
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

DOI : 10.5121/ijdkp.2013.3102 13

ASSIGNING WEIGHTS TO TRAINING INSTANCES

INCREASES CLASSIFICATION ACCURACY

Dr. Dewan Md. Farid
1
 and Prof. Dr. Chowdhury Mofizur Rahman

2

1
Assistant Professor, Department of Computer Science & Engineering,

United International University, Dhaka-1209, Bangladesh
dewanfarid@cse.uiu.ac.bd

2
Pro-Vice Chancellor, United International University, Dhaka-1209, Bangladesh

cmr@uiu.ac.bd

ABSTRACT

The decision tree (DT) approach is most useful in classification problem. In conventional decision tree

learning the weights of every training instances are set to one or equal value, which contradicts general

intuition. In this paper, we proposed a new decision tree learning algorithm by assigning appropriate

weights to each training instance in the training data that increases classification accuracy of the decision

tree model. The main advantage of this proposed approach is to set appropriate weights to training

instances using naïve Bayesian classifier before trying to construct the decision tree. In our approach the

training instances are assigned to weight values based on the posterior probability. The training instances

having less weight values are either noisy or posses unique characteristics compared to other training

instances. The experimental results manifest that the proposed approach for decision tree construction can

achieve high classification accuracy with compare to traditional decision tree algorithms on different types

of benchmark datasets from UCI machine learning repository.

KEYWORDS

Bayesian Classifier, Classification, Decision Tree, Training Instance, Weights

1. INTRODUCTION

The decision tree (DT) learning is most powerful and popular decision support tools of machine

learning in classification problems, which is used in many real world applications like: medical

diagnosis, radar signal classification, weather prediction, credit approval, and fraud detection etc.

It has several advantages: DT is simple to understand and can deal with huge volume of dataset,

because the tree size is independent of the dataset size. DT model can be combined with other

machine learning models. DT can be constructed from dataset with many attributes and each

attribute having many attribute values. Once the decision tree construction is complete, it can

used to classify seen or unseen training instances. To make a decision using a DT, start at the root

node and follow the tree down the branches until a leaf node representing the class is reached.

There have been many decision tree algorithms like ID3 [1], C4.5 [2], CART [3], and SPRINT

[4] but optimal decision tree construction for large volume of dataset is still a problem.

The decision tree, which is also known as classification tree or regression tree is a method

commonly used in data mining or machine learning. The goal is to create a model that predicts

the value of a target variable based on several input variables. DT building algorithms may

initially build the tree and then prune it for more effective classification. With pruning technique,

portions of the tree may be removed or combined to reduce the overall size of the tree. The time

and space complexity of constructing a decision tree depends on the size of the dataset, the

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

14

number of attributes in the dataset, and the shape of the resulting tree. Decision trees are used to

classify data with common attributes. Each decision tree represents a rule set which categorizes

data according to these attributes. A decision tree consists of nodes, leaves, and edges. A node of

a tree specifies an attribute by which the data is to be partitioned. Each node has a number of

edges which are labelled according to a possible value of the attribute in the parent node. An edge

connects either two nodes or a node and a leaf. Leaves are labelled with a decision value for

categorization of the data.

A naive Bayesian (NB) classifier is a simple probabilistic classifier in machine learning

technique, which provides a probabilistic approach for performing supervised learning [5], [6]. It

provides an optimal way to predict the class of an unknown example, and widely used in many

field of data mining, image processing, bio-informatics and information retrieval etc. In Bayesian

classifier conditional probabilities for each attribute value are calculated from the given dataset

and then these probabilities are used to classify the known or unknown examples. The advantage

of NB classifier is that it only requires a small amount of training dataset to estimate the

parameters necessary for classification. In this paper, we proposed a new decision tree learning

algorithm by assigning appropriate weights to training instances, which improve the classification

accuracy. The weights of the training instances are calculated using naïve Bayesian classifier.

Weight of each training instance is calculated with the maximum value of the class conditional

probabilities. Our proposed algorithm calculated the information gain by using these weights and

builds the decision tree model for decision making.

The remainder of this paper is organized as follows. Section 2 provides an overview of decision

tree algorithms and naïve Bayesian classifier. Section 3 provides our proposed algorithm and an

illustrative example using a small training dataset. Experimental results using benchmark data

sets are presented in section 4. Finally, section 5 makes some concluding remarks along with

suggestions for further improvement.

