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ABSTRACT

We  present  a  novel  technique  to  identify  calendar-based (annual, monthly  and  daily)  periodicities  of
an  interval-based  temporal  pattern. An  interval-based  temporal  pattern  is  a  pattern  that  occurs
across  a  time-interval, then  disappears  for  some time, again  recurs  across  another  time-interval  and
so  on  and  so  forth. Given  the  sequence  of   time-intervals  in  which  an  interval-based  temporal
pattern  has occurred, we  propose  a  method  for  identifying  the  extent  to  which   the  pattern  is
periodic  with  respect  to  a  calendar cycle. In  comparison  to  previous  work, our  method  is
asymptotically  faster. We  also  show an interesting  relationship  between  periodicities  across  different
levels  of   any  hierarchical  timestamp (year/month/day, hour/minute/second etc.).
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1. INTRODUCTION

Identifying  and  extracting patterns  and  regularities  in massive  data  repositories  has  been  a
focused  theme  in  data  mining  research  for  almost  over  a  decade. Substantial  progress
continues  to  be  made in  this context, specially  in  the  tasks  of  frequent  itemset  mining [15]
and association rule mining [7], [8], [10], [16], [17]. Temporal  pattern discovery  is  a  very
promising  extension  to  this ongoing research theme  because  it  substantially  broadens  the
scope  of   data analysis  by  supporting  the  discovery  of  patterns  and  regularities  that  are
time-dependent. For  example, across a time-series, a domain-specific pattern may occur only in
some time-periods. Say, in  a  temperature  time-series, a 10°F  temperature  rise  could occur  in
certain  time-periods. In a sales data archive, panic reversal of sales could occur in certain time-
intervals. In data streams of  stock  prices, the  prices may  rise(peak)  in  some  time-periods  and
so  on.  It  is  often useful  to  know  if  a  pattern  is  periodic  or  not. To  determine
periodicities  of  a  domain-specific pattern  that  occurs in  some  time-periods  across  a  time-
series, at  first  all  these  time-periods  have  to  be  extracted  from  the  time-series  and  then
the nature  of  this  sequence  of  time-intervals  has  to  be studied. Similarly, periodicities of  a
natural  event  such  as  volcanic eruption, tropical storm across a particular  region  etc  can  be
determined  from  an  event-related  dataset  which  records  the  time-intervals  in  which  the
event  has  occurred. In  the  underlying  context, even  an  event  will  simply  be  referred  to  as
a  pattern. In  this  paper, a technique  is  proposed  to  extract  calendar-based  periodicities – viz.
yearly periodicities, monthly periodicities etc  of   an  interval-based  temporal  pattern  i.e.  of  a
pattern  that  occurs across  a  sequence  of  time-intervals  in  either  a  discrete  or  in  a
continuous domain. Some preliminary  work  in  this  area  for  patterns  in  a  discrete  domain
only  was  done  by Dutta and Mahanta [2]. In our paper, a function called occurrence function is
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defined for a timestamp. Given a sequence of  time-intervals in either a discrete or a continuous
domain, a generalized algorithm has been developed  for  computing  the  occurrence  function
value  at  any  timestamp. Next, an algorithm for locating local maxima of the occurrence
function is also proposed. The correctness of both the proposed algorithms is established
mathematically. These two algorithms are then  used  to extract  calendar-based  periodicities of
patterns  that  occur  across  a  sequence  of  time-intervals  in  a  discrete  or  in  a  continuous
domain. The proposed method  to  extract  calendar-based  periodicities  can  be  used  to  extract
both  partial  as  well as full  periodicities  of  interval-based  temporal  patterns  with  the  same
efficiency. The extraction of  periodicities takes O(nlogn) time for a  continuous  domain  and
O(n)  for  a  discrete  domain. Finally in this  paper, a  theorem  that  captures  a   relationship
between  the  periodicities of  patterns  at  different  levels  of  any  time-hierarchy  is  also
formulated  and  subsequently  proved.

The  paper  has  been  organized  as  follows - some  recent  works  done  in  mining of
periodicities of patterns in temporal data are mentioned in section 2. Section 3 gives a brief
description of the classic dynamic time-warping (DTW) technique that has been used here to
extract the time-intervals in which a domain-specific pattern appears across a time-series. The
definition  of  the occurrence  function  and  the  algorithms  to  compute  the  function  and  to
locate  local  maxima  of   the  function  are  presented  in  section 4.  In section 5, it is shown
how the algorithms proposed in section 4 can be used for extracting calendar-based (i.e. seasonal)
periodicities of interval-based temporal patterns in a discrete or in a continuous domain. A
theorem  establishing  a   relationship  between the  periodicities  of   patterns  at  different  levels
of  a  time-hierarchy  is  presented  in  section 6. The  results obtained  after  applying  the
proposed  technique  on  real-life datasets  are  given in section 7. Section 8 gives the conclusion
and mentions the scope for further research in this line.

