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ABSTRACT 

The decision tree (DT) approach is most useful in classification problem. In conventional decision tree 

learning the weights of every training instances are set to one or equal value, which contradicts general 

intuition. In this paper, we proposed a new decision tree learning algorithm by assigning appropriate 

weights to each training instance in the training data that increases classification accuracy of the decision 

tree model. The main advantage of this proposed approach is to set appropriate weights to training 

instances using naïve Bayesian classifier before trying to construct the decision tree. In our approach the 

training instances are assigned to weight values based on the posterior probability. The training instances 

having less weight values are either noisy or posses unique characteristics compared to other training 

instances. The experimental results manifest that the proposed approach for decision tree construction can 

achieve high classification accuracy with compare to traditional decision tree algorithms on different types 

of benchmark datasets from UCI machine learning repository. 
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1. INTRODUCTION 

The decision tree (DT) learning is most powerful and popular decision support tools of machine 

learning in classification problems, which is used in many real world applications like: medical 

diagnosis, radar signal classification, weather prediction, credit approval, and fraud detection etc. 

It has several advantages: DT is simple to understand and can deal with huge volume of dataset, 

because the tree size is independent of the dataset size. DT model can be combined with other 

machine learning models. DT can be constructed from dataset with many attributes and each 

attribute having many attribute values. Once the decision tree construction is complete, it can 

used to classify seen or unseen training instances. To make a decision using a DT, start at the root 

node and follow the tree down the branches until a leaf node representing the class is reached. 

There have been many decision tree algorithms like ID3 [1], C4.5 [2], CART [3], and SPRINT 

[4] but optimal decision tree construction for large volume of dataset is still a problem. 

  

The decision tree, which is also known as classification tree or regression tree is a method 

commonly used in data mining or machine learning. The goal is to create a model that predicts 

the value of a target variable based on several input variables. DT building algorithms may 

initially build the tree and then prune it for more effective classification. With pruning technique, 

portions of the tree may be removed or combined to reduce the overall size of the tree. The time 

and space complexity of constructing a decision tree depends on the size of the dataset, the 
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number of attributes in the dataset, and the shape of the resulting tree. Decision trees are used to 

classify data with common attributes. Each decision tree represents a rule set which categorizes 

data according to these attributes. A decision tree consists of nodes, leaves, and edges. A node of 

a tree specifies an attribute by which the data is to be partitioned. Each node has a number of 

edges which are labelled according to a possible value of the attribute in the parent node. An edge 

connects either two nodes or a node and a leaf. Leaves are labelled with a decision value for 

categorization of the data. 

 

A naive Bayesian (NB) classifier is a simple probabilistic classifier in machine learning 

technique, which provides a probabilistic approach for performing supervised learning [5], [6]. It 

provides an optimal way to predict the class of an unknown example, and widely used in many 

field of data mining, image processing, bio-informatics and information retrieval etc. In Bayesian 

classifier conditional probabilities for each attribute value are calculated from the given dataset 

and then these probabilities are used to classify the known or unknown examples. The advantage 

of NB classifier is that it only requires a small amount of training dataset to estimate the 

parameters necessary for classification. In this paper, we proposed a new decision tree learning 

algorithm by assigning appropriate weights to training instances, which improve the classification 

accuracy. The weights of the training instances are calculated using naïve Bayesian classifier. 

Weight of each training instance is calculated with the maximum value of the class conditional 

probabilities. Our proposed algorithm calculated the information gain by using these weights and 

builds the decision tree model for decision making.     

 

The remainder of this paper is organized as follows. Section 2 provides an overview of decision 

tree algorithms and naïve Bayesian classifier. Section 3 provides our proposed algorithm and an 

illustrative example using a small training dataset. Experimental results using benchmark data 

sets are presented in section 4. Finally, section 5 makes some concluding remarks along with 

suggestions for further improvement. 

 

2. MINING ALGORITHMS 

This section describes the basic underpinning concepts of decision tree algorithms and the naïve 

Bayesian classifier. 

2.1. Decision Tree Learning 

The ID3 algorithm builds decision tree using information theory, which choose splitting attributes 

from a dataset with the highest information gain. The amount of information associated with an 

attribute value is related to the probability of occurrence. The concept used to quantify 

information is called entropy, which is used to measure the amount of randomness from a dataset. 