2. MINING ALGORITHMS

This section describes the basic underpinning concepts of decision tree algorithms and the naïve

Bayesian classifier.

2.1. Decision Tree Learning

The ID3 algorithm builds decision tree using information theory, which choose splitting attributes

from a dataset with the highest information gain. The amount of information associated with an

attribute value is related to the probability of occurrence. The concept used to quantify

information is called entropy, which is used to measure the amount of randomness from a dataset.

When all data in a set belong to a single class, there is no uncertainty, and then the entropy is

zero. The objective of decision tree classification is to iteratively partition the given data set into

subsets where all elements in each final subset belong to the same class. The entropy calculation

is shown in equation 1. Given probabilities p1, p2,..,ps for different classes in the data set

 Entropy: H(p1,p2,…ps) = ∑
=

s

i 1

(pi log(1/pi)) (1)

Given a data set, D, H(D) finds the amount of entropy in class based subsets of the data set. When

that subset is split into s new subsets S = {D1, D2,…,Ds} using some attribute, we can again look

at the entropy of those subsets. A subset of data set is completely ordered and does not need any

further split if all examples in it belong to the same class. The ID3 algorithm calculates the

information gain of a split by using equation 2 and chooses that split which provides maximum

information gain.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

15

 Gain (D,S) = H(D)-∑
=

s

i 1

p(Di)H(Di) (2)

The C4.5 (upgraded version of ID3) algorithm uses highest Gain Ratio in equation 3 for splitting

purpose that ensures a larger than average information gain.

 GainRatio(D,S) =










||

||
,...,

||

||

),.(

1

D

D

D

D
H

SDGain

s

 (3)

The C5.0 algorithm (upgraded version of C4.5) improves the performance of building trees using

boosting, which is an approach to combining different classifiers. But boosting does not always

help when the training data contains a lot of noise. When C5.0 performs a classification, each

classifier assigns a vote and the example is assigned to the class with the most number of votes.

CART (Classification and Regression Trees) is a process of generating a binary tree for decision

making. CART handles missing data and contains a pruning strategy. The SPRINT (Scalable

Parallelizable Induction of Decision Trees) algorithm uses an impurity function called gini index

to find the best split.

 gini (D) = 1-∑ pj
2 (4)

Where, pj is the probability of class Cj in data set D. The goodness of a split of D into subsets D1

and D2 is defined by

 ginisplit(D) = n1/n(gini(D1))+ n2/n(gini(D2)) (5)

The split with the best gini value is chosen. A number of research projects for optimal feature

selection and classification have been done, which adopt hybrid strategy involving evolutionary

algorithm and inductive decision tree learning [7], [8], [9], [10].

2.2. Naive Bayesian Classifier

Naïve Bayesian (NB) classifier is a simple probabilistic classifier based on probability model,

which can be trained very efficiently in a supervised learning. The NB classifier is given as input

a set of training examples each of which is described by attributes A1 through Ak and an associated

class, C. The objective is to classify an unseen example whose class value is unknown but values

for attributes A1 through Ak are known and they are a1, a2,.…, ak respectively. The optimal

prediction of the unseen example is the class value ci such that P(C=ci|A1=a1,…Ak=ak) is

maximum. By Bayes rule this probability equals to

 ()
()

()i

kk

ikk

Cc cCP
aAaAP

cCaAaAP
i

=
==

===
∈

,....

|,...
maxarg

11

11 (6)

Where P(C=ci) is the prior probability of class ci, P(A1=a1,…Ak=ak) is the probability of

occurrence of the description of a particular example, and P(A1=a1,…Ak=ak|C=ci) is the class

conditional probability of the description of a particular example. The prior probability of a class

can be estimated from training data. The probability of occurrence of the description of particular

examples is irrelevant for decision making since it is the same for each class value c. Learning is

therefore reduced to the problem of estimating the class conditional probability of all possible

description of examples from training data. The class conditional probability can be written in

expanded from as follows:

P(A1=a1,…Ak=ak|C=ci)= P(A1=a1| A2=a2 ^…Ak=ak ^ C=ci)*P(A2=a2| A3=a3 ^…Ak=ak ^

C=ci) * P(A3=a3| A4=a4 ^…Ak=ak ^ C=ci)* P(A4=a4 ^…Ak=ak ^ C=ci) (7)

