
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

DOI : 10.5121/ijdkp.2012.2206 55

A NEW TRACE BACKING ALGORITHM AND

CIRCULAR LIST JOIN FOR MAXIMIZING
STREAMING DATA JOIN

 1MS. G. HEMALATHA, 2DR. K. THANUSHKODI

1
Assistant

Professor (SG), CSE Dept, Karunya University, Coimbatore, India,

0422-2614020
 hema_latha207@yahoo.com

2
Principal, Akshaya College of Engineering, Coimbatore, India,

thanush12@gmail.com

ABSTRACT

An increasing number of database queries are executed by interactive users and applications. Since the

user is waiting for the database to respond with an answer, the initial response time of producing the

first results is very important. The user can process the first results while the database system efficiently

completes the entire query. The state-of-art join algorithms are not ideal for this setting. Adaptive join

algorithms have recently attracted a lot of attention in emerging applications where data is provided by

autonomous data sources through heterogeneous network environments. The main advantage of adaptive

join techniques is that they can start producing join results as soon as the first input tuples are available,

thus improving pipelining by smoothing join result production and by masking source or network delays.

Since the response time of the queries places a vital role in adaptive join, the join techniques like Hash

Join, Sort Merge Join cannot be used because they require some prework before producing the join

result. The only possible join technique that can be used in adaptive join is Nested Loop Join. In Nested

Loop Join each row of the outer relation is compared with each row of the inner relation. The no. of

comparisons done by the nested loop join can be reduced by using a technique called trace backing. In

trace backing technique whenever a miss match occurs, the next tuple of the outer relation is compared

with the mismatched inner relation tuple, instead of looping all the tuples of the inner relation. Finally a

new circular linked list join method is discussed which may be a better option to perform streaming data

Join.

Keywords:

Adaptive Join, Trace Back technique, Nested Loop Join

1. INTRODUCTION

Modern information processing is moving into a realm where we often need to process

data that is pushed or pulled from autonomous data sources through heterogeneous networks.

Adaptive query processing has emerged as an answer to the problems that arise because of the

fluidity and unpredictability of data arrivals in such environments [1]. An important line of

research in adaptive query processing has been towards developing join algorithms that can

produce tuples “online”, from streaming, partially available input relations, or while waiting for

one or more inputs [4], [7], [9], [12], [14], [15]. Such non-blocking join behavior can improve

pipelining by smoothing or “masking” varying data arrival rates and can generate join results

with high rates, thus improving performance in a variety of query processing scenarios in data

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

56

integration, on-line aggregation and approximate query answering systems. Compared to

traditional join algorithms (sort-, hash or nested loops-based [13]), adaptive joins are designed

to deal with some additional challenges: The input relations they use are provided by external

network sources. The implication is that one has little or no control over the order or rate of

arrival of tuples. Since the data source reply speed, streaming rate and streaming order, as well

as network traffic and congestion levels, are unpredictable, traditional join algorithms are often

unsuitable or inefficient. For example, most traditional join algorithms cannot produce results

until at least one of the relations is completely available.

 Waiting for one relation to arrive completely to produce results is often unacceptable.

Moreover, and more importantly, in emerging data integration or online aggregation

environments, a key performance metric is rapid availability of first results and a continuous

rate of tuple production. Adaptive join algorithms were created in order to lift the limitations of

traditional join algorithms in such environments. By being able to produce results whenever

input tuples become available, adaptive join algorithms overcome situations like initial delay,

slow data delivery or bursty arrival, which can affect the efficiency of the join. All existing

algorithms work in three stages. During the Arriving phase, a newly arrived tuple is stored in

memory and it is matched against memory-resident tuples belonging to the other relations

participating in the join.

 Since the allocated memory for the join operation is limited and often much smaller than

the volume of the incoming data, this results in tuple migration to disk. The decision on what to

flush to disk influences significantly the number of results produced during the Arriving phase.

The Arriving phase is suspended when all data sources are temporarily blocked and a Reactive

phase kicks in and starts joining part of the tuples that have been flushed to disk. An importance

of this phase is the prompt handover to the Arriving phase as soon as any of the data sources

restarts sending tuples. Each algorithm has a handover delay which depends on the minimum

unit of work that needs to be completed before switching phases.

 This delay has not received attention in the past, but we show that it can easily lead to

input buffer overflow, lost tuples and hence incorrect results. When all sources complete the

data transmission, a Cleanup phase is activated and the tuples that were not joined in the

previous phases (due to flushing of tuples to disk) are brought from disk and joined. There are

two new adaptive join algorithms for output rate maximization in data processing over

autonomous distributed sources. The first algorithm, Double Index NEsted-loop Reactive join

(DINER) is applicable for two inputs, while Multiple Index NEsted-loop Reactive join

(MINER) can be used for joining an arbitrary number of input sources.

