
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

DOI : 10.5121/ijdkp.2012.2102 17

DETECTION OF CALENDAR-BASED PERIODICITIES
OF INTERVAL-BASED TEMPORAL PATTERNS

Mala Dutta1 and Anjana Kakoti Mahanta2

1Department of Computer Science, Gauhati University, Guwahati, Assam
maladuttasid@gmail.com

2Department of Computer Science, Gauhati University, Guwahati, Assam
anjanagu@yahoo.com

ABSTRACT

We present a novel technique to identify calendar-based (annual, monthly and daily) periodicities of
an interval-based temporal pattern. An interval-based temporal pattern is a pattern that occurs
across a time-interval, then disappears for some time, again recurs across another time-interval and
so on and so forth. Given the sequence of time-intervals in which an interval-based temporal
pattern has occurred, we propose a method for identifying the extent to which the pattern is
periodic with respect to a calendar cycle. In comparison to previous work, our method is
asymptotically faster. We also show an interesting relationship between periodicities across different
levels of any hierarchical timestamp (year/month/day, hour/minute/second etc.).

KEYWORDS
Temporal patterns; Periodicity mining; Interval datasets; Time-hierarchy

1. INTRODUCTION

Identifying and extracting patterns and regularities in massive data repositories has been a
focused theme in data mining research for almost over a decade. Substantial progress
continues to be made in this context, specially in the tasks of frequent itemset mining [15]
and association rule mining [7], [8], [10], [16], [17]. Temporal pattern discovery is a very
promising extension to this ongoing research theme because it substantially broadens the
scope of data analysis by supporting the discovery of patterns and regularities that are
time-dependent. For example, across a time-series, a domain-specific pattern may occur only in
some time-periods. Say, in a temperature time-series, a 10°F temperature rise could occur in
certain time-periods. In a sales data archive, panic reversal of sales could occur in certain time-
intervals. In data streams of stock prices, the prices may rise(peak) in some time-periods and
so on. It is often useful to know if a pattern is periodic or not. To determine
periodicities of a domain-specific pattern that occurs in some time-periods across a time-
series, at first all these time-periods have to be extracted from the time-series and then
the nature of this sequence of time-intervals has to be studied. Similarly, periodicities of a
natural event such as volcanic eruption, tropical storm across a particular region etc can be
determined from an event-related dataset which records the time-intervals in which the
event has occurred. In the underlying context, even an event will simply be referred to as
a pattern. In this paper, a technique is proposed to extract calendar-based periodicities – viz.
yearly periodicities, monthly periodicities etc of an interval-based temporal pattern i.e. of a
pattern that occurs across a sequence of time-intervals in either a discrete or in a
continuous domain. Some preliminary work in this area for patterns in a discrete domain
only was done by Dutta and Mahanta [2]. In our paper, a function called occurrence function is

mailto:maladuttasid@gmail.com
mailto:anjanagu@yahoo.com

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

18

defined for a timestamp. Given a sequence of time-intervals in either a discrete or a continuous
domain, a generalized algorithm has been developed for computing the occurrence function
value at any timestamp. Next, an algorithm for locating local maxima of the occurrence
function is also proposed. The correctness of both the proposed algorithms is established
mathematically. These two algorithms are then used to extract calendar-based periodicities of
patterns that occur across a sequence of time-intervals in a discrete or in a continuous
domain. The proposed method to extract calendar-based periodicities can be used to extract
both partial as well as full periodicities of interval-based temporal patterns with the same
efficiency. The extraction of periodicities takes O(nlogn) time for a continuous domain and
O(n) for a discrete domain. Finally in this paper, a theorem that captures a relationship
between the periodicities of patterns at different levels of any time-hierarchy is also
formulated and subsequently proved.

The paper has been organized as follows - some recent works done in mining of
periodicities of patterns in temporal data are mentioned in section 2. Section 3 gives a brief
description of the classic dynamic time-warping (DTW) technique that has been used here to
extract the time-intervals in which a domain-specific pattern appears across a time-series. The
definition of the occurrence function and the algorithms to compute the function and to
locate local maxima of the function are presented in section 4. In section 5, it is shown
how the algorithms proposed in section 4 can be used for extracting calendar-based (i.e. seasonal)
periodicities of interval-based temporal patterns in a discrete or in a continuous domain. A
theorem establishing a relationship between the periodicities of patterns at different levels
of a time-hierarchy is presented in section 6. The results obtained after applying the
proposed technique on real-life datasets are given in section 7. Section 8 gives the conclusion
and mentions the scope for further research in this line.