2. RECENT  WORKS  DONE IN  THIS  FIELD

Mining  periodicities  of  patterns  in  temporal  data  is  an  active  research  area. Some recent
works in this field are mentioned below:

Elfekey et al. [5] propose algorithms to mine two pre-defined types of periodicities in time-series
data. Berberidis et al. [1] propose an  algorithm that  mines  a  set  of  candidate  periods  featured
in  a  time-series  that  satisfy  a  minimum  confidence  threshold. Elfekey et al. [3] propose  an
algorithm  for  mining  periodic  patterns  in  time-series  databases  with unknown  or  obscure
periods.Yang et al. [18]  and  Huang and Chang [6] propose  algorithms  for  mining
asynchronous  periodic  patterns  in time-series  data. Lai et al. [11]  address  the  problem  of
mining  periodicity  of  patterns  that  occur  across  artificial boundaries. Karli and Saygin [9]
propose two techniques for mining periodic spatio-temporal patterns at different time
granularities. Zhang et al. [19] present  practical  algorithms  to  solve  the  problem  of  mining
frequently occurring  periodic patterns  with  a  gap  requirement  from sequences. Ma and
Hellerstein [13] study  partial periodic patterns taking  into  account  imprecise  time  information,
noisy  data  and  shifts  in  phase  and/or  periods. Algorithms  for  incremental  mining  of  partial
periodic  patterns  in  time-series  archives  are  proposed  and  analyzed  empirically  by  Elfekey
et al.  [4]. Lee et al. [12]  address  the  problem  of  mining  multiple  partial  periodic  patterns  in
a parallel  computing environment. Mahanta et al. [14] and  Dutta and Mahanta [2] propose
algorithms  to  extract  calendar-based  periodic  temporal  patterns  across discrete  domains. In
this  paper, a  generalized method  is  proposed  to  detect  calendar-based  periodicities  of
temporal  patterns  occurring  across  a  sequence  of time-intervals  not  only  in  a  discrete
domain  but  across  a  continuous  domain  also. A  theorem  establishing  an  interesting
relationship  between   periodicities of  patterns  at  different  levels  of  a time-hierarchy  is  also
formulated.
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3. DYNAMIC TIME-WARPING METHOD

For  the  automatic  detection  of  a  pattern  in  a  time-series, an  approximate  or  “fuzzy”
matching  process  is  required  that  can  capture  all  the  time-series  fragments  within  which
the  approximate  shape  of  the  pattern  is  detected. Specifically, the pattern detection task
involves searching a time-series S = s1, s2, s3 ...sn for instances  of  a  given template T = t1, t2, t3

...tm. In  the  dynamic time-warping (DTW)  technique, this  pattern detection  task  is achieved
by  applying  a  dynamic  programming  approach  to align  the  two sequences  S  and  T  in  a
way  so that  some  distance  measure  is  minimized. To achieve a reasonable fit, the time series
may be stretched or compressed. Shown  below  in  Figure 1 is a  n-by-m  grid  where  each
grid-point (i,j) corresponds to an alignment  between  elements  si and  tj of   S  and  T
respectively.

Figure 1

A  warping  path  W  is  a  path  through this  grid  that  aligns  the  elements  of  S  and  T  such
that  the  distance between  them  is  minimized. The warping path W is thus represented as
W = w1 w2………..wp

where  each  wk corresponds  to  a  point  (i,j)k in  the  grid. The  dynamic time-warping  problem
can  hence  be  formally  defined  as   a  minimization  over  potential  warping  paths  based  on
the  cumulative  distance  for  each  path.
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where δ is  the  distance measure  used  to  compute  the  distance  between any  two  elements
si and  tj. Typically, δ(i, j) = |si – tj| is used. Searching through all possible warping paths leads to a
combinatorial explosion. Several  restrictions  are  hence  placed  on  permissible  paths  between
two  grid points, thereby  reducing  the  search  space – viz. all  possible warping paths. A few
restrictions for the warping path are outlined below:

Monotonicity: The points in W are monotonically ordered with respect to time i.e. for consecutive
points – wk-1 and wk in W, ik-1 ≤ ik and  jk-1 ≤ jk.
Continuity: The allowable steps taken by the path W in the grid is confined to neighboring points
i.e. ik – ik-1 ≤ 1 and   jk – jk-1 ≤ 1.
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Warping Window: Allowable points are constrained to fall within a given warping window,|
ik – jk | ≤ w, where w is the size of the warping window which is a positive integer.
The  dynamic  programming  formulation is  based  on  the  following  recurrence relation which
defines  the  cumulative distance  γ(i ,j)  for each point.