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

16

In NB, it is assumed that outcome of attribute Ai is independent of the outcome of all other

attributes Aj, given c. Thus class conditional probabilities become: P(A1=a1,…Ak=ak|C=ci) =

∏
=

==
k

i

iii cCaAP
1

)|(If the above value is inserted in equation 6 it becomes:

 ≡
Cci ∈

maxarg P(C=c)∏
=

==
k

i

iii cCaAP
1

)|((8)

In Naïve Bayesian classifier, the probability values of equation 8 are estimated from the given

training data. These estimated values are then used to classify unknown examples.

3. PROPOSED DECISION TREE LEARNING ALGORITHM

This section describes our proposed decision tree leaning algorithm.

3.1. Proposed Algorithm

Given a training dataset, the proposed algorithm initializes the weights of each training instance,

Wi by highest posterior probability for that training instance. Estimating the prior probability

P(Cj) for each class is calculated by how often each class occurs in the training data. For each

attribute, Ai, the number of occurrences of each attribute value Aij can be counted to determine

P(Aij). Similarly, the probability P(Aij | Cj) can be estimated by how often each attribute value

occurs in the class, Cj in the training data. The probability P(Aij | Cj) are estimated for all values

of attributes. The algorithm uses these probabilities to initialize the weights of each training

instance. This is done by multiplying the probabilities of the different attribute values from the

training instances. Suppose the training instance ei has independent attribute values {Ai1,

Ai2,…,Aip}. We already know P(Aik | Cj), for each class Cj and attribute Aik. We then estimate P(ei |

Cj) by

 P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj) (9)

To initialize the weight into a training instance, we can estimate the likelihood of ei in each class.

The probability that ei is in a class is the product of the conditional probabilities for each attribute

value. The posterior probability P(Cj | ei) is then found for each class. Then the weight of the

training instance is assigned with the highest posterior probability for that training instance.

Now the algorithm finds the best splitting attribute with highest information gain value using the

weights of training instances in training dataset to form a decision tree. Create a node and label

with splitting attribute. First node is the root node of the decision tree. For each branch of the

node, partition the instances and grow sub training datasets Di by applying splitting predicate to

training dataset, D. For each sub training datasets Di, if examples in Di, are all of same class

value, Ci then the leaf node labeled with Ci. Else the process continues until each final subset

belongs to the same class value or leaf node created. Then the decision tree construction is

complete. The main procedure of proposed algorithm is described as follows.

Algorithm 1: Decision Tree Learning Algorithm using Weights

1. Calculate the probabilities P(Cj) for each class Cj and P(Aij | Cj) for each attribute values

from training data, D.

2. Calculate the posterior probability for each instance in D. P(ei | Cj) = P(Cj) ∏ P(Aij | Cj)

3. Assign the weights of training instances in D with Maximum Likelihood (ML) of posterior

probability P(Cj|ei); Wi= PML(Cj|ei).

4. Find the best splitting attribute with highest information gain value using the assigned

weights, Wi in training dataset, D.

5. Create a node and label with splitting attribute. [First node is the root node, T of the

decision tree]

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

17

6. For each branch of the node, partition the training instances and grow sub training datasets

Di by applying splitting predicate to training dataset D.

7. For each sub training datasets Di, if the training instances in Di, are all of same class value,

Ci then the leaf node labeled with Ci. Else continues steps 4 to 7 until each final subset

belong to the same class value or leaf node created.

8. When the decision tree construction is complete, classify the test dataset.

3.2. An Illustrative Example

To illustrate the operation of our proposed algorithm, we consider a small dataset in Table 1

described by four attributes namely Outlook, Temperature, Humidity, and Wind, which represent

the weather condition of particular day. Each attribute has some attribute values. The Play

attribute in Table 1 represents the class of each instance, which says whether a particular weather

condition is suitable for playing tennis or not.

Table 1. Playing tennis dataset.