 DINER follows the same overall pattern of execution discussed earlier but incorporates a

series of novel techniques and ideas that make it faster, leaner (in memory use) and more

adaptive than its predecessors. More specifically, the key differences between DINER and

existing algorithms are (1) an intuitive flushing policy for the Arriving phase that aims at

maximizing the amount of overlap of the join attribute values between memory-resident tuples

of the two relations and (2) a lightweight Reactive phase that allows the algorithm to quickly

move into processing tuples that were flushed to disk when both data sources block as show in

Fig 1.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

57

Fig 1.Arriving Phase

The DINER has a higher rate of join result production and is much more adaptive to

changes in the environment, including changes in the value distributions of the streamed tuples

and in their arrival rates. The efficiency of the DINER algorithm can still be improved by

replacing the Nested loop algorithm with a better join technique. There are many Join

techniques which out performs the Nested Loop Join like Hash Join, Sort Merge Join, XJoin,

Double Hash Join etc., But all these join techniques require some pre-work to produce the

resulting Join tuples. As we know in adaptive environment time is a vital factor and it cannot be

spend to do the pre-work. So the only possible Join technique that can be used is Nested Loop

Join.

2. OUR CONTRIBUTION

 In Nested loop Join each row of the outer relation is compared with each row of

the inner relation which in turns results in a Cartesian product as show in Fig 2. The other

joins algorithms out performs the nested loop join but still cannot be used in the steaming

join. Because in all the other join algorithms some amount of preprocessing has to be done,

which not possible in adaptive environment as the arrive of input tuples cannot be predicted

and as soon as it is arrived it has to be join before the other set of input tuples are ready. So

the only possible join technique to be used in adaptive environment is Nested Loop join.

In this paper we proposed a trace backing algorithm to be used instead of nested

loop join to maximize the no. of resultant tuples this in turn increased the resultant tuples

produced during a time period. The proposed Trace backing algorithm [as show in the Fig 3]

compares the outer row with the inner row, whenever there is a mismatch the outer row is

incremented instead of inner row, the inner is incremented when there is match. This

reduced the number of comparisons than it is required for Nested Loop Join.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

58

Fig 2 Draw Back of Nested Loop Join

3. ALGORITHM FOR TRACE BACKING TECHNIQUE

Let RA and RB be the two relations to be joined, the smallest relation is taken as the

outer relation and the other is taken as the inner relation. The first row of the outer relation is

compared with first row of the inner relation, if there is a match increment the inner pointer

and compare the first row of the outer relation and the second row of the inner relation else

increment the outer pointer and compare the second row of the outer relation with the first

row of the inner relation. This process is repeated until all the inner relation tuples are

matched.
Input: Tuples from relations RA and RB
Output: Joined tuples, RA >< RB

Set Ro smallest(RA,RB)
Set Ri largest(RA,RB)
PR=0; // rightpointer
Pl=0; // leftpointer
//n is the number of tuples in the relation
While PR <n(Ri) do
While Pl < n(Ro) do
 // compare the tuples from two relations
 If (tRo[Pl]== tRi[PR]) then
 tRi[PR] >< tRo[Pl]
 PR++;

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

59

 Else
 Pl++;
End if
End while
if (Pl == n(Ro)) then //check leftpointer status
leftpointer=0;
if(PR== n(Ri)) then //check rightpointer position
break;
End while

5. PERFORMANCE EVALUATION

The following graph shows the no. of comparisons required to perform the Nested

Loop Join and Trace Back technique. The no. of comparison is greatly reduced in Trace

Back technique. In the worst case scenario the Trace Back technique behaves similar to

Nested Loop Join. In adaptive Join environment the worst case scenario occurs very rarely.

Fig 4. Comparison between Nested Loop and Trace Back Join Technique

The performance of this algorithm is evaluated on the basis of throughput [the

number of joined tuples per unit time] and compared with DINER. By using the trace

backing algorithm the number of joined tuples is increased. For example, in 15millisecond,

DINER produced 72 joined tuples, where as trace backing technique produces 108 joined

tuples.

0

5000000

10000000

15000000

20000000

25000000

0 10 20 30 40

N
o

.
o

f
C

o
m

p
a

ri
si

o
n

s
in

 t
e

rm
s

o
f

ro
w

s

Table Size in MB

Nested Loop Vs Trace Back

Nested Loop Join

Trace Back

Technique

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

60

Fig 5 Performance Evaluations for Double Inputs

6. FURTHER SCOPE

In this Join type, table with the less number of rows are identified as the outer table and

other table is identified as inner table. All the rows of the outer table is at a time compared with

the rows of the inner table. This comparison is done in parallel. During this comparison the

matching rows are removed from the inner table and are added to the result set. When the

matching rows are removed from the outer table the other rows are pushed to the empty space

as in the case of a queue. When a row in the first location did not find a match, it is again added

into the rear part of the table as shown below.