γ(i, j)  =  δ(i, j)  +  min[γ(i - 1, j), γ(i - 1, j - 1), γ(i, j - 1)]
i.e. The  cumulative  distance  is  the  sum  of  the distance  between  current  elements (specified
by  a  grid  point)  and  the  minimum  of  the  cumulative  distances  of the  neighboring  points.
The cumulative  distance  associated  with  the  best  warping  path  is  simply  a  raw  score.
Normalization  of  the  raw  score  is necessary  to  ensure  that  matches  differing  only  in scale
are comparable. Normalization is also required to accommodate differences in path length i.e. the
number of grid points in a warping path. The normalized  cumulative distance is  used  to
determine  if   the  degree  of  fit  of  the  time-series  S  and  the  given  template  T   is
sufficiently  good  or  not .

4. COMPUTATION OF THE OCCURRENCE FUNCTION AND DETECTION OF

LOCAL MAXIMA OF THE FUNCTION

As  mentioned  earlier, a  sequence  of   time-intervals  is  associated  with  an  interval-based
temporal  pattern  signifying the  time-periods  in  which  that  pattern  occurs. Assuming  that
there  exists  a sequence  of n time-intervals and  t  is  a timestamp  that  appears  in m (m ≤ n)
number  of these  n time-intervals, then  the  value  of   the  occurrence  function ρ(t) at t  is
defined  to  be  m.  If  the intervals  are  all  disjoint, then  the  value  of   the occurrence function
at  any  time-stamp  will  be either  zero  or  one.

Two  theorems are  presented  below  that  establish  some  properties  of  the  occurrence
function. On  the  basis  of   these  properties,  changes  of  the  occurrence function  will  be
identified  and  this  information  will subsequently  be  used  for  computing  the  value  of   the
function  at  any  timestamp s and  for  detecting  local  maxima  of  the  function.

4.1. Properties  of  the  occurrence  function

The  following  two  theorems  valid  for  continuous domains   state  some  interesting
properties  of   the  occurrence  function :

Theorem 1 Let the endpoints of a given sequence of time-intervals be merged into a single list
and this list (of endpoints) is then sorted in ascending order of timestamps. Let a and b be the
timestamps of two successive endpoints with a<b in the sorted list of endpoints. Then the
occurrence function is a constant in time interval (a,b).

Proof: - Let  x, y є (a,b). Let x belong to one of the given intervals which will be of the form
either [c,d] or (c,d) or (c,d] or [c,d). Since there is no endpoint in (a,b) and x ≤d and d is an
endpoint, we must have  b≤d. Similarly c≤a. Therefore y also belongs to the same interval with
endpoints c and d. Similarly if y belongs to one of the given intervals then, x also belongs to the
same interval. Therefore the number of given intervals containing x and the number of intervals
containing y are same and hence ρ(x) = ρ(y). This proves the theorem.

Theorem 2   Let t be a timestamp where some endpoint occurs and let

L = Lim x-> t – ρ(x)
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R = Lim x->t +ρ(x)

n1 = number of left open endpoints at t

n2 = number of left closed endpoints at t

n3 = number of right open endpoints at t

and        n4 = number of right closed endpoints at t

Then   ρ(t) – L = n2 – n3 (1)

and    R – L = n1 + n2 – n3 – n4 (2)

Proof :- Let y be  a point  between t and  the  timestamp  at  which  an endpoint occurs just
before t. Let k be the number of given intervals containing y. Obviously L = k since the
occurrence function remains constant for all such y (Theorem 1). Out of these k intervals, n3 of
them will have right open endpoints at t and thus t will no longer be contained in these n3

intervals. However  there are n2 left  closed endpoints at t which means that n2 new intervals
will start containing t. Therefore ρ(t) = k + n2 – n3 = L + n2 – n3 and hence ρ(t) – L = n2 – n3.  If t
is  the  timestamp  for  the  first  endpoint, n3 and L must be zero and n2 of  the given intervals
will contain t. Therefore again, ρ(t) – L = n2 – n3.This proves (1). Similarly, we can prove ρ(t)
– R =  n4 – n1. Subtracting this equation from (1), we get R – L = n2 – n3 + n1 – n4 which proves
(2). This completes the proof of the theorem.

A discrete domain can be extended to a continuous one by inserting all the points between two
successive endpoints. Thus  the  theorems  given  above  that  are  valid  for a  continuous
domain  can  be used  for  discrete  domains  also.

4.2. Capturing  the changes  of  the  occurrence  function

On the basis of  the  theorems presented  above in section 4.1, we now propose a  method  to
identify  changes  of  the occurrence function. This information will be used  for  finding  the
function value  at  any  timestamp s (Section 4.3)  and  for  detecting  local  maxima  of   the
function (Section 4.4).