Day Outlook Temp. Hum. Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Now the prior probability for each class, and conditional probabilities for each attribute value are

calculated using the playing tennis dataset in Table 1 and these probabilities are enumerated

below:

Prior probability for each class:

 P(Play=Yes) = 9/14 = 0.642

 P(Play=No) = 5/14 = 0.375

Conditional probabilities for each attribute value:

P(Outlook=Sunny | Play=Yes) = 2/9 = 0.222

P(Outlook=Sunny | Play=No) = 3/5 = 0.6

P(Outlook=Overcast | Play=Yes) = 4/9 = 0.444

P(Outlook=Overcast | Play=No) = 0/5 = 0.0

P(Outlook=Rain | Play=Yes) = 3/9 = 0.3

P(Outlook=Rain | Play=No) = 2/5 = 0.4

P(Temperature=Hot | Play=Yes) = 2/9 = 0.222

P(Temperature=Hot | Play=No) = 2/5 = 0.4

P(Temperature=Mild | Play=Yes) = 4/9 = 0.444

P(Temperature=Mild | Play=No) = 2/5 = 0.4

P(Temperature=Cool | Play=Yes) = 3/9 = 0.333

P(Temperature=Cool | Play=No) = 1/5 = 0.2

P(Humidity=High | Play=Yes) = 3/9 = 0.333

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

18

P(Humidity=High | Play=No) = 4/5 = 0.8

P(Humidity=Normal | Play=Yes) = 6/9 = 0.666

P(Humidity=Normal | Play=No) = 1/5 = 0.2

P(Wind=Weak | Play=Yes) = 6/9 = 0.666

P(Wind=Weak | Play=No) = 2/5 = 0.4

P(Wind=Strong | Play=Yes) = 3/9 = 0.333

P(Wind=Strong | Play=No) = 3/5 = 0.6

Now calculate the posterior probabilities for training instances and assign the weights of each

training instance with highest posterior probability using dataset in Table 1. Table 2 shows the

assigned weights of training instances in training dataset.

Table 2. Assigned weights in training examples.

Day Play=Yes Play=No Weights

D1 0.007 0.027 W1= 0.027

D2 0.003 0.043 W2 = 0.043

D3 0.014 0.0 W3 = 0.014

D4 0.018 0.018 W4 = 0.018

D5 0.028 0.002 W5 = 0.028

D6 0.142 0.003 W6 = 0.142

D7 0.021 0.0 W7 = 0.021

D8 0.014 0.013 W8 = 0.014

D9 0.010 0.005 W9 = 0.010

D10 0.037 0.004 W10 =0.037

D11 0.014 0.010 W11 = 0.014

D12 0.014 0.0 W12 = 0.014

D13 0.014 0.0 W13 = 0.014

D14 0.009 0.027 W14 = 0.027

Now, calculate the information gain for each attribute (outlook, temperature, humidity, and wind)

using weights, and then selects the one with highest information gain. The gain values for four

attributes are given bellow:

 Info(playing tennis data set) =



















−



















−

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

14

1

214

1

14

1

214

1

loglog

i

i

NOi

i

i

i

NOi

i

i

i

YESi

i

i

i

YESi

i

W

W

W

W

W

W

W

W

 = 







−







−

423.0

097.0
log

423.0

097.0

423.0

326.0
log

423.0

326.0
22

 = 0.777

 Info(outlook) =

































−
















−
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

SUNNYi

i

NOSUNNYi

i

SUNNYi

i

NOSUNNYi

i

SUNNYi

i

YESSUNNYi

i

SUNNYi

i

YESSUNNYi

i

i

i

SUNNYi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog

































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

.

).(

2

.

).(

.

)(,

2

,

)(,

14

1

,
loglog

OVERi

i

NOOVERi

i

OVERi

i

NOOVERi

i

OVERi

i

YESOVERi

i

OVERi

i

YESOVERi

i

i

i

OVERi

i

W

W

W

W

W

W

W

W

W

W

































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

RAINi

i

NORAINi

i

RAINi

i

NORAINi

i

RAINi

i

YESRAINi

i

RAINi

i

YESRAINi

i

i

i

RAINi

i

W

W

W

W

W

W

W

W

W

W
)(

2

.

)(

.

)(

2

)(

14

1

loglog

















−







−=

108.0

07.0
log

108.0

07.0

108.0

038.0
log

108.0

038.0

423.0

108.0
22

















−







−+

063.0

0.0
log

063.0

0.0

063.0

063.0
log

063.0

063.0

423.0

063.0
22

















−







−+

252.0

027.0
log

252.0

027.0

252.0

225.0
log

252.0

225.0

423.0

252.0
22

= 0.53

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

19

Info(Temperature)=

































−
















−
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

HOTi

i

NOHOTi

i

HOTi

i

NOHOTi

i

HOTi

i

YESHOTi

i

HOTi

i

YESHOTi

i

i

i

HOTi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog

































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

.