When all data in a set belong to a single class, there is no uncertainty, and then the entropy is 

zero. The objective of decision tree classification is to iteratively partition the given data set into 

subsets where all elements in each final subset belong to the same class. The entropy calculation 

is shown in equation 1. Given probabilities p1, p2,..,ps for different classes in the data set    

    Entropy: H(p1,p2,…ps) = ∑
=

s

i 1

(pi log(1/pi))      (1) 

Given a data set, D, H(D) finds the amount of entropy in class based subsets of the data set. When 

that subset is split into s new subsets S = {D1, D2,…,Ds} using some attribute, we can again look 

at the entropy of those subsets. A subset of data set is completely ordered and does not need any 

further split if all examples in it belong to the same class. The ID3 algorithm calculates the 

information gain of a split by using equation 2 and chooses that split which provides maximum 

information gain. 
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         Gain (D,S) = H(D)-∑
=

s

i 1

p(Di)H(Di)              (2) 

The C4.5 (upgraded version of ID3) algorithm uses highest Gain Ratio in equation 3 for splitting 

purpose that ensures a larger than average information gain. 

          GainRatio(D,S) = 



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The C5.0 algorithm (upgraded version of C4.5) improves the performance of building trees using 

boosting, which is an approach to combining different classifiers. But boosting does not always 

help when the training data contains a lot of noise. When C5.0 performs a classification, each 

classifier assigns a vote and the example is assigned to the class with the most number of votes. 

CART (Classification and Regression Trees) is a process of generating a binary tree for decision 

making. CART handles missing data and contains a pruning strategy. The SPRINT (Scalable 

Parallelizable Induction of Decision Trees) algorithm uses an impurity function called gini index 

to find the best split.  

       gini (D) =    1-∑ pj
2                 (4) 

Where, pj is the probability of class Cj in data set D. The goodness of a split of D into subsets D1 

and D2 is defined by  

           ginisplit(D) = n1/n(gini(D1))+ n2/n(gini(D2))        (5) 

The split with the best gini value is chosen. A number of research projects for optimal feature 

selection and classification have been done, which adopt hybrid strategy involving evolutionary 

algorithm and inductive decision tree learning [7], [8], [9], [10]. 

2.2. Naive Bayesian Classifier 

Naïve Bayesian (NB) classifier is a simple probabilistic classifier based on probability model, 

which can be trained very efficiently in a supervised learning. The NB classifier is given as input 

a set of training examples each of which is described by attributes A1 through Ak and an associated 

class, C. The objective is to classify an unseen example whose class value is unknown but values 

for attributes A1 through Ak are known and they are  a1, a2,.…, ak respectively. The optimal 

prediction of the unseen example is the class value ci such that P(C=ci|A1=a1,…Ak=ak) is 

maximum. By Bayes rule this probability equals to  

             ( )
( )

( )i

kk

ikk

Cc cCP
aAaAP

cCaAaAP
i

=
==

===
∈

,....

|,...
maxarg

11

11           (6)             

Where P(C=ci) is the prior probability of class ci, P(A1=a1,…Ak=ak) is the probability of 

occurrence of the description of a particular example, and P(A1=a1,…Ak=ak|C=ci)  is the class 

conditional probability of the description of a particular example. The prior probability of a class 

can be estimated from training data. The probability of occurrence of the description of particular 

examples is irrelevant for decision making since it is the same for each class value c. Learning is 

therefore reduced to the problem of estimating the class conditional probability of all possible 

description  of examples from training data. The class conditional probability can be written in 

expanded from as follows:  

P(A1=a1,…Ak=ak|C=ci)= P(A1=a1| A2=a2 ^…Ak=ak ^ C=ci)*P(A2=a2| A3=a3 ^…Ak=ak ^ 

C=ci) * P(A3=a3| A4=a4 ^…Ak=ak ^ C=ci)* P(A4=a4 ^…Ak=ak ^ C=ci)        (7)           
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In NB, it is assumed that outcome of attribute Ai is independent of the outcome of all other 

attributes Aj, given c. Thus class conditional probabilities become: P(A1=a1,…Ak=ak|C=ci) = 

∏
=

==
k

i

iii cCaAP
1

)|( If the above value is inserted in equation 6 it becomes: 

       ≡
Cci ∈

maxarg P(C=c)∏
=

==
k

i

iii cCaAP
1

)|(      (8) 

In Naïve Bayesian classifier, the probability values of equation 8 are estimated from the given 

training data. These estimated values are then used to classify unknown examples. 

3. PROPOSED DECISION TREE LEARNING ALGORITHM 

This section describes our proposed decision tree leaning algorithm. 

