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ABSTRACT 

Arabic Documents Clustering is an important task for obtaining good results with the traditional 

Information Retrieval (IR) systems especially with the rapid growth of the number of online documents 

present in Arabic language. Documents clustering aim to automatically group similar documents in one 

cluster using different similarity/distance measures. This task is often affected by the documents length, 

useful information on the documents is often accompanied by a large amount of noise, and therefore it is 

necessary to eliminate this noise while keeping useful information to boost the performance of Documents 

clustering. In this paper, we propose to evaluate the impact of text summarization using the Latent 

Semantic Analysis Model on  Arabic Documents Clustering in order to solve problems cited above,  using  

five similarity/distance measures: Euclidean Distance, Cosine Similarity, Jaccard Coefficient, Pearson 

Correlation Coefficient and Averaged Kullback-Leibler Divergence, for two times: without and with 

stemming. Our experimental results indicate that our proposed approach effectively solves the problems of 

noisy information and documents length, and thus significantly improve the clustering performance.  
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1. INTRODUCTION 

There are several research projects investigating and exploring the techniques in traditional 
Information Retrieval (IR) systems for the English and European languages such as French, 
German, and Spanish and in Asian languages such as Chinese and Japanese. However, in Arabic 
language, there is little ongoing research in Arabic traditional Information Retrieval (IR) systems. 

Moreover, the traditional Information Retrieval (IR) systems (without documents clustering) are 
becoming more and more insufficient for handling huge volumes of relevant texts documents, 
because to retrieve the documents of interest, the user must formulate the query using the 
keywords that appear in the documents. This is a difficult task for ordinary people who are not 
familiar with the vocabulary of the data corpus. Documents clustering may be useful as a 
complement to these traditional Information Retrieval (IR) systems, by organizing these 
documents by topics (clusters) in the documents feature space. It has been proved by Bellot & El-
Bèze in [1] that document clustering increase the precision in Information Retrieval (IR) systems 
for French language.  
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On the other hand, for the Arabic Language Sameh H. Ghwanmeh in [2] presented a comparison 
study between the traditional Information Retrieval system and the clustered one. The concept of 
clustering documents has shown significant results on precision compared with traditional 
Information Retrieval systems without clustering. These results assure the results obtained by 
Bellot & El-Bèze [1] during their test on Amaryllis’99 corpora for French language. 

Traditional documents clustering algorithms use the full-text in the documents to generate feature 
vectors. Such methods often produce unsatisfactory results because there is much noisy 
information in documents. The varying-length problem of the documents is also a significant 
negative factor affecting the performance. In this paper, we propose to investigate the use of 
summarization techniques to tackle these issues when clustering documents [13]. 

The goal of a summary is to produce a short representation of a long document. This 
problem can be solved by building an abstract representation of the whole document and 
then generating a shorter text or by selecting a few relevant sentences of the original text. 
With a large volume of text documents, presenting the user with a summary of each document 
greatly facilitates the task of finding the desired documents so: 
 

• Text Summarization can be used to save time. 
• Text Summarization can speed up other information retrieval and text mining 

processes. 
 

In this paper, we propose to use the Latent Semantic Analysis to produce the Arabic summaries 
that we utilize to represent the documents in the Vector Space Model (VSM) and cluster them, in 
order to enhance the Arabic documents clustering [14]. 

Latent Semantics Analysis (LSA) has been successfully applied to information retrieval [13] 
[15][16][17] as well as many other related domains. It is based on Singular Value Decomposition 
(SVD), a mathematical matrix decomposition technique closely akin to factor analysis that is 
applicable to text corpora. Recently, LSA has been introduced into generic text summarization by 
[18]. 

This paper is organized as follows. The next section describes the Arabic summarization based 
Latent Semantic Analysis Model. Section 3 and 4 discuss respectively the Arabic text 
preprocessing, document representation used in the experiments, and the similarity measures. 
Section 5 explains experiment settings, dataset, evaluation approaches, results and analysis. 
Section6 concludes and discusses future work. 