)(

2

)(

.

)(

2

)(

14

1

loglog

MILDi

i

NOMILDi

i

MILDi

i

NOMILDi

i

MILDi

i

YESMILDi

i

MILDi

i

YESMILDi

i

i

i

Mildi

i

W

W

W

W

W

W

W

W

W

W

































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

COOLi

i

NOCOOLi

i

COOLi

i

NOCOOLi

i

COOLi

i

YESCOOLi

i

COOLi

i

YESCOOLi

i

i

i

COOLi

i

W

W

W

W

W

W

W

W

W

W
)(

2

.

)(

.

)(

2

)(

14

1

loglog

















−







−=

098.0

07.0
log

098.0

07.0

098.0

028.0
log

098.0

028.0

423.0

098.0
22

















−







−+

124.0

027.0
log

124.0

027.0

124.0

097.0
log

124.0

097.0

423.0

124.0
22

















−







−+

201.0

0.0
log

201.0

0.0

201.0

201.0
log

201.0

201.0

423.0

201.0
22

= 0.42

Info(Humidity)=

































−
















−
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

HIGHi

i

NOHIGHi

i

HIGHi

i

NOHIGHi

i

HIGHi

i

YESHIGHi

i

HIGHi

i

YESHIGHi

i

i

i

HIGHi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog
































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

NORMALi

i

NONORMALi

i

NORMALi

i

NONORMALi

i

NORMALi

i

YESNORMALi

i

NORMALi

i

YESNORMALi

i

i

i

NORMALi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog

















−







−=

157.0

097.0
log

157.0

097.0

157.0

06.0
log

157.0

06.0

423.0

157.0
22

















−







−+

266.0

0.0
log

266.0

0.0

266.0

266.0
log

266.0

266.0

423.0

266.0
22

= 0.177

Info(Wind) =

































−
















−
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

WEAKi

i

NOWEAKi

i

WEAKi

i

NOWEAKi

i

WEAKi

i

YESWEAKi

i

WEAKi

i

YESWEAKi

i

i

i

WEAKi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog
































−
















−+
∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

STRONGi

i

NOSTRONGi

i

STRONGi

i

NOSTRONGi

i

STRONGi

i

YESSTRONGi

i

STRONGi

i

YESSTRONGi

i

i

i

STRONGi

i

W

W

W

W

W

W

W

W

W

W
)(

2

)()(

2

)(

14

1

loglog

















−







−=

162.0

027.0
log

162.0

027.0

162.0

135.0
log

162.0

135.0

423.0

162.0
22

















−







−+

261.0

07.0
log

261.0

07.0

261.0

191.0
log

261.0

191.0

423.0

261.0
22

= 0.766

The information gains of four attributes are follows:

Outlook = 0.777-0.53= 0.247, Temperature = 0777-0.42= 0.357

 Humidity = 0.777-0.177= 0.6, Wind = 0.777-0.766= 0.011

The gain value of humidity attribute is maximum than other attributes, so root node of decision

tree will be humidity.

Figure 1. Root node of the tree.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

20

Table 3. Subset data A for Humidity=High.

Day Outlook Temp. Wind Play Weight

D1 Sunny Hot Weak No W1=0.027

D2 Sunny Hot Strong No W2=0.043

D3 Overcast Hot Weak Yes W3=0.014

D4 Rain Mild Weak Yes W4=0.018

D8 Sunny Mild Weak Yes W8=0.014

D12 Overcast Mild Strong Yes W12=0.014

D14 Rain Mild Strong No W14=0.027

Again calculate the information gain for each attribute (outlook, temperature, and wind) using

subset data A with the weights, and then select the highest gain value. The gain values for

remaining three attributes are given bellow:

Info(Subset data A) =

















++++++

+++

++++++

+++
−

141284321

12843

2

141284321

12843 log
WWWWWWW

WWWW

WWWWWWW

WWWW















++++++

++

++++++

++
−

141284321

1421
2

141284321

1421 log
WWWWWWW

WWW

WWWWWWW

WWW =

















−







−

157.0

097.0
log

157.0

097.0

157.0

06.0
log

157.0

06.0
22

= 0.96

Info (Outlook)





