2. RECENT WORKS DONE IN THIS FIELD

Mining periodicities of patterns in temporal data is an active research area. Some recent
works in this field are mentioned below:

Elfekey et al. [5] propose algorithms to mine two pre-defined types of periodicities in time-series
data. Berberidis et al. [1] propose an algorithm that mines a set of candidate periods featured
in a time-series that satisfy a minimum confidence threshold. Elfekey et al. [3] propose an
algorithm for mining periodic patterns in time-series databases with unknown or obscure
periods.Yang et al. [18] and Huang and Chang [6] propose algorithms for mining
asynchronous periodic patterns in time-series data. Lai et al. [11] address the problem of
mining periodicity of patterns that occur across artificial boundaries. Karli and Saygin [9]
propose two techniques for mining periodic spatio-temporal patterns at different time
granularities. Zhang et al. [19] present practical algorithms to solve the problem of mining
frequently occurring periodic patterns with a gap requirement from sequences. Ma and
Hellerstein [13] study partial periodic patterns taking into account imprecise time information,
noisy data and shifts in phase and/or periods. Algorithms for incremental mining of partial
periodic patterns in time-series archives are proposed and analyzed empirically by Elfekey
et al. [4]. Lee et al. [12] address the problem of mining multiple partial periodic patterns in
a parallel computing environment. Mahanta et al. [14] and Dutta and Mahanta [2] propose
algorithms to extract calendar-based periodic temporal patterns across discrete domains. In
this paper, a generalized method is proposed to detect calendar-based periodicities of
temporal patterns occurring across a sequence of time-intervals not only in a discrete
domain but across a continuous domain also. A theorem establishing an interesting
relationship between periodicities of patterns at different levels of a time-hierarchy is also
formulated.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

19

3. DYNAMIC TIME-WARPING METHOD

For the automatic detection of a pattern in a time-series, an approximate or “fuzzy”
matching process is required that can capture all the time-series fragments within which
the approximate shape of the pattern is detected. Specifically, the pattern detection task
involves searching a time-series S = s1, s2, s3 ...sn for instances of a given template T = t1, t2, t3

...tm. In the dynamic time-warping (DTW) technique, this pattern detection task is achieved
by applying a dynamic programming approach to align the two sequences S and T in a
way so that some distance measure is minimized. To achieve a reasonable fit, the time series
may be stretched or compressed. Shown below in Figure 1 is a n-by-m grid where each
grid-point (i,j) corresponds to an alignment between elements si and tj of S and T
respectively.

Figure 1

A warping path W is a path through this grid that aligns the elements of S and T such
that the distance between them is minimized. The warping path W is thus represented as
W = w1 w2………..wp

where each wk corresponds to a point (i,j)k in the grid. The dynamic time-warping problem
can hence be formally defined as a minimization over potential warping paths based on
the cumulative distance for each path.

∑
=

=
p

k
kW wTSDTW

1

)}({min),(

where δ is the distance measure used to compute the distance between any two elements
si and tj. Typically, δ(i, j) = |si – tj| is used. Searching through all possible warping paths leads to a
combinatorial explosion. Several restrictions are hence placed on permissible paths between
two grid points, thereby reducing the search space – viz. all possible warping paths. A few
restrictions for the warping path are outlined below:

Monotonicity: The points in W are monotonically ordered with respect to time i.e. for consecutive
points – wk-1 and wk in W, ik-1 ≤ ik and jk-1 ≤ jk.
Continuity: The allowable steps taken by the path W in the grid is confined to neighboring points
i.e. ik – ik-1 ≤ 1 and jk – jk-1 ≤ 1.

i=jT

S
n

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

20

Warping Window: Allowable points are constrained to fall within a given warping window,|
ik – jk | ≤ w, where w is the size of the warping window which is a positive integer.
The dynamic programming formulation is based on the following recurrence relation which
defines the cumulative distance γ(i ,j) for each point.

γ(i, j) = δ(i, j) + min[γ(i - 1, j), γ(i - 1, j - 1), γ(i, j - 1)]
i.e. The cumulative distance is the sum of the distance between current elements (specified
by a grid point) and the minimum of the cumulative distances of the neighboring points.
The cumulative distance associated with the best warping path is simply a raw score.
Normalization of the raw score is necessary to ensure that matches differing only in scale
are comparable. Normalization is also required to accommodate differences in path length i.e. the
number of grid points in a warping path. The normalized cumulative distance is used to
determine if the degree of fit of the time-series S and the given template T is
sufficiently good or not .