To  identify  changes of  the occurrence function, all  the  endpoints  of  an  existing  sequence  of
n time-intervals  are  first  merged  into  a  single list. An  endpoint  record  has  two  fields - a
timestamp t and et giving the endpoint type (left open, right open, left closed  or  right closed).
After an  existing sequence of  n time-intervals is converted to a list of endpoint records, the list
of endpoint  records  is  then  sorted  in  ascending  order  of  timestamps. The  changes  of   the
occurrence  function  can   be  identified  by  simply  scanning  a  sorted  list  of  endpoint
records. Information about  each  change  of  the  occurrence function is  captured  in  a  change
record. A change  record  will  have  three  fields – timestamp  t  at  which a change of  the
occurrence function  is  observed,  u which  gives  the  value  of  the occurrence  function at  t
and  r which  is  the  right hand  limit  of  the  occurrence   function  at  t for a  continuous
domain or  the  value  of   the  occurrence  function  at  the  next  timestamp  for  a  discrete
domain.
The  algorithm  given  below (Algorithm 1)  creates  an  array d of change records  from  an
existing array e of endpoint records (assumed to be sorted  in ascending  order  of   timestamps).
The  length  of   the  array e is 2n, where n is  the total  number  of   time-intervals. The length
of  the array d will  be m which is the number of  changes  of  the occurrence  function. The
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value  of m will  be  less  than  or  equal  to  the  number  of   endpoints  with  distinct
timestamps. Obviously  m ≤ 2n. Scanning  the  array e of  sorted endpoint records  in
ascending  order of  timestamps, the  values  of n1, n2, n3 and n4 (as defined in  Section 4.1) are
counted  for  each  timestamp t in  the  array. Theorem 2  is  used  to  identify  each  change  of
the occurrence  function  and  for  each  change, an  element  is added  to  the  array  d  with  the
fields - timestamp t, u =  n2 – n3 +  L and  r = n1 + n2 – n3 – n4 + L  Here  L is  the  left-hand
limit  of  the occurrence function at  t  for  a  continuous  domain  or  for  the continuous
extension  of   a  discrete  domain. The  value  of L is  equal  to  the  value  of  r  of  the previous
change (by  Theorem 1). At  this  point,  d[i].t  and  d[i].u  give  the timestamp and the  value of
the occurrence function at the ith change of  the occurrence function. These values are correct for
both continuous and discrete domains. Also d[i].r correctly gives the right hand limit of the
occurrence function at d[i].t for a continuous domain. For a discrete domain, d[i].r at this point
gives the right hand limit of the occurrence function at d[i].t for the continuous extension of the
discrete domain. For a discrete domain, as mentioned  earlier, d[i].r is  supposed  to  give the
value  of  the occurrence function  at  the next  timestamp after  d[i].t. So in a discrete  domain, if
d[i+1].t  is  greater  than  d[i].t  + 1  then  d[i].r  correctly  gives  the  desired value  of  the
occurrence function  at  d[i].t + 1 (by  Theorem 1). But if  d[i+1].t  =  d[i].t + 1, then d[i].r  needs
to be replaced  by  d[i+1].u .These  replacements  are  done  in the last  part of  Algorithm 1.

Algorithm 1:

i ← 1
m = 0
L = 0

while (i <= 2n)
{

n1 = n2 = n3 = n4 = 0
ct ←e[i].t
while (i <= 2n  &&  ct equal  to e[i].t)
{

increment n1 or n2 or n3 or n4 according to e[i].type
i++

}

if ( ( ( n2 – n3 ) ≠ 0)  or ( (n1 + n2 – n3 – n4) ≠ 0 ) )
{  m++

d[m].t =  ct
d[m].u = n2 - n3 + L
d[m]. r = n1 + n2 – n3 – n4 + L
L = d[m].r

}
}

/* Do the following for discrete domain */

for  i  =   1  to  m - 1
if  d[i+1].t  = = d[i].t + 1

d[i].r  =  d[i+1].u
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4.3. Finding  the  occurrence  function  value  at  any  timestamp  s

After  capturing  the  changes  of  the  occurrence  function  for  a  given  sequence  of   n  time-
intervals  as  described  above  in  Section  4.2, the occurrence function value at any timestamp s
can be calculated  by  a  binary  search on  the  array  d  of  change  records  (created  by
Algorithm 1)  of  length  m  sorted  in  timestamp  order.

If s = d[i].t  for  some  i, then the value  of  the  occurrence  function  at  s  is  d[i].u. If s
< d[1].t  or  s > d[m].t  then the value of  the  occurrence  function  at  s  is zero. Finally if  d[i].t <
s < d[i+1].t  then the value of  the  occurrence  function at s  is  d[i].r. The correctness of this for
continuous domains follows from Theorem 1. For discrete domains this condition implies that
d[i+1].t >d[i].t + 1 and  by  Algorithm 1, d[i].r is  the  right  hand limit  of   the  occurrence
function  in  the continuous  extension  of   the  discrete  domain  which  correctly  represents  the
value  of  the  occurrence  function  at  s  (by  Theorem 1).