++

+

++

+
−








++++
−

++
=

821

21
2

821

21

821

8
2

821

8821 loglog
157.0 WWW

WW

WWW

WW

WWW

W

WWW

WWWW






















++
−








+

+

+

+
−

+
+

123

2

123123

123
2

123

123123 0.0
log

0.0
log

157.0 WWWWWW

WW

WW

WWWW



























++
−














++
−

+
+

144

14

2

144

14

144

4
2

144

4144
loglog

157.0 WW

W

WW

W

WW

W

WW

WWW
= 0.624

Info(Temperature)





















++++
−

++
=

321

3
2

321

3321 log
157.0 WWW

W

WWW

WWWW





















++

+

++

+
−

321

21
2

321

21 log
WWW

WW

WWW

WW
















+++

++

+++

++
−

+++
+

141283

1283
2

141283

1283141283 log
157.0 WWWW

WWW

WWWW

WWWWWWW













++++++
−

141283

14

2

141283

14 log
WWWW

W

WWWW

W
= 0.788

Info(Wind)















+++

++

+++

++
−

+++
=

8431

843
2

8431

8438431 log
157.0 WWWW

WWW

WWWW

WWWWWWW


















++++++
−

8431

1
2

8431

1
log

WWWW

W

WWWW

W






















++

+

++

+
−










++++
−

++
+

14122

142
2

14122

142

14122

12
2

14122

1214122 loglog
108.0 WWW

WW

WWW

WW

WWW

W

WWW

WWWW = 0.807

The gains of attributes of subset data A are:

Outlook = 0.96-0.624= 0.336, Temperature = 0.96-0.788= 0.172, and

Wind = 0.96-0.807= 0.153

The gain value of outlook attribute is maximum than other attributes using subset data A. So,

after the root node (humidity) there will be outlook node.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

21

Figure 2. Tree after humidity and outlook node.

Table 4. Subset data B for outlook=sunny.

Day Temp. Wind Play Weight

D1 Hot Weak No W1=0.027

D2 Hot Strong No W2=0.043

D8 Mild Weak Yes W8=0.014

Table 5. Subset data C for outlook=rain.

Day Temp. Wind Play Weight

D4 Mild Weak Yes W4=0.018

D14 Mild Strong No W14=0.027

Similarly, we will calculate the information gain of attributes of subset data B and C, and get the

complete decision tree.

Figure 3. Complete decision tree using playing tennis dataset.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

22

4. EXPERIMENTAL ANALYSIS

In this section, we describe the datasets and the experimental results.

4.1. Datasets

A set of data items called the dataset, which is the very basic concept of data mining and machine

learning research. A dataset is roughly equivalent to a two-dimensional spreadsheet or database

table. Table 6 describes about the datasets from UCI machine learning repository, which are used

in experimental analysis [12].

1. Iris Plants Database: This is one of the best known dataset in the pattern recognition literature.

This dataset contains 3 class values (Iris Setosa, Iris Versicolor, and Iris Virginica), where each

class refers to a type of iris plant. There are 150 instances (50 in each of three classes) and 4

attributes (sepallength, sepalwidth, petallength, and petalwidth) in this dataset. One class is

linearly separable from the other 2 classes.

2. Image Segmentation Data: The goal of this dataset is to provide an empirical basis for research

on image segmentation and boundary detection. There are 1500 data instances in this dataset with

19 attributes and all the attributes are real. There are 7 class attribute values: brickface, sky,

foliage, cement, window, path, and grass.

3. Large Soybean Database: There are 35 attributes in this dataset and all attributes are

nominalized. There are 683 data instances and 19 class values in this dataset.

4. Fitting Contact Lenses Database: It is very small dataset with only 24 data instances, 4 attibutes

and 3 class attribute values (soft, hard, and none). All the attribute values are nominal in this

dataset. The instances are complete and noise free and 9 rules cover the training set.

5. NSL-KDD Dataset: The Knowledge Discovery and Data Mining 1999 (KDD99) competition

data contains simulated intrusions in a military network environment. It is often used a

benchmark to evaluate handling concept drift. NSL-KDD dataset is the new version of the

KDD99 dataset, which solved some of the inherent problems of the KDD99 dataset [25].