4. COMPUTATION OF THE OCCURRENCE FUNCTION AND DETECTION OF

LOCAL MAXIMA OF THE FUNCTION

As mentioned earlier, a sequence of time-intervals is associated with an interval-based
temporal pattern signifying the time-periods in which that pattern occurs. Assuming that
there exists a sequence of n time-intervals and t is a timestamp that appears in m (m ≤ n)
number of these n time-intervals, then the value of the occurrence function ρ(t) at t is
defined to be m. If the intervals are all disjoint, then the value of the occurrence function
at any time-stamp will be either zero or one.

Two theorems are presented below that establish some properties of the occurrence
function. On the basis of these properties, changes of the occurrence function will be
identified and this information will subsequently be used for computing the value of the
function at any timestamp s and for detecting local maxima of the function.

4.1. Properties of the occurrence function

The following two theorems valid for continuous domains state some interesting
properties of the occurrence function :

Theorem 1 Let the endpoints of a given sequence of time-intervals be merged into a single list
and this list (of endpoints) is then sorted in ascending order of timestamps. Let a and b be the
timestamps of two successive endpoints with a<b in the sorted list of endpoints. Then the
occurrence function is a constant in time interval (a,b).

Proof: - Let x, y є (a,b). Let x belong to one of the given intervals which will be of the form
either [c,d] or (c,d) or (c,d] or [c,d). Since there is no endpoint in (a,b) and x ≤d and d is an
endpoint, we must have b≤d. Similarly c≤a. Therefore y also belongs to the same interval with
endpoints c and d. Similarly if y belongs to one of the given intervals then, x also belongs to the
same interval. Therefore the number of given intervals containing x and the number of intervals
containing y are same and hence ρ(x) = ρ(y). This proves the theorem.

Theorem 2 Let t be a timestamp where some endpoint occurs and let

L = Lim x-> t – ρ(x)

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

21

R = Lim x->t +ρ(x)

n1 = number of left open endpoints at t

n2 = number of left closed endpoints at t

n3 = number of right open endpoints at t

and n4 = number of right closed endpoints at t

Then ρ(t) – L = n2 – n3 (1)

and R – L = n1 + n2 – n3 – n4 (2)

Proof :- Let y be a point between t and the timestamp at which an endpoint occurs just
before t. Let k be the number of given intervals containing y. Obviously L = k since the
occurrence function remains constant for all such y (Theorem 1). Out of these k intervals, n3 of
them will have right open endpoints at t and thus t will no longer be contained in these n3

intervals. However there are n2 left closed endpoints at t which means that n2 new intervals
will start containing t. Therefore ρ(t) = k + n2 – n3 = L + n2 – n3 and hence ρ(t) – L = n2 – n3. If t
is the timestamp for the first endpoint, n3 and L must be zero and n2 of the given intervals
will contain t. Therefore again, ρ(t) – L = n2 – n3.This proves (1). Similarly, we can prove ρ(t)
– R = n4 – n1. Subtracting this equation from (1), we get R – L = n2 – n3 + n1 – n4 which proves
(2). This completes the proof of the theorem.

A discrete domain can be extended to a continuous one by inserting all the points between two
successive endpoints. Thus the theorems given above that are valid for a continuous
domain can be used for discrete domains also.

4.2. Capturing the changes of the occurrence function

On the basis of the theorems presented above in section 4.1, we now propose a method to
identify changes of the occurrence function. This information will be used for finding the
function value at any timestamp s (Section 4.3) and for detecting local maxima of the
function (Section 4.4).

To identify changes of the occurrence function, all the endpoints of an existing sequence of
n time-intervals are first merged into a single list. An endpoint record has two fields - a
timestamp t and et giving the endpoint type (left open, right open, left closed or right closed).
After an existing sequence of n time-intervals is converted to a list of endpoint records, the list
of endpoint records is then sorted in ascending order of timestamps. The changes of the
occurrence function can be identified by simply scanning a sorted list of endpoint
records. Information about each change of the occurrence function is captured in a change
record. A change record will have three fields – timestamp t at which a change of the
occurrence function is observed, u which gives the value of the occurrence function at t
and r which is the right hand limit of the occurrence function at t for a continuous
domain or the value of the occurrence function at the next timestamp for a discrete
domain.
The algorithm given below (Algorithm 1) creates an array d of change records from an
existing array e of endpoint records (assumed to be sorted in ascending order of timestamps).
The length of the array e is 2n, where n is the total number of time-intervals. The length
of the array d will be m which is the number of changes of the occurrence function. The