3.1. Proposed Algorithm 

Given a training dataset, the proposed algorithm initializes the weights of each training instance, 

Wi by highest posterior probability for that training instance. Estimating the prior probability 

P(Cj) for each class is calculated by how often each class occurs in the training data. For each 

attribute, Ai, the number of occurrences of each attribute value Aij can be counted to determine 

P(Aij). Similarly, the probability P(Aij | Cj) can be estimated by how often each attribute value 

occurs in the class, Cj in the training data. The probability P(Aij | Cj) are estimated for all values 

of attributes. The algorithm uses these probabilities to initialize the weights of each training 

instance. This is done by multiplying the probabilities of the different attribute values from the 

training instances. Suppose the training instance ei has independent attribute values {Ai1, 

Ai2,…,Aip}. We already know P(Aik | Cj), for each class Cj and attribute Aik. We then estimate P(ei | 

Cj) by     

                   P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj)              (9) 

To initialize the weight into a training instance, we can estimate the likelihood of ei in each class. 

The probability that ei is in a class is the product of the conditional probabilities for each attribute 

value. The posterior probability P(Cj | ei) is then found for each class. Then the weight of the 

training instance is assigned with the highest posterior probability for that training instance.  

Now the algorithm finds the best splitting attribute with highest information gain value using the 

weights of training instances in training dataset to form a decision tree. Create a node and label 

with splitting attribute. First node is the root node of the decision tree. For each branch of the 

node, partition the instances and grow sub training datasets Di by applying splitting predicate to 

training dataset, D. For each sub training datasets Di, if examples in Di, are all of same class 

value, Ci then the leaf node labeled with Ci. Else the process continues until each final subset 

belongs to the same class value or leaf node created. Then the decision tree construction is 

complete. The main procedure of proposed algorithm is described as follows. 
 

Algorithm 1: Decision Tree Learning Algorithm using Weights 

1. Calculate the probabilities P(Cj) for each class Cj and P(Aij | Cj) for each attribute values 

from training data, D. 

2. Calculate the posterior probability for each instance in D. P(ei | Cj) = P(Cj) ∏ P(Aij | Cj) 

3. Assign the weights of training instances in D with Maximum Likelihood (ML) of posterior 

probability P(Cj|ei); Wi= PML(Cj|ei). 

4. Find the best splitting attribute with highest information gain value using the assigned 

weights, Wi in training dataset, D. 

5. Create a node and label with splitting attribute. [First node is the root node, T of the 

decision tree] 
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6. For each branch of the node, partition the training instances and grow sub training datasets 

Di by applying splitting predicate to training dataset D. 

7. For each sub training datasets Di, if the training instances in Di, are all of same class value, 

Ci then the leaf node labeled with Ci. Else continues steps 4 to 7 until each final subset 

belong to the same class value or leaf node created. 

8. When the decision tree construction is complete, classify the test dataset. 

 

3.2. An Illustrative Example 

To illustrate the operation of our proposed algorithm, we consider a small dataset in Table 1 

described by four attributes namely Outlook, Temperature, Humidity, and Wind, which represent 

the weather condition of particular day. Each attribute has some attribute values. The Play 

attribute in Table 1 represents the class of each instance, which says whether a particular weather 

condition is suitable for playing tennis or not.  

Table 1. Playing tennis dataset. 

Day Outlook Temp. Hum. Wind Play 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Now the prior probability for each class, and conditional probabilities for each attribute value are 

calculated using the playing tennis dataset in Table 1 and these probabilities are enumerated 

below: 

Prior probability for each class: 

   P(Play=Yes) = 9/14 = 0.642 

   P(Play=No) = 5/14 = 0.375 

Conditional probabilities for each attribute value: 

P(Outlook=Sunny | Play=Yes) = 2/9 = 0.222 

P(Outlook=Sunny | Play=No) = 3/5 = 0.6 

P(Outlook=Overcast | Play=Yes) = 4/9 = 0.444 

P(Outlook=Overcast | Play=No) = 0/5 = 0.0 

P(Outlook=Rain | Play=Yes) = 3/9 = 0.3 

P(Outlook=Rain | Play=No) = 2/5 = 0.4 

P(Temperature=Hot | Play=Yes) = 2/9 = 0.222 

P(Temperature=Hot | Play=No) = 2/5 = 0.4 

P(Temperature=Mild | Play=Yes) = 4/9 = 0.444 

P(Temperature=Mild | Play=No) = 2/5 = 0.4 

P(Temperature=Cool | Play=Yes) = 3/9 = 0.333 

P(Temperature=Cool | Play=No) = 1/5 = 0.2 

P(Humidity=High | Play=Yes) = 3/9 = 0.333 
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P(Humidity=High | Play=No) = 4/5 = 0.8 

P(Humidity=Normal | Play=Yes) = 6/9 = 0.666 

P(Humidity=Normal | Play=No) = 1/5 = 0.2 

P(Wind=Weak | Play=Yes) = 6/9 = 0.666 

P(Wind=Weak | Play=No) = 2/5 = 0.4 

P(Wind=Strong | Play=Yes) = 3/9 = 0.333 

P(Wind=Strong | Play=No) = 3/5 = 0.6 

Now calculate the posterior probabilities for training instances and assign the weights of each 

training instance with highest posterior probability using dataset in Table 1. Table 2 shows the 

assigned weights of training instances in training dataset. 