2. ARABIC TEXT SUMMARIZATION BASED ON LATENT SEMANTIC ANALYSIS 

MODEL 

2.1. LSA Summarization 

In this work, we propose to apply the Latent Semantic Analysis Model in order to generic Arabic 
Text Summarization [13] [17][18][19]. The process starts with the creation of terms by sentences 
matrix   A = [A1 A2 ... An] with each column vector Ai representing the weighted term-frequency 
vector of sentence i in the document under consideration. The weighted term-frequency vector Ai 
= [a1i a2i ... ani]

T of sentence i is defined as: 

( ). ( )ij ij ija L t G t=       

where : 
1. L(tji) is the local weighting for term j in sentence i: L(tji)=tf(tji) where tf(tji) is the number of 

times term j occurs in the sentence. 
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2.  G(tji) is the global weighting for term j in the whole document: ( ) log( / ( ))ij ijG t N n t=  

where N is the total number of sentences in the document, and n(tij) is the number of 
sentences that contain term j. 

 
If there are a total of m terms and n sentences in the document, then we will have an m x n matrix 
A for the document. 

Given an m x n matrix A (such as m≥n) the SVD of A is defined as [20]: 

T
A U V= ∑  

where U = [uij] is an m × n column-orthonormal matrix whose columns are called left singular 
vectors; Σ = diag(σ1, σ2, …, σn) is an n × n diagonal matrix, whose diagonal elements are      non-
negative singular values sorted in descending order, and V = [vij] is an n × n orthonormal matrix, 
whose columns are called right singular vectors. If rank(A) = r, then [21] Σ satisfies: 

1 2 1... ... 0r r nσ σ σ σ σ
+

≥ ≥ = = =f   

The interpretation of applying the SVD to the terms by sentences matrix A can be made from two 
different viewpoints. From transformation point of view, the SVD derives a mapping between the 
m-dimensional space spawned by the weighted term-frequency vectors and the r-dimensional 
singular vector space. From semantic point of view, the SVD derives the latent semantic structure 
from the document represented by matrix A. This operation reflects a breakdown of the original 
document into r linearly-independent base vectors or concepts. Each term and sentence from the 
document is jointly indexed by these base vectors/concepts. 

A unique SVD feature is that it is capable of capturing and modeling interrelationships among 
terms so that it can semantically cluster terms and sentences. Further-more, as demonstrated in 
[21], if a word combination pattern is salient and recurring in document, this pattern will be 
captured and represented by one of the singular vectors. The magnitude of the corresponding 
singular value indicates the importance degree of this pattern within the document. Any sentences 
containing this word combination pattern will be projected along this singular vector, and the 
sentence that best represents this pattern will have the largest index value with this vector. As 
each particular word combination pattern describes a certain topic/concept in the document, the 
facts described above naturally lead to the hypothesis that each singular vector represents a salient 
topic/concept of the document, and the magnitude of its corresponding singular value represents 
the degree of importance of the salient topic/concept. 

Based on the above discussion, authors [18] proposed a summarization method which uses the 
matrix VT. This matrix describes an importance degree of each topic in each sentence. The 
summarization process chooses the most informative sentence for each topic. It means that the 
k’th sentence we choose has the largest index value in k’th right singular vector in matrix VT.   

The proposed method in [18] is as follows: 

1. Decompose the document D into individual sentences, and use these sentences to form the 
candidate sentence set S, and set k = 1. 

 

2. Construct the terms by sentences matrix A for the document D. 
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3. Perform the SVD on A to obtain the singular value matrix ∑, and the right singular vector 
matrix VT. In the singular vector space, each sentence i is represented by the column vector 

[ ]1 2...
T

i i i irυ υ υΨ = of VT. 

 
4. Select the k’th right singular vector from matrix VT. 

 

5. Select the sentence which has the largest index value with the k’th right singular vector, and 
include it in the summary. 

 

6. If k reaches the predefined number, terminate the operation; otherwise, increment k by one, 
and go to Step 4. 

 

In Step 5 of the above operation, finding the sentence that has the largest index value with the 
k’th right singular vector is equivalent to finding the column vector iΨ  whose k’th element ikυ  

is the largest. 