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

22

value of m will be less than or equal to the number of endpoints with distinct
timestamps. Obviously m ≤ 2n. Scanning the array e of sorted endpoint records in
ascending order of timestamps, the values of n1, n2, n3 and n4 (as defined in Section 4.1) are
counted for each timestamp t in the array. Theorem 2 is used to identify each change of
the occurrence function and for each change, an element is added to the array d with the
fields - timestamp t, u = n2 – n3 + L and r = n1 + n2 – n3 – n4 + L Here L is the left-hand
limit of the occurrence function at t for a continuous domain or for the continuous
extension of a discrete domain. The value of L is equal to the value of r of the previous
change (by Theorem 1). At this point, d[i].t and d[i].u give the timestamp and the value of
the occurrence function at the ith change of the occurrence function. These values are correct for
both continuous and discrete domains. Also d[i].r correctly gives the right hand limit of the
occurrence function at d[i].t for a continuous domain. For a discrete domain, d[i].r at this point
gives the right hand limit of the occurrence function at d[i].t for the continuous extension of the
discrete domain. For a discrete domain, as mentioned earlier, d[i].r is supposed to give the
value of the occurrence function at the next timestamp after d[i].t. So in a discrete domain, if
d[i+1].t is greater than d[i].t + 1 then d[i].r correctly gives the desired value of the
occurrence function at d[i].t + 1 (by Theorem 1). But if d[i+1].t = d[i].t + 1, then d[i].r needs
to be replaced by d[i+1].u .These replacements are done in the last part of Algorithm 1.

Algorithm 1:

i ← 1
m = 0
L = 0

while (i <= 2n)
{

n1 = n2 = n3 = n4 = 0
ct ←e[i].t
while (i <= 2n && ct equal to e[i].t)
{

increment n1 or n2 or n3 or n4 according to e[i].type
i++

}

if (((n2 – n3) ≠ 0) or ((n1 + n2 – n3 – n4) ≠ 0))
{ m++

d[m].t = ct
d[m].u = n2 - n3 + L
d[m]. r = n1 + n2 – n3 – n4 + L
L = d[m].r

}
}

/* Do the following for discrete domain */

for i = 1 to m - 1
if d[i+1].t = = d[i].t + 1

d[i].r = d[i+1].u

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

23

4.3. Finding the occurrence function value at any timestamp s

After capturing the changes of the occurrence function for a given sequence of n time-
intervals as described above in Section 4.2, the occurrence function value at any timestamp s
can be calculated by a binary search on the array d of change records (created by
Algorithm 1) of length m sorted in timestamp order.

If s = d[i].t for some i, then the value of the occurrence function at s is d[i].u. If s
< d[1].t or s > d[m].t then the value of the occurrence function at s is zero. Finally if d[i].t <
s < d[i+1].t then the value of the occurrence function at s is d[i].r. The correctness of this for
continuous domains follows from Theorem 1. For discrete domains this condition implies that
d[i+1].t >d[i].t + 1 and by Algorithm 1, d[i].r is the right hand limit of the occurrence
function in the continuous extension of the discrete domain which correctly represents the
value of the occurrence function at s (by Theorem 1).

4.4. Detection of local maximal of the occurrence function

The change records described in Section 4.2 actually record two changes of the occurrence
function – (i) the change from the left hand limit to the value of the function at a timestamp t
and (ii) the change from the value of the function at that timestamp t to the right hand limit.
For the detection of local maxima of the occurrence function, it is however convenient to
introduce a knot record that will capture only a single change in the value of the occurrence
function. A knot record has only two fields – timestamp t and v which gives the value of
the occurrence function at t. For obtaining information about local maxima of the
occurrence function, at first an array k of knot records has to be created from an array d
of change records. Traversing the array d in ascending order of timestamps, for each ith (1 ≤ i ≤
m) change record d[i], at most two knot records are added to the array k in the following
order - A knot record with fields v set to d[i].u and t set to d[i].t is added followed by
another knot record with fields v set to r and t set to d[i].t for the continuous case and
d[i].t + 1 for the discrete case. A knot record is however not added to the array k if the
value of it’s v field is same as that of the just previously added knot record in the array
k. Adding the knot records to the array k in the order as explained above automatically
ensures that the knot records in the array k are arranged in non-decreasing order of
timestamps. Now if (t1,v1) and (t2,v2) are two successive knot records in the array k and
there exists a timestamp t such that t1 < t < t2 , then the value of the occurrence function
at t will be v1 . This is because each knot record captures one change in the occurrence
function value and the occurrence function is a constant between two successive points of
change.