Table 2. Assigned weights in training examples. 

Day Play=Yes Play=No Weights 

D1 0.007 0.027 W1= 0.027 

D2 0.003 0.043 W2 = 0.043 

D3 0.014 0.0 W3 = 0.014 

D4 0.018 0.018 W4 = 0.018 

D5 0.028 0.002 W5 = 0.028 

D6 0.142 0.003 W6 = 0.142 

D7 0.021 0.0 W7 = 0.021 

D8 0.014 0.013 W8 = 0.014 

D9 0.010 0.005 W9 = 0.010 

D10 0.037 0.004 W10 =0.037 

D11 0.014 0.010 W11 = 0.014 

D12 0.014 0.0 W12 = 0.014 

D13 0.014 0.0 W13 = 0.014 

D14 0.009 0.027 W14 = 0.027 

 

Now, calculate the information gain for each attribute (outlook, temperature, humidity, and wind) 

using weights, and then selects the one with highest information gain. The gain values for four 

attributes are given bellow: 
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The information gains of four attributes are follows: 

Outlook = 0.777-0.53= 0.247,  Temperature = 0777-0.42= 0.357 

       Humidity = 0.777-0.177= 0.6,  Wind = 0.777-0.766= 0.011 

The gain value of humidity attribute is maximum than other attributes, so root node of decision 

tree will be humidity. 

 

Figure 1. Root node of the tree. 
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Table 3. Subset data A for Humidity=High. 

Day Outlook Temp. Wind Play Weight 

D1 Sunny Hot Weak No W1=0.027 

D2 Sunny Hot Strong No W2=0.043 

D3 Overcast Hot Weak Yes W3=0.014 

D4 Rain Mild Weak Yes W4=0.018 

D8 Sunny Mild Weak Yes W8=0.014 

D12 Overcast Mild Strong Yes W12=0.014 

D14 Rain Mild Strong No W14=0.027 

Again calculate the information gain for each attribute (outlook, temperature, and wind) using 

subset data A with the weights, and then select the highest gain value. The gain values for 

remaining three attributes are given bellow: 
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The gains of attributes of subset data A are: 

Outlook = 0.96-0.624= 0.336, Temperature = 0.96-0.788= 0.172, and 

Wind = 0.96-0.807= 0.153 

The gain value of outlook attribute is maximum than other attributes using subset data A. So, 

after the root node (humidity) there will be outlook node. 
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Figure 2. Tree after humidity and outlook node. 

Table 4. Subset data B for outlook=sunny. 

Day Temp. Wind Play Weight 

D1 Hot Weak No W1=0.027 

D2 Hot Strong No W2=0.043 

D8 Mild Weak Yes W8=0.014 

 

Table 5. Subset data C for outlook=rain. 

Day Temp. Wind Play Weight 

D4 Mild Weak Yes W4=0.018 

D14 Mild Strong No W14=0.027 

 

Similarly, we will calculate the information gain of attributes of subset data B and C, and get the 

complete decision tree. 

 
Figure 3. Complete decision tree using playing tennis dataset. 
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4. EXPERIMENTAL ANALYSIS 

In this section, we describe the datasets and the experimental results. 

4.1. Datasets 

A set of data items called the dataset, which is the very basic concept of data mining and machine 

learning research. A dataset is roughly equivalent to a two-dimensional spreadsheet or database 

table. Table 6 describes about the datasets from UCI machine learning repository, which are used 

in experimental analysis [12].  

1. Iris Plants Database: This is one of the best known dataset in the pattern recognition literature. 

This dataset contains 3 class values (Iris Setosa, Iris Versicolor, and Iris Virginica), where each 

class refers to a type of iris plant. There are 150 instances (50 in each of three classes) and 4 

attributes (sepallength, sepalwidth, petallength, and petalwidth) in this dataset. One class is 

linearly separable from the other 2 classes. 

2. Image Segmentation Data: The goal of this dataset is to provide an empirical basis for research 

on image segmentation and boundary detection. There are 1500 data instances in this dataset with 

19 attributes and all the attributes are real. There are 7 class attribute values: brickface, sky, 

foliage, cement, window, path, and grass.  

