By using the extraction of TSAR to extract patterns from the Solar STIS, we are able to extract 
patterns with over 75% of precision and a high value of recall (over 85%). This result is 

acceptable by the domain experts and also the performance result. The patterns are considered 

new since it is the first work that uses TSAR to extract patterns from the Solar STIS, the patterns 
are also considered relevant for the domain understanding. The main contribution of this working 

is the new way of applying the spatiotemporal constraints during the processing, it brought new 

valid information for the solar climatic domain and this technique can be applied to other 
domains that are composed by spatiotemporal images and textual series.  
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As future works, we have two proposals. The first proposal is to handle the visualization of the 
extracted Thematic Spatiotemporal Association Rules. In this proposal, a Visualizer shall read the 

rules and find examples that best fit the rule, as presented in Figure 8. The second proposal is to 

apply an Associative Classification to process the extracted association rules to employ the mined 

rules in a future classification. 
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