Although, NSL-KDD dataset still suffers from some of the problems that discussed by McHugh

[24]. The main advantage of NSL-KDD dataset is that the training and testing data points are

reasonable, so it become affordable to run the experiments on the complete set of training and

testing dataset without the need to randomly select a small portion of dataset. Each record in

NSL-KDD dataset consists of 41 attributes and 1 class attribute. NSL-KDD dataset does not

include redundant and duplicate examples in training dataset.

Table 6. Dataset Descriptions.

Dataset No of Attributes Attribute Types No of Instances No of Class

Iris Plants 4 Real 150 3

Image Segmentation 19 Real 1500 7

Large Soybean 35 Nominal 683 19

Fitting Contact Lenses 4 Nominal 24 3

NSL-KDD 41 Real & Nominal 25192 23

4.2. Results

We implement our algorithm in Java. The code for decision tree has been adapted from the Weka

machine learning open source repository (http://www.cs.waikato.ac.nz/ml/weka). Weka contains tools

for data pre-processing, classification, regression, clustering, association rules, and visualization. The

experiments were run on an Intel Core 2 Duo Processor 2.0 GHz processor (2 MB Cache, 800 MHz

FSB) with 1 GB of RAM. The performance of decision tree models is measured by counting the

proportion of correctly classified instances using 10-fold cross-validation. We compare the

performance of our proposed DT learning algorithm with C4.5 and CART algorithms. The C4.5

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

23

algorithm is the upgraded version of ID3 decision tree learning algorithm. CART (Classification

and Regression Trees) is a process of generating a binary tree, which can handle missing data and

contain pruning strategy. The experimental results are shown in Table 7, Table 8, and Table 9.

Table 7. Result of C4.5 decision tree model.

Dataset Correctly

Classified

Instances

Incorrectly

Classified

Instances

Classification

Rate (%)

Misclassification

Rate (%)

Iris Plants 144 6 96 4

Image Segmentation 1434 64 95.73 4.26

Large Soybean 625 58 91.50 8.49

Fitting Contact Lenses 20 4 83.33 16.66

NSL-KDD 22781 2411 90.42 9.57

Table 8. Result of CART decision tree model.

Dataset Correctly

Classified

Instances

Incorrectly

Classified

Instances

Classification

Rate (%)

Misclassification

Rate (%)

Iris Plants 143 7 95.33 4.66

Image Segmentation 1426 74 95.06 4.93

Large Soybean 622 61 91.06 8.93

Fitting Contact Lenses 19 5 79.16 20.83

NSL-KDD 21233 3959 84.28 15.71

Table 9. Result of Proposed Decision Tree Learning Algorithm.

Dataset Correctly

Classified

Instances

Incorrectly

Classified

Instances

Classification

Rate (%)

Misclassification

Rate (%)

Iris Plants 146 4 97.33 2.44

Image Segmentation 1439 61 95.93 4.06

Large Soybean 637 46 93.26 6.73

Fitting Contact Lenses 22 2 91.66 8.33

NSL-KDD 23145 2047 91.87 8.12

5. CONCLUSIONS

This paper presents a new algorithm for decision tree construction based on traditional machine

learning algorithms, which adjusts the weights of training data based on probabilities and split the

dataset into sub-dataset until all the sub-dataset belongs to the same class. The main advantage of

this proposed algorithm is to set appropriate weights of training instances based on naïve

Bayesian classifier before trying to construct a decision tree model. In conventional decision tree

algorithm weights of every instance is set to equal value which contradicts general intuition. The

experimental results proved that the proposed algorithm can achieve high classification rate on

different benchmark datasets from UCI machine learning repository. The future research issues

will be to know and experiment more with the unique instances we have found out and to test it

extensively in real world problem domains.

ACKNOWLEDGEMENTS

The support for this research is received from the Department of Computer Science and

Engineering, United International University, Dhaka, Bangladesh.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

24

REFERENCES

[1] J. R. Quinlan, “Induction of Decision Tree,” Machine Learning Vol. 1, 1986, pp. 81-106.

[2] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers, San Mateo,

CA, 1993.

[3] L. Breiman, J. H. Friedman, R. A. Olshen and C.J. Stone, “Classification and Regression Trees,”

Statistics probability series, Wadsworth, Belmont, 1984.