3. Large Soybean Database: There are 35 attributes in this dataset and all attributes are 

nominalized. There are 683 data instances and 19 class values in this dataset. 

4. Fitting Contact Lenses Database: It is very small dataset with only 24 data instances, 4 attibutes 

and 3 class attribute values (soft, hard, and none). All the attribute values are nominal in this 

dataset. The instances are complete and noise free and 9 rules cover the training set.  

5.  NSL-KDD Dataset: The Knowledge Discovery and Data Mining 1999 (KDD99) competition 

data contains simulated intrusions in a military network environment. It is often used a 

benchmark to evaluate handling concept drift. NSL-KDD dataset is the new version of the 

KDD99 dataset, which solved some of the inherent problems of the KDD99 dataset [25]. 

Although, NSL-KDD dataset still suffers from some of the problems that discussed by McHugh 

[24]. The main advantage of NSL-KDD dataset is that the training and testing data points are 

reasonable, so it become affordable to run the experiments on the complete set of training and 

testing dataset without the need to randomly select a small portion of dataset. Each record in 

NSL-KDD dataset consists of 41 attributes and 1 class attribute. NSL-KDD dataset does not 

include redundant and duplicate examples in training dataset.  

Table 6. Dataset Descriptions. 

Dataset No of Attributes Attribute Types No of Instances No of Class 

Iris Plants 4 Real 150 3 

Image Segmentation 19 Real 1500 7 

Large Soybean  35 Nominal 683 19 

Fitting Contact Lenses  4 Nominal 24 3 

NSL-KDD 41 Real & Nominal 25192 23 

4.2. Results 

We implement our algorithm in Java. The code for decision tree has been adapted from the Weka 

machine learning open source repository (http://www.cs.waikato.ac.nz/ml/weka). Weka contains tools 

for data pre-processing, classification, regression, clustering, association rules, and visualization. The 

experiments were run on an Intel Core 2 Duo Processor 2.0 GHz processor (2 MB Cache, 800 MHz 

FSB) with 1 GB of RAM. The performance of decision tree models is measured by counting the 

proportion of correctly classified instances using 10-fold cross-validation. We compare the 

performance of our proposed DT learning algorithm with C4.5 and CART algorithms. The C4.5 
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algorithm is the upgraded version of ID3 decision tree learning algorithm. CART (Classification 

and Regression Trees) is a process of generating a binary tree, which can handle missing data and 

contain pruning strategy. The experimental results are shown in Table 7, Table 8, and Table 9. 

Table 7. Result of C4.5 decision tree model. 

Dataset Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Classification 

Rate (%) 

Misclassification 

Rate (%) 

Iris Plants 144 6 96 4 

Image Segmentation 1434 64 95.73 4.26 

Large Soybean 625 58 91.50 8.49 

Fitting Contact Lenses 20 4 83.33 16.66 

NSL-KDD 22781 2411 90.42 9.57 

Table 8. Result of CART decision tree model. 

Dataset Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Classification 

Rate (%) 

Misclassification 

Rate (%) 

Iris Plants 143 7 95.33 4.66 

Image Segmentation 1426 74 95.06 4.93 

Large Soybean 622 61 91.06 8.93 

Fitting Contact Lenses 19 5 79.16 20.83 

NSL-KDD 21233 3959 84.28 15.71 

Table 9. Result of Proposed Decision Tree Learning Algorithm. 

Dataset Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Classification 

Rate (%) 

Misclassification 

Rate (%) 

Iris Plants 146 4 97.33 2.44 

Image Segmentation 1439 61 95.93 4.06 

Large Soybean 637 46 93.26 6.73 

Fitting Contact Lenses 22 2 91.66 8.33 

NSL-KDD 23145 2047 91.87 8.12 

 

5. CONCLUSIONS 

This paper presents a new algorithm for decision tree construction based on traditional machine 

learning algorithms, which adjusts the weights of training data based on probabilities and split the 

dataset into sub-dataset until all the sub-dataset belongs to the same class. The main advantage of 

this proposed algorithm is to set appropriate weights of training instances based on naïve 

Bayesian classifier before trying to construct a decision tree model. In conventional decision tree 

algorithm weights of every instance is set to equal value which contradicts general intuition. The 

experimental results proved that the proposed algorithm can achieve high classification rate on 

different benchmark datasets from UCI machine learning repository. The future research issues 

will be to know and experiment more with the unique instances we have found out and to test it 

extensively in real world problem domains. 
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