4.4. Detection  of  local  maximal  of  the  occurrence  function

The change records described  in  Section 4.2  actually record  two  changes  of  the  occurrence
function – (i) the change from the left hand limit to the value of the function at  a  timestamp t
and (ii) the change from the value of  the function at  that  timestamp  t  to the right hand limit.
For the detection of  local maxima of the occurrence function, it is however convenient  to
introduce a  knot  record  that  will  capture  only  a  single change in the value of the occurrence
function. A  knot  record  has only two  fields – timestamp t and  v  which  gives  the  value  of
the  occurrence function  at  t. For  obtaining  information  about  local  maxima of  the
occurrence  function, at  first  an  array  k  of  knot  records  has  to  be  created  from  an array  d
of  change records. Traversing the array  d  in ascending order of  timestamps, for each  ith (1 ≤ i ≤
m) change record  d[i], at most  two  knot  records are added  to the array  k  in the following
order - A  knot  record with fields  v  set  to  d[i].u  and  t set  to  d[i].t  is  added  followed  by
another  knot  record  with  fields  v  set  to  r  and  t  set to d[i].t  for the continuous case and
d[i].t + 1  for  the  discrete case. A  knot  record  is  however not  added to the  array  k  if  the
value of  it’s  v  field  is  same as  that  of  the  just  previously  added  knot  record  in  the  array
k. Adding the knot  records  to the  array  k in  the  order  as  explained  above  automatically
ensures  that  the  knot  records in the array  k  are  arranged  in  non-decreasing  order  of
timestamps. Now  if  (t1,v1) and (t2,v2)  are  two  successive  knot  records  in  the  array  k  and
there  exists  a  timestamp  t  such  that   t1 < t < t2 , then  the  value  of   the  occurrence function
at t  will  be  v1 . This is because each  knot  record  captures one change  in  the  occurrence
function  value and  the occurrence function is a constant  between  two successive points of
change.

The  algorithm  given  below (Algorithm 2)  identifies local  maxima  of  the  occurrence
function  by  traversing  an  array  k  of   knot  records. Let  p  be the length of  this  array  k.
Information  about  each  local  maximum is  captured in  a  lmaxnode  record  having  the
following  fields - timestamps start, peakstart, peakend, end and occurrence function values
startval,  peakval  and  endval.
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Figure 2 state  = increasing and   k[i +1].v < k[i].v for continuous  domain

Algorithm 2:

state = increasing
set current to a  new lmaxnode record
current.start = k[1].t  for continuous  domain

and  k[1].t - 1 for discrete domain
current.startval = 0
for i = 1 to p

{ if  state = = increasing  and  k[i+1].v  <  k[i].v (see Figure 2)
{ current.peakstart = k[i].t

current.peakend = k[i+1].t  for  continuous domain
and  k[i+1].t-1 for  discrete domain

current.peakval = k[i].v
state = decreasing

}
if state = = decreasing and (( i = = p) or ( k[i+1].v >  k[i].v )) (see

Figure3)
{ current.end  =  k[i].t

current.endval = k[i].v
add current to lmaxlst
if i < p
{ set  current to a new lmaxnode

current.start = k[i+1].t  for  continuous  domain
and  k[i+1].t – 1  for  discrete  domain

current.startval = k[i].v
}

state  =  increasing
}

}
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Figure 3. state  = decreasing and k[i +1].v > k[i].v for continuous  domain

4.5. Time Complexity

Creating the array  e  of  endpoint  records  takes  O(n) time  where  n  is  the  number  of  input
intervals. Sorting  this  array  e  of   endpoint  records  will  take  O(n log n)  time in  the  worst-
case  for  continuous domains. For discrete domains, if the timestamps are hierarchical with
each field  having a limited range, radix sort can be used  which  performs in O(n) time.
Scanning  the array  e  for  changes  of   the occurrence  function  and  then  creating  the  array d
of  change  records  will  take  O(n)  time  in  the  worst-case. Creating  the  array  k  of  knot
records  from  the  array  d   will  take  O(n)  time  in  the  worst-case. Scanning  for  local
maxima  in  the array  k  of  knot records   takes O(n)  time. Thus  the  overall worst-case  time-
complexity   works  out  to  be  O(n log n)  for  continuous domains and  O(n)  for  discrete
domains (for  hierarchical  timestamps). Moreover, once  the above  mentioned  operations  are
performed  and  the  corresponding  structure  is  set  up,  to  compute  the  occurrence  function
at  any arbitrary  point  takes  only O(log n)  time  in  the  worst-case.