[4] John Shafer, Rakesh Agarwal, and Manish Mehta, “SPRINT: A Scalable Parallel Classifier for Data

Maining,” in Proceedings of the VLDB Conference, Bombay, India, September 1996.

[5] Kononenko I, “Comparison of inductive and naïve Bayesian learning approaches to automatic

knowledge acquisition,” in Wieling, B. (Ed), Current trend in knowledge acquisition, Amsterdam,

IOS press. 1990.

[6] Langely, P., Iba, W., Thomas, and K., “An analysis of Bayesian classifier,” in Proceedings of the 10th

national Conference on Artificial Intelligence (San Matro, CA: AAAI press), 1992, pp. 223-228.

[7] D. Turney, “Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree

Induction Algorithm,” Journal of Artificial Intelligence Research, 1995, pp. 369-409.

[8] J. Bala, K. De Jong, J. Haung, H. Vafaie and H. Wechsler, “Hybrid Learning using Genetic

Algorithms and Decision Trees for Pattern Classification,” in Proceedings of 14th International

Conference on Artificial Intelligence, 1995.

[9] C. Guerra-Salcedo, S. Chen, D. Whitley, and Stephen Smith, “Fast and Accurate Feature Selection

using Hybrid Genetic Strategies,” in Proceedings of the Genetic and Evolutionary Computation

Conference, 1999.

[10] S. R. Safavian and D. Landgrebe, “A Survey of Decision Tree Classifier Methodology, ” IEEE

Transactions on Systems, Man and Cybernetics 21(3), 1991, pp. 660-674.

[11] C. Blake, E Keogh, and J. Merz, “UCI Repository of Machine Leanrning Database,” Irvine, CA:

University of California, Department of Information and Computer Science, 2000.

[12] The Archive UCI Machine Learning Datasets. http://archive.ics.uci.edu/ml/datasets/

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.1, January 2013

25

Authors

Dr. Dewan Md. Farid received B.Sc. in Computer Science and Engineering from

Asian University of Bangladesh in 2003, M.Sc. in Computer Science and

Engineering from United International University, Bangladesh in 2004, and Ph.D.

in Computer Science and Engineering from Jahangirnagar University, Bangladesh

in 2012. He is an Assistant Professor in the Department of Computer Science and

Engineering, United International University, Bangladesh. He has published 1

book chapter, 8 international journals and 12 international conferences in the field

of data mining, machine learning, and intrusion detection. He has participated and

presented his papers in international conferences at Malaysia, Portugal, Italy, and France. Dr. Farid is a

member of IEEE and IEEE Computer Society. He worked as a visiting researcher at ERIC Laboratory,

University Lumière Lyon 2 – France from 01-09-2009 to 30-06-2010. He received Senior Fellowship I & II

awarded by National Science & Information and Communication Technology (NSICT), Ministry of

Science & Information and Communication Technology, Government of Bangladesh, in 2008 and 2011

respectively.

Professor Dr. Chowdhury Mofizur Rahman had his B.Sc. (EEE) and M.Sc.

(CSE) from Bangladesh University of Engineering and Technology (BUET) in

1989 and 1992 respectively. He earned his Ph.D. from Tokyo Institute of

Technology in 1996 under the auspices of Japanese Government scholarship.

Prof Chowdhury is presently working as the Pro Vice Chancellor and acting

treasurer of United International University (UIU), Dhaka, Bangladesh. He is

also one of the founder trustees of UIU. Before joining UIU he worked as the

head of Computer Science & Engineering department of Bangladesh University

of Engineering & Technology which is the number one technical public university in Bangladesh. His

research area covers Data Mining, Machine Learning, AI and Pattern Recognition. He is active in

research activities and published around 100 technical papers in international journals and conferences. He

was the Editor of IEB journal and worked as the moderator of NCC accredited centers in Bangladesh. He

worked as the organizing chair and program committee member of a number of international conferences

held in Bangladesh and abroad. At present he is acting as the coordinator from Bangladesh for EU

sponsored eLINK project. Prof Chowdhury has been working as the external expert member for Computer

Science departments of a number of renowned public and private universities in Bangladesh. He is actively

contributing towards the national goal of converting the country towards Digital Bangladesh.