The algorithm given below (Algorithm 2) identifies local maxima of the occurrence
function by traversing an array k of knot records. Let p be the length of this array k.
Information about each local maximum is captured in a lmaxnode record having the
following fields - timestamps start, peakstart, peakend, end and occurrence function values
startval, peakval and endval.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

24

Figure 2 state = increasing and k[i +1].v < k[i].v for continuous domain

Algorithm 2:

state = increasing
set current to a new lmaxnode record
current.start = k[1].t for continuous domain

and k[1].t - 1 for discrete domain
current.startval = 0
for i = 1 to p

{ if state = = increasing and k[i+1].v < k[i].v (see Figure 2)
{ current.peakstart = k[i].t

current.peakend = k[i+1].t for continuous domain
and k[i+1].t-1 for discrete domain

current.peakval = k[i].v
state = decreasing

}
if state = = decreasing and ((i = = p) or (k[i+1].v > k[i].v)) (see

Figure3)
{ current.end = k[i].t

current.endval = k[i].v
add current to lmaxlst
if i < p
{ set current to a new lmaxnode

current.start = k[i+1].t for continuous domain
and k[i+1].t – 1 for discrete domain

current.startval = k[i].v
}

state = increasing
}

}

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

25

Figure 3. state = decreasing and k[i +1].v > k[i].v for continuous domain

4.5. Time Complexity

Creating the array e of endpoint records takes O(n) time where n is the number of input
intervals. Sorting this array e of endpoint records will take O(n log n) time in the worst-
case for continuous domains. For discrete domains, if the timestamps are hierarchical with
each field having a limited range, radix sort can be used which performs in O(n) time.
Scanning the array e for changes of the occurrence function and then creating the array d
of change records will take O(n) time in the worst-case. Creating the array k of knot
records from the array d will take O(n) time in the worst-case. Scanning for local
maxima in the array k of knot records takes O(n) time. Thus the overall worst-case time-
complexity works out to be O(n log n) for continuous domains and O(n) for discrete
domains (for hierarchical timestamps). Moreover, once the above mentioned operations are
performed and the corresponding structure is set up, to compute the occurrence function
at any arbitrary point takes only O(log n) time in the worst-case.

5. DETECTION OF CALENDAR-BASED PERIODICITIES OF PATTERNS

In the underlying context, a pattern will be characterized by a sequence of time-intervals
in which the pattern occurs. A pattern here typically refers to a natural event such as a
hurricane, volcanic eruption, outbreak of malaria etc. It may also refer to a domain-specific
pattern such as panic reversal of sales, a temperature trend, rise (peak) in stock prices etc.
We are interested in determining if a pattern is periodic. Assuming that the timestamps
associated with a pattern are calendar-dates (i.e. of the format day-month-year or time-day-
month-year etc.), we propose a method to extract calendar-based periodicities viz. yearly
periodicities, monthly periodicities etc of the pattern using the algorithms described in
Section 4. If a pattern is seen every year in the month of April say, then we call it a yearly pattern.
Similarly suppose a pattern is seen in the first week of every month, then we call it a monthly
pattern and so on.

The time-intervals in which a pattern occurs are maintained in a list L. If any pattern
occurrence spans into different year(s), then that time-period has to be split up into two

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

26

or more corresponding time-intervals and only these are to be inserted into the list L. A
few examples are shown below in Table 1.

Table 1. Handling pattern occurrences spanning across different year(s)

Pattern Occurrence Corresponding time-intervals to be inserted
into the list L

18th Dec, 2001 to 7th Jan, 2002 18th Dec, 2001 to 31st Dec, 2001
1st Jan, 2002 to 7th Jan, 2002

24th Dec, 2005 to 15th Jan, 2007 24th Dec, 2005 to 31st Dec, 2005
1st Jan, 2006 to 31st Dec, 2006
1st Jan, 2007 to 15th Jan, 2007

28th Dec, 2009 to 1st Jan, 2010 28th Dec, 2009 to 31st Dec, 2009
1st Jan, 2010 to 1st Jan, 2010

It is also to be noted that the time-intervals in the list L have to be disjoint. If the
pattern has occurred in overlapping time-periods, then the overlapping periods are merged
and only the merged time-period is inserted into the list L. E.g. if a pattern occurs from
10th June, 2001 to 18th June, 2001 and again from 14th June, 2001 to 20th June, 2001, then
only the corresponding merged time-interval (10th June, 2001 to 20th June, 2001) will be
inserted into the list L. The necessity of keeping the time-intervals in the list L disjoint
shall be explained later in this unit.