5. DETECTION OF CALENDAR-BASED   PERIODICITIES   OF PATTERNS

In  the underlying  context, a  pattern  will  be  characterized  by   a  sequence  of   time-intervals
in  which  the  pattern  occurs. A  pattern  here  typically  refers  to  a  natural  event  such  as  a
hurricane, volcanic eruption, outbreak of  malaria  etc. It  may  also  refer  to  a  domain-specific
pattern  such  as  panic  reversal  of  sales, a temperature  trend, rise (peak)  in  stock  prices  etc.
We are interested   in determining if a pattern is periodic. Assuming  that  the  timestamps
associated  with  a  pattern  are  calendar-dates (i.e. of  the  format  day-month-year  or  time-day-
month-year  etc.), we  propose  a  method  to  extract  calendar-based  periodicities  viz.  yearly
periodicities, monthly periodicities  etc  of   the  pattern  using  the  algorithms  described  in
Section 4. If a pattern is seen every year in the month of April say, then we call it a yearly pattern.
Similarly suppose a pattern is seen in the first week of every month, then we call it a monthly
pattern and so on.

The  time-intervals  in  which  a  pattern  occurs  are  maintained  in  a  list  L. If any  pattern
occurrence  spans  into  different  year(s), then  that  time-period   has  to  be  split  up  into  two
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or  more corresponding  time-intervals and  only  these  are  to  be  inserted  into  the  list  L. A
few examples are shown below in Table 1.

Table 1.  Handling pattern occurrences spanning across different  year(s)

Pattern  Occurrence Corresponding  time-intervals  to be  inserted
into  the  list  L

18th Dec, 2001   to   7th Jan, 2002 18th Dec, 2001  to  31st Dec, 2001
1st Jan, 2002   to   7th Jan, 2002

24th Dec, 2005   to  15th Jan, 2007 24th Dec, 2005  to  31st Dec, 2005
1st Jan, 2006   to  31st Dec, 2006
1st Jan, 2007   to  15th Jan, 2007

28th Dec, 2009   to  1st Jan, 2010 28th Dec, 2009  to  31st Dec, 2009
1st Jan, 2010   to  1st Jan, 2010

It  is  also  to  be  noted  that  the   time-intervals  in  the  list  L  have to  be  disjoint.  If  the
pattern  has  occurred   in  overlapping  time-periods, then  the  overlapping  periods  are  merged
and  only  the   merged  time-period  is  inserted  into  the  list  L.  E.g.  if  a pattern  occurs  from
10th June, 2001 to  18th June, 2001  and  again  from  14th June, 2001  to  20th June, 2001,  then
only   the  corresponding   merged   time-interval  (10th June, 2001  to  20th June, 2001)  will  be
inserted  into  the  list  L. The  necessity  of   keeping   the  time-intervals  in  the  list  L  disjoint
shall  be  explained  later  in  this  unit.

To  extract  calendar-based  periodicities  of  the  pattern,  timestamps  of   the  disjoint  time-
intervals  in  list  L  are   stripped  of  certain   components. While  finding  yearly  periodicities,
the  year  component  of   the  timestamps   is  removed  from  the  corresponding  dates.
Similarly  when  monthly  periodicities  are  being  searched, the year  and  month  components
are  not considered. Again while looking for daily periodicities, the day, month and year
components are stripped and so on. Let  L´  be  a  list  containing  all  the  time-intervals  in  the
list  L  but  with  timestamps  i.e. calendar  dates   stripped   of  the  appropriate  component(s). L´
now will possibly have overlapping intervals. Now  with  this  list  L´  as  the  input,  an  array  d
of  occurrence  function  change  records  (as described  in  Section 4.2)  is  created  using
Algorithm 1 (which  is  also  described  in  Section  4.2).  Next  from  this  array  d,  an  array  k
of   knot records  (as  described  in  Section  4.4)  is  created. Using  Algorithm 2 (also described
in  Section  4.4), the  array  k  of  knot  records  is  scanned  to  extract  local  maxima  of   the
occurrence function  values. It  is  easy  to  see  that  each  local  maximum   gives  a  periodicity
of  the  pattern  under  study. It  is  possible  to  distinguish  between  partial  and  full
periodicities of  a  pattern. We elaborate on this below-If   s  is  the  smallest  timestamp  and  g  is
the  largest  timestamp appearing  in  the  time-intervals  of   the  list  L,  then  the  period  from  s
to  g   is  called  the  lifespan  of   the  pattern  in  the  underlying  context.  A certainty  function
c(x)  is  defined  for  a  stripped  timestamp  x   of   the  list  L´  as