2.2. Arabic Summarization 

In this paper we propose to use the above method to identify semantically important sentences for 
Arabic Summary creations (Figure 1) in order to enhance the Arabic Documents Clustering task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Arabic Text Summarization based on Latent Semantic Analysis Model 

After building the test corpus, we decompose each document into individual sentences; this 
decomposition is a source of ambiguity, because on the one hand punctuation is rarely used in 
Arabic texts and other punctuation that, when it exists, is not always critical to guide the 
decomposition. In addition, some words can mark the beginning of a new sentence (or 
proposition). 
 

Decomposition Sample :                                                                                                                            

Input Data 

Document 

Decomposition using  Table.1 :                                                                                                                            

Sentences Words 

The weighted term-frequency vector       
Ai = [a1i a2i ... ani]

T of sentence i 

Sentences 

 قراءة .1
  الميزانية العامة الجديدة  .2
 البداية نشير .3

النتائج المالية للعام المالي السابق  .4
 تعتبر جيدة با%شارة

Words 

 قراءة

 الميزانية

 العامة

 الجديدة

 البداية

 نشير

 النتائج

Building the terms by sentences 
matrix   A = [A1 A2 ... An] 

 

Apply                   
LSA Model 

Extracting 
the Relevant Sentences 

Document 
Summary 

 الجديدةقراءة في الميزانية العامة 

في البداية نشير إلى أن النتائج 
المالية للعام المالي السابق ه م تعتبر 

 جيدة با)شارة
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For text decomposition [22] uses: 

� A morphological decomposition based on punctuation,  

� Decomposition based on the recognition of markers morphosyntactic or functional words 
such as: أو ,و ,لكن ,حتى, or, and, but, when.  However, these particles may play a role other 
than to separate phrases. 

In our experiments, we use the morphosyntactic markers or functional words cited in [23] to 
decompose the document into individual sentences, in the following table we present some 
examples of these markers or functional words: 

Table 1. Samples of Arabic Morphosyntactic Markers and Functional Words 

 أدوات الربط والوصل في اللغة العربية
The Arabic Morphosyntactic Markers    

and Functional Words  

 in, and, then, or, but, when حتىّ ,لكنْ  ,لكن ,بل ,أم ,أو ,ثم ,و ,في

 also, after, although, as before, but this, not وليس ,ولھذا ,قبل,حيث,بالرغم,بعد,أيضا
 

3. ARABIC TEXT PREPROCESSING  

3.1. Arabic Language Structure 

The Arabic language is the language of the Holy Quran. It is one of the six official languages of 
the United Nations and the mother tongue of approximately 300 million people. It is a Semitic 
language with 28 alphabet letters. His writing orientation is from right-to-left. It can be classified 
into three types: Classical Arabic (العربية الفصحى), Modern Standard Arabic (العربية الحديثة) and 
Colloquial Arabic dialects (العربية العامية).  

Classical Arabic is fully vowelized and it is the language of the holy Quran. Modern Standard 
Arabic is the official language throughout the Arab world. It is used in official documents, 
newspapers and magazines, in educational fields and for communication between Arabs of 
different nationalities. Colloquial Arabic dialects, on the other hand, are the languages spoken in 
the different Arab countries; the spoken forms of Arabic vary widely and each Arab country has 
its own dialect.  

Modern Standard Arabic has a rich morphology, based on consonantal roots, which depends on 
vowel changes and in some cases consonantal insertions and deletions to create inflections and 
derivations which make morphological analysis a very complex task [24]. There is no 
capitalization in Arabic, which makes it hard to identify proper names, acronyms, and 
abbreviations. 