To extract calendar-based periodicities of the pattern, timestamps of the disjoint time-
intervals in list L are stripped of certain components. While finding yearly periodicities,
the year component of the timestamps is removed from the corresponding dates.
Similarly when monthly periodicities are being searched, the year and month components
are not considered. Again while looking for daily periodicities, the day, month and year
components are stripped and so on. Let L´ be a list containing all the time-intervals in the
list L but with timestamps i.e. calendar dates stripped of the appropriate component(s). L´
now will possibly have overlapping intervals. Now with this list L´ as the input, an array d
of occurrence function change records (as described in Section 4.2) is created using
Algorithm 1 (which is also described in Section 4.2). Next from this array d, an array k
of knot records (as described in Section 4.4) is created. Using Algorithm 2 (also described
in Section 4.4), the array k of knot records is scanned to extract local maxima of the
occurrence function values. It is easy to see that each local maximum gives a periodicity
of the pattern under study. It is possible to distinguish between partial and full
periodicities of a pattern. We elaborate on this below-If s is the smallest timestamp and g is
the largest timestamp appearing in the time-intervals of the list L, then the period from s
to g is called the lifespan of the pattern in the underlying context. A certainty function
c(x) is defined for a stripped timestamp x of the list L´ as

N
xxc)()(=

Here ρ(x) is the occurrence function value for the stripped timestamp x and N is the
total number of periods in the lifespan of the pattern. N gives the total number of years
or months or days or hours etc. depending on whether we are looking for yearly
periodicities or monthly periodicities or daily periodicities or hourly periodicities etc. The
maximum value of c(x) will be 1 because the time-intervals in the list L (from which
list L´ was created) are all disjoint. Within a particular identified local maximum of the
occurrence function, if the certainty function c(x) reaches it’s maximum value i.e. 1 at

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

27

any timestamp x, then the pattern is fully periodic at x. On the other hand, within a
particular identified local maximum of the occurrence function, if the certainty function
c(x) is less than 1 at any timestamp x, then the pattern will be partially periodic at x.
For example, suppose a pattern with a lifespan of ten years is scanned for yearly periodicities
and a local maximum (of the occurrence function) is detected from 10th July to 15th July.
Now if the pattern is observed on 12th July every year in all ten years, then the value of
the certainty function on 12th July becomes equal to 1 and this yields a full yearly
periodicity of the pattern. On the other hand, if the pattern is seen on 12th July only in
eight out of ten years, then the certainty function value on 12th July will be 0.8, thereby
yielding a partial yearly periodicity of the pattern.

The necessity of keeping the time-intervals in the list L all disjoint is now explained in
the context of the example given above. Let us assume that the time-intervals in the list
L are not disjoint. Now, suppose the pattern is noticed on 12th July in ten overlapping
time-periods in a particular year but not even once in any of the remaining nine years.
Though in this case, the pattern is obviously not periodic at all on 12th July, still the
value of the certainty function on 12th July becomes equal to 1. For this reason, to be
able to determine periodicities properly, all the time-intervals in the list L necessarily
need to be disjoint.

6. A RELATIONSHIP BETWEEN PERIODICITY OF PATTERNS AT DIFFERENT

LEVELS OF A TIME-HIERARCHY

The timestamps associated with temporal patterns often have a hierarchical structure. In the
previous section (Section 5), a method was proposed for detecting calendar-based
periodicities of patterns whose timestamps had a calendar-date based time-hierarchy. In
this section, a theorem is presented that shows an interesting relationship between the
periodicity of patterns at different levels of a time-hierarchy.

Theorem 3 If lk is the kth level of the time-hierarchy (starting at the lowest level) and if
for i < j , there are p combinations of values of levels li, li+1 ….lj-1 for every lj value, then
a level li periodic pattern of periodicity f > (p – 1)/p will give rise to p level lj periodic
patterns of average periodicity f and minimum periodicity 1 – p(1– f).

Proof :- Let the level li pattern occur at a date d obtained after levels lk for k ≥ i are
stripped . Suppose in the lifespan, there are mi periods for level li and mj periods for level
lj . Then obviously

mi = p * mj (1)

Also the pattern occurs at date d for f * mi level li periods. Since there are p combinations
c1, c2, ….,cp of values of levels li, li+1 ……lj-1 for every lj value, the pattern appears at dates
(c1,d), (c2,d),…..(cp,d) (after stripping levels lk for k ≥ j) for some n1, n2, ….,np level lj

periods respectively where

n1 + n2 + ……+ np = f * mi (2)

Since nk ≤ mj, nk ≥ -(p-1) mj + f * mi

= [-(p-1) + fp] mj

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

28

Hence nk ≥ mj [fp - (p-1)]

> mj [(p-1) - (p-1)] = 0

Thus there are p level lj periodic patterns at the dates c1.d, c2.d,…….cp.d of minimum
periodicity Min (nk / mj) = fp - (p-1) = 1 - p(1-f) and with average periodicity

∑k (nk / mj) / p

= (∑k nk) / (mj* p)

= (f * mi) / (mj* p) using (2)

= (f * mi) / mi using (1)

= f

This proves the theorem.