N
xxc )()( =

Here  ρ(x)   is   the  occurrence  function   value  for  the  stripped  timestamp  x   and  N  is  the
total number of  periods in  the  lifespan  of  the  pattern. N   gives  the  total  number  of  years
or  months  or  days  or  hours  etc.  depending  on  whether  we  are looking  for  yearly
periodicities  or  monthly  periodicities  or  daily  periodicities  or hourly  periodicities  etc. The
maximum  value  of  c(x)  will  be  1  because  the  time-intervals  in  the  list  L  (from  which
list  L´  was  created)  are  all  disjoint. Within  a  particular  identified  local  maximum  of   the
occurrence  function,  if  the  certainty  function  c(x)   reaches  it’s  maximum  value  i.e. 1  at
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any  timestamp  x,  then  the  pattern  is  fully  periodic  at  x.  On  the  other  hand, within  a
particular  identified  local  maximum  of  the  occurrence  function, if  the  certainty   function
c(x)  is  less  than  1  at  any  timestamp x, then  the  pattern  will  be  partially  periodic  at  x.
For example, suppose  a  pattern  with  a  lifespan  of  ten years  is scanned for yearly periodicities
and   a local  maximum  (of  the occurrence  function)  is  detected  from  10th July  to  15th July.
Now  if  the  pattern  is  observed  on  12th July   every  year  in  all  ten  years, then the  value  of
the  certainty  function  on  12th July  becomes  equal  to  1  and this  yields  a  full  yearly
periodicity  of  the  pattern.  On  the other hand, if  the  pattern  is  seen  on  12th July  only  in
eight  out  of  ten years, then the certainty  function value  on  12th July  will  be 0.8, thereby
yielding a partial yearly periodicity of  the pattern.

The  necessity  of  keeping  the  time-intervals  in  the  list  L  all  disjoint  is  now explained  in
the  context  of   the  example  given  above. Let  us  assume  that  the  time-intervals in  the  list
L  are  not  disjoint. Now, suppose  the  pattern  is  noticed    on  12th July  in  ten  overlapping
time-periods  in  a  particular  year  but  not  even  once  in  any  of   the  remaining  nine  years.
Though  in  this  case, the  pattern  is  obviously  not  periodic  at  all  on  12th July, still  the
value  of   the  certainty  function  on  12th July  becomes  equal  to 1. For  this  reason,  to  be
able  to  determine  periodicities  properly,  all  the  time-intervals  in  the  list  L   necessarily
need  to be  disjoint.

6. A RELATIONSHIP BETWEEN  PERIODICITY OF  PATTERNS  AT  DIFFERENT

LEVELS  OF  A  TIME-HIERARCHY

The timestamps associated   with   temporal patterns often   have a hierarchical structure. In  the
previous  section (Section 5), a method  was  proposed  for  detecting  calendar-based
periodicities  of   patterns  whose  timestamps  had  a  calendar-date  based  time-hierarchy. In
this  section, a  theorem  is  presented  that  shows  an  interesting  relationship  between  the
periodicity  of   patterns  at  different  levels  of  a  time-hierarchy.

Theorem 3  If   lk is  the  kth level  of  the  time-hierarchy (starting at the lowest  level)  and  if
for  i < j ,  there  are  p  combinations  of  values  of  levels  li, li+1 ….lj-1 for  every  lj value, then
a level  li periodic  pattern  of  periodicity f  > (p – 1)/p  will  give  rise  to  p  level  lj periodic
patterns  of  average  periodicity  f  and  minimum  periodicity  1 – p(1– f).

Proof :- Let  the  level  li pattern  occur  at  a  date  d  obtained  after  levels  lk for  k ≥ i  are
stripped . Suppose  in  the  lifespan, there  are  mi periods  for  level  li and  mj periods  for  level
lj . Then  obviously

mi =  p *  mj (1)

Also the pattern occurs at date d   for f * mi level li periods.  Since  there  are  p  combinations
c1, c2, ….,cp of  values of  levels  li, li+1 ……lj-1 for  every  lj value,  the  pattern  appears  at dates
(c1,d), (c2,d),…..(cp,d)  (after  stripping  levels  lk for  k ≥  j)  for  some  n1, n2, ….,np level  lj

periods  respectively  where

n1 + n2 + ……+ np =  f  *  mi (2)

Since   nk ≤  mj,     nk ≥ -(p-1) mj +  f * mi

= [-(p-1) +  fp] mj
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Hence                     nk ≥ mj [fp - (p-1)]

> mj [(p-1) - (p-1)]  =  0

Thus  there  are  p  level  lj periodic  patterns  at  the  dates  c1.d, c2.d,…….cp.d   of  minimum
periodicity   Min (nk / mj)  = fp - (p-1) = 1 - p(1-f)  and with  average  periodicity

∑k (nk / mj ) / p

= (∑k nk) / (mj* p)

=  (f * mi ) / (mj* p)                                        using (2)

=  (f * mi) / mi using (1)

=   f

This proves the theorem.

We note that if   f   is 1 i.e.  if  the  level  li pattern  is  fully  periodic,  then  each  of  the  level lj

periodic  patterns  has   periodicity ≥ 1  and  hence  is  1  i.e. is  fully  periodic. Because  of  this
theorem, a  fully  periodic  monthly  pattern  will  give  rise  to  12  fully  periodic  yearly
patterns,  a  fully  periodic  daily  pattern  will   give  rise to  365  fully  periodic yearly  patterns
and  so  on.