Fig 6 Records added to the table in the form of Queue

This type of join can be used in steaming join where the tuples are continues arriving at

some rate. As the tuples arrives it is added to the rear end of the tables. The unmatched rows as

it is moved to the front of the table are again inserted into the rear end of the table to find a

match with the outer table. The following figure 7-10 explains this Join technique.

The comparison of outer table with the inner table is done in parallel, this helps to find

out the matching row in less time. The number of comparison is less when compared to that of

the nested loop join. Since the comparisons are done in parallel, the cost of the join may be

little high but it can be compromised as the results are produced much faster than the traditional

method.

0

100

200

300

400

500

600

0 20 40 60 80 100 120

N
o

.
o

f
re

su
lt

in
g

 t
u

p
le

s

Time in ms

DINER

using trace backing

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

61

Fig 7. Only two matching rows are moved to the resulting set.

Fig 8. No rows are matched, the first row of the inner table moved to the rear end

Fig 9. One

matching row is moved to the result set

Fig 10. Four rows are moved to the result set and one new incoming tuple is moved to the rear

end.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

62

CONCLUSION AND FUTURE SCOPE

The main advantage of adaptive join techniques is that they can start producing join

results as soon as the first input tuples are available. The only Join technique that can

produce the output without any preprocessing is Nested Loop Join. In Nested Loop Join

each row of the outer relations are compared with the inner relation, which is same as

Cartesian Join. The new technique trace backing reduced the number of comparisons when

it is compared with nested loop join. By using this technique, the number of comparison are

reduced which in turn increased the number of resultant tuples produced per unit of time.

The trace backing technique produced 102 tuples and DINER produced 72 tuples within 15

millisecond.

 In terms of future work, the flushing policy can be extended by considering more

factors to specify which tuples have to be flushed. The flushing policy has an important role

in improving the performance of the join operation.

REFERENCES

[1] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein ,UC Berkele “Online Aggregation

and Continuous Query support in MapReduce”, In Proceedings of VLDB, 2004

[2] Rahman, Nurazzah Abd Saad, Tareq Salahi. “Early Hash Join: A Configurable Algorithm for the

Efficient and Early Production of Join Results”, ITSim 2008.

[3] Ron Avnur and Joseph M. Hellerstein “Eddies: Continuously Adaptive Query Processing”,

Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-

18, 2000, volume 29, pages 261-272. ACM, 2000.

[4] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. “Fractal prefeching B+trees: Optimizing both

cache and disk performance”, In ACM SIGMOD International Conference on the Management of

Data, June 2002.

[5] W. Hong and M. Stonebraker. “Optimization of Parallel Query Execution Plans in XPRS”,Distributed

and Parallel Databases, 1(1):9-32, 1993.

[6] Bornea A.Mihaela,Vassalos Vasilis, Kotidis Yannis and Deligiannakis Antonios;“Adaptive Join

Operators for Result Rate Optimization on Streaming Inputs”, IEEE transactions on knowledge and

data engineering, volume 22,No.8, pp.1110-1125, August 2010

[7] T. Urhan and M. J. Franklin.” XJoin: A Reactively-Scheduled Pipelined Join Operator”, IEEE

transactions on knowledge and data engineering, volume 23, No.2, April 2000.

[8] J. Dittrich, B. Seeger, and D. Taylor.“Progressive merge join: A generic and non-blocking sort-based

join algorithm”, In Proceedings of VLDB, 2002.

[9] M. F. Mokbel, M. Lu, and W. G. Aref,”Hash-Merge Join: A Nonblocking Join Algorithm for

Producing Fast and Early Join Results”, ICDE, 2004.

[10] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis. “RPJ: Producing Fast Join

Results on Streams Through Rate-based Optimization”, In Proceedings of ACM SIGMOD

Conference, 2005.

[11] J. M. Hellerstein, P. J. Haas, and H. J. Wang. “Online Aggregation”, In SIGMOD, pages 171–182,

1997.

[12] P. J. Haas and J. M. Hellerstein. “Symmetric Hash Joins”, In Proceedings of ACM SIGMOD, 1999.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.2, No.2, March 2012

63

[13] S. D. Viglas, J. F. Naughton, and J. Burger,” Maximizing the output rate of multi-way join queries

over streaming information sources”, VLDB ’2003, pages 285–296.

[14] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom ”Exploiting k-Constraints to Reduce

Memory Overhead in Continuous Queries Over Data Streams “ In Proceedings of the 2002 Annual

ACM Symposium on Theory of Computing. ACM Press, NewYork, NY, pages 370–379.

[15] J. Gehrke. “Special issue on data stream processing.” IEEE Computer Society Bulletin of the

Technical Communication on Data Engineering, volume 26,No.1, Mar. 2003.

[16] A. Arasu, S. Babu, and J. Widom. “The cql continuous query language: Semantic foundations and

query execution”, Technical report, Stanford University Database Group, Oct. 2003.