We note that if f is 1 i.e. if the level li pattern is fully periodic, then each of the level lj

periodic patterns has periodicity ≥ 1 and hence is 1 i.e. is fully periodic. Because of this
theorem, a fully periodic monthly pattern will give rise to 12 fully periodic yearly
patterns, a fully periodic daily pattern will give rise to 365 fully periodic yearly patterns
and so on.

For an example of a partially periodic pattern, let us consider a monthly pattern of
periodicity f = 23/24 on the 10th of a month. This monthly pattern will give rise to 12 (p
=12) yearly patterns at dates Jan 10, Feb 10, … , Dec 10. Let the lifespan of the data be 10
years i.e. mj = 10 and hence mi = 120. Thus the pattern appears on the 10th in (23*120) / 24 =
115 months. Let nk of these be in month k (k = 1 for Jan, k = 2 for Feb etc). Then ∑k nk = f
* mi = 115. Since the sum is constant, any one of them will be minimum if the rest of
them are maximum. Now the maximum of any nk is 10 (i.e. mj) since month k can appear
at most for 10 years. Therefore minimum of any nk = 115 – (11 * 10) = 5. Thus the minimum
periodicity is 5/10 = ½ which is 1 – p(1 – f) as given by the theorem. The sum of the
periodicities of these 12 patterns is 115/10 = 23/2. Hence the average is (23/2)/12 = 23/24 = f as
given by the theorem.

Though the above examples have used a calendar-date based time-hierarchy, Theorem 3 holds
true for any other time-hierarchy also.

7. EXPERIMENTAL RESULTS

The technique proposed in Section 5 for extracting calendar-based periodicities of interval-
based temporal patterns has been applied here to an event-related dataset and then to a
time-series.

Working with an event-related dataset : The dataset contains the time-periods of occurrence
of a category 1 hurricane (category based on Saffir-Simpson scale) across the eastern-
pacific region. The source of this data is http://weather.unisys.com/hurricane/index.html. The
technique proposed in Section 5 is applied to this dataset to find yearly periodicities of
category 1 hurricanes across the eastern-pacific region. The following partial yearly periodicities
have been detected (Table 2)-

http://weather.unisys.com/hurricane/index.html

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

29

Table 2 Yearly periodicities of category 1 hurricanes in the eastern-pacific region

Working with a time-series: The dataset contains daily average temperatures of Paris. The dataset
is available at http://www.engr.udayton.edu/weather/. We are interested in detecting if there
is any yearly periodicity in the occurrence of a 10°F temperature rise in Paris. The classic
DTW technique described in Section 3 is used to first extract from the temperature time-
series, all the time-intervals in which a 10°F temperature rise has occurred. Now, to find if
there is any yearly periodicity in the occurrence of such a temperature rise, the technique
described in Section 5 is applied to the time-intervals that were extracted from the time-
series by the DTW program. The following partial yearly periodicities have been detected
(Table 3)-

Table 3 Yearly periodicities of a 10°F temperature rise in Paris

8. CONCLUSION AND LINES FOR FUTURE WORK

A method was proposed to extract calendar-based periodicities of an interval-based
temporal pattern i.e. a pattern that occurs across a sequence of time-intervals in either a
discrete or in a continuous domain. For this, a function called occurrence function was
defined for a timestamp. A generalized algorithm was developed for computing the
occurrence function at any timestamp in either a discrete or in a continuous domain.
Another algorithm for finding local maxima of the occurrence function was also
developed. It was shown how these two algorithms could be used to determine calendar-
based periodicities of an interval-based temporal pattern in either a discrete or a
continuous domain. The extraction of periodicities takes O(n log n) for a continuous
domain and only O(n) for a discrete domain (for hierarchical timestamps), where n is the
number of intervals in which the pattern occurs. The proposed technique for extracting
calendar-based periodicities is able to detect both partial as well as full periodicities of an
interval-based temporal pattern with the same efficiency. Finally, a relationship between the
periodicities of patterns at different levels of a time-hierarchy was also presented.

Future works include mining of causal relationships and correlations among multiple
interval-based temporal patterns.

REFERENCES

[1] Berberidis C, Aref WG, Atallah MJ, Vlahavas IP, Elmagarmid AK (2002) Multiple and partial
periodicity mining in time-series databases. In: ECAI 2002: Proceedings of the fifteenth
eureopean conference on artificial intelligence. IOS Press, Amsterdam, The Netherlands, pp
370-374

Timestamp(s)
Maximum
certainty value reached
across this span (in %)

30th August to 6th September 30
17th September to 21st September 24

Timestamp(s)
Maximum certainty
value reached across this span(in %)

21st April to 27th April 50

http://www.engr.udayton.edu/weather/

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

30

[2] Dutta M, Mahanta AK (2009) Mining calendar-based periodicities of patterns in temporal data.
In: PReMI’09: Proceedings of the third international conference on pattern recognition and
machine intelligence. LNCS 5909, Berlin, Springer-Verlag, pp 243-248