For  an  example  of  a  partially  periodic  pattern, let  us  consider  a  monthly  pattern  of
periodicity  f = 23/24  on  the  10th of  a  month. This  monthly  pattern  will  give  rise  to  12 (p
=12)   yearly patterns  at  dates  Jan 10, Feb 10, … , Dec 10. Let the lifespan of the data be 10
years i.e.  mj = 10 and hence  mi = 120. Thus the pattern appears on the 10th in (23*120) / 24 =
115 months. Let  nk of  these  be  in  month  k (k = 1  for Jan, k = 2  for  Feb etc). Then ∑k nk = f
* mi = 115. Since  the  sum  is  constant, any  one of  them  will  be  minimum  if  the  rest  of
them  are  maximum. Now  the  maximum  of  any  nk is  10 (i.e. mj)  since  month  k  can  appear
at  most  for  10  years. Therefore minimum of any  nk = 115 – (11 * 10) = 5. Thus  the  minimum
periodicity  is  5/10 = ½   which is  1 – p(1 – f)  as  given  by  the  theorem. The sum of the
periodicities of these 12 patterns is 115/10 = 23/2. Hence the average is (23/2)/12 = 23/24 = f as
given by the theorem.

Though the above examples have used a calendar-date based time-hierarchy, Theorem 3 holds
true for any other time-hierarchy also.

7. EXPERIMENTAL RESULTS

The  technique  proposed  in  Section 5  for  extracting  calendar-based  periodicities  of   interval-
based  temporal  patterns  has  been  applied  here  to  an  event-related  dataset  and  then  to  a
time-series.

Working  with  an  event-related  dataset : The dataset contains the time-periods of occurrence
of   a  category 1  hurricane (category  based  on  Saffir-Simpson  scale) across  the  eastern-
pacific  region. The source of this data is http://weather.unisys.com/hurricane/index.html. The
technique  proposed  in  Section 5  is  applied  to this  dataset  to  find  yearly  periodicities  of
category 1 hurricanes across the eastern-pacific region. The following partial yearly periodicities
have been detected (Table 2)-

http://weather.unisys.com/hurricane/index.html
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Table 2  Yearly periodicities  of  category 1 hurricanes  in  the  eastern-pacific  region

Working with a time-series: The dataset contains daily average temperatures of Paris. The dataset
is available at http://www.engr.udayton.edu/weather/. We  are  interested  in  detecting if  there
is  any  yearly  periodicity  in  the  occurrence  of  a 10°F  temperature  rise  in  Paris. The  classic
DTW  technique  described  in  Section 3  is used  to  first  extract  from  the  temperature  time-
series, all  the time-intervals  in  which  a  10°F  temperature  rise  has  occurred. Now, to  find  if
there  is  any  yearly  periodicity  in  the  occurrence  of  such  a temperature rise, the  technique
described  in  Section 5  is  applied  to  the  time-intervals  that  were  extracted  from  the  time-
series  by  the DTW  program. The following partial yearly periodicities have been detected
(Table 3)-

Table 3  Yearly  periodicities of   a  10°F  temperature  rise  in  Paris

8. CONCLUSION AND LINES FOR FUTURE WORK

A  method  was  proposed   to  extract calendar-based  periodicities  of   an  interval-based
temporal  pattern  i.e.  a  pattern  that  occurs  across  a  sequence  of   time-intervals  in  either  a
discrete  or  in  a  continuous  domain. For  this,  a  function  called  occurrence  function  was
defined  for  a  timestamp. A generalized  algorithm  was  developed  for  computing  the
occurrence  function  at  any  timestamp  in  either  a  discrete  or  in  a  continuous  domain.
Another  algorithm  for  finding  local  maxima  of  the occurrence  function  was  also
developed. It  was  shown  how  these  two  algorithms  could  be  used  to  determine  calendar-
based  periodicities  of   an  interval-based  temporal  pattern  in  either a discrete  or  a
continuous  domain. The  extraction  of   periodicities   takes  O(n log n)  for  a  continuous
domain  and  only  O(n)  for  a  discrete  domain (for hierarchical timestamps), where n is the
number of intervals  in which  the  pattern  occurs. The  proposed  technique  for  extracting
calendar-based  periodicities  is  able  to  detect  both  partial  as  well  as  full  periodicities  of  an
interval-based  temporal  pattern  with  the  same  efficiency. Finally, a  relationship  between the
periodicities of  patterns   at  different  levels  of   a  time-hierarchy  was  also  presented.

Future  works  include  mining  of  causal  relationships  and  correlations  among  multiple
interval-based  temporal  patterns.
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