[3] Elfeky MG, Aref WG, Elmagarmid AK (2004a) Using convolution to mine obscure periodic
patterns in one pass. In: EDBT 2004: Proceedings of the ninth international conference on
extending database technology. LNCS 2992, Berlin, Springer-Verlag, pp 605-620

[4] Aref WG, Elfeky MG, Elmagarmid AK (2004b) Incremental online and merge mining of
partial periodic patterns in time-series databases. IEEE Trans Knowl Data Eng 16(3):332-342

[5] Elfeky MG, Aref WG, Elmagarmid AK (2005) Periodicity detection in time series databases.
IEEE Trans Knowl Data Eng 17(7):875-887

[6] Huang K, Chang C (2005) SMCA: A general model for mining asynchronous periodic patterns in
temporal databases. IEEE Trans Knowl Data Eng 17(6):774-785

[7] Ibrahim SPS, Chandran KR (2011) Compact Weighted Class Association Rule Mining Using
Information Gain. Intl. Jrnl. of Data Mining & Knowledge Management Process 1(6): 1-13

[8] Ibrahim SPS, Chandran KR, Abinaya M.S (2011) Integration of Weighted Association Rule
Mining and Classification. In: Proceedings of National Conference on Recent Advances in
Computer Vision & Information Technology, pp 231-235

[9] Karli S, Saygin Y (2009) Mining periodic patterns in spatio-temporal sequences at different time
granularities. Intell Data Anal 13(2):301-335

[10] Kumar RK, Chadrasekaran RM (2011) Attribute Correction – Data Cleaning Using Association
Rule and Clustering Methods. Intl. Jrnl. of Data Mining & Knowledge Management Process
1(2): 22-32

[11] Lai C, Nguyen NT, Nelson DE (2005) Mining periodic patterns from floating and ambiguous t
time-segments. In: Proceedings of the 2005 IEEE International Conference on Systems, Man
and Cybernetics. IEEE, vol 4, pp 3622-3627

[12] Lee G, Yang W, Lee J (2006) A parallel algorithm for mining multiple partial periodic patterns.
Inf Sci 176(24):3591-3609

[13] Ma S, Hellerstein JL (2001) Mining partially periodic event patterns with unknown periods. In:
ICDE 2001: Proceedings of the seventeenth international conference on data engineering. IEEE
Computer Society Press, pp 205-214

[14] Mahanta AK, Mazarbhuiya FA, Baruah H.K (2008) Finding calendar-based periodic patterns.
Pattern Recognit Lett 29(9):1274-1284

[15] Rao KS, Chiranjeevi V. (2011) Distortion Based Algorithms For Privacy Preserving Frequent
Itemset Mining. Intl. Jrnl. of Data Mining & Knowledge Management Process 1(4):15-27

[16] Shaikh S, Rao M (2011) Associative Rule Mining Based On Trade List. Intl. Jrnl. of Data
Mining & Knowledge Management Process 1(6):25-33

[17] Tomar A, Richhariya V, Pandey RK (2011) A Comprehensive Survey of Privacy Preserving
Algorithm of Association Rule Mining in Centralized Databases. Intl. Jrnl. of Computer
Applications 16(5): 23-27

[18] Yang J, Wang W, Yu PS (2003) Mining asynchronous periodic patterns in time series data.
IEEE Trans Knowl Data Eng 15(3):613-628

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.1, January 2012

31

[19] Zhang M, Kao B, Cheung DW, Yip KY (2007) Mining periodic patterns with gap requirement
from sequences. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data. pp 623-633

Authors

Mala Dutta received the master’s degree in Computer Applications from
Dibrugarh University in 2004. She has worked as a corporate trainer in the
Education and Research unit of Infosys Technologies Ltd., Bangalore. She is
currently a Ph.D. student in the Department of Computer Science at Gauhati
University. Her research interests focuses on temporal data mining and
pattern recognition.

Dr(Mrs). Anjana Kakoti Mahanta is currently holding the post of Professor in
the department of Computer Science, Gauhati University. She received the
master’s degree in Mathematics from Gauhati University in 1986. She obtained
a Ph.D. degree in Computer Science from the same university in the year 1990.
In her Ph.D research, she worked in the area of Combinatorial Optimization.
Her current area of interest is Algorithms and Data Mining. Dr. Mahanta visited
the University of Warsaw for three months in the year 2007 under a bilateral
exchange program of Indian National Science Academy and Polish Academy of
Sciences. She has a good number of publications in journals and conference
proceedings at the national and international level.