3.2. Stemming 

Arabic word Stemming is a technique that aim to find the lexical root or stem (Figure 2) for 
words in natural language, by removing affixes attached to its root, because an Arabic word can 
have a more complicated form with those affixes. An Arabic word can represent a phrase in 
English, for example the word ـــــــدثونھم  to speak with them” is decomposed as follows”:ليح
(Table 2): 
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Table 2. Arabic Word Decomposition 

Antefix Prefix Root Suffix Postfix 

 ھم ون حدث ي ل

Preposition 
meaning “to” 

A letter meaning 
the tense and the 

person of 
conjugation 

speak 
Termination of 

conjugation 

A pronoun 
Meaning 
“them” 

 
 
 
 
 

 
Figure 1.a : Stem Figure 1.b : Root Figure 1.c: Inheritance 

            

       Figure 2.  An Example of Root/Stem Preprocessing. 

3.3. Root-based versus Stem-based approaches 

Arabic stemming algorithms can be classified, according to the desired level of analysis, as root-

based approach (Khoja [4]); and stem-based approach (Larkey [5]). In this section, a brief 
review on the two stemming approaches for stemming Arabic Text is presented. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

       Figure 3. Example of Preprocessing with Khoja Stemmer algorithm 

Root-Based approach uses morphological analysis to extract the root of a given Arabic word. 
Many algorithms have been developed for this approach. Al-Fedaghi and Al-Anzi algorithms try 
to find the root of the word by matching the word with all possible patterns with all possible 
affixes attached to it [25]. The algorithms do not remove any prefixes or suffixes. Al-Shalabi 
morphology system uses different algorithms to find the roots and patterns [26]. This algorithm 

الحكومة ستتقدم بشكوى للمنظمات ا�قليمية  
و الدولية. الدول و المنظمات التي ستظھر في 
 المحكمة ھي دول تتحلى حقا با#خ!ق الدولية

حكومه ستتقدم بشكوى للمنظمات اقليميه دوليه. 
دول منظمات ستظھر محكمه دول تتحلى حقا 
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removes the longest possible prefix, and then extracts the root by checking the first five letters of 
the word. This algorithm is based on an assumption that the root must appear in the first five 
letters of the word. Khoja has developed an algorithm that removes prefixes and suffixes, all the 
time checking that it’s not removing part of the root and then matches the remaining word against 
the patterns of the same length to extract the root [4]. 

The aim of the Stem-Based approach or Light Stemmer approach is not to produce the root of a 
given Arabic word, rather is to remove the most frequent suffixes and prefixes. Light stemmer is 
mentioned by some authors [27,28,5,29], but till now there is almost no standard algorithm for 
Arabic light stemming, all trials in this field were a set of rules to strip off a small set of suffixes 
and prefixes, also there is no definite list of these strippable affixes.  

In our work, we believe that the preprocessing of Arabic Documents is challenge and crucial 
stage. It may impact positively or negatively on the accuracy of any Text Mining tasks; therefore 
the choice of the preprocessing approaches will lead by necessity to the improvement of any Text 
Mining tasks very greatly.  

To illustrate this, in Figure 2, we show an example using Khoja and Light stemmers. It produces 
different results: root and stem level related to the original word.  

On the other hand Khoja stemmer can produce wrong results, for  example,  the  word  (منظمات)  
which  means (organizations)  is  stemmed  to  (ظمأ) which means  (he was  thirsty)  instead of the 
correct root  (نظم).  

Prior to applying document clustering techniques to an Arabic document, the latter is typically 
preprocessed: it is parsed, in order to remove stop words, and then words are stemmed using tow 
famous Stemming algorithms: the Morphological Analyzer from Khoja and Garside [4], and 

the Light Stemmer developed by Larkey [5]. In addition, at this stage in this work, we 

computed the term-document using tfidf weighting scheme. 

3.4. Document Representation 

There are several ways to model a text document. For example, it can be represented as a bag of 
words, where words are assumed to appear independently and the order is immaterial. This model 
is widely used in information retrieval and text mining [6].  

Each word corresponds to a dimension in the resulting data space and each document then 

becomes a vector consisting of non-negative values on each dimension. Let }{ , ...,1D d dn=
be a set of 

documents and }{ , ...,1T t tm=
the set of distinct terms occurring in D. A document is then 

represented as an m-dimensional vector t
d

uur

. Let ( , )tf d t denote the frequency of term t T∈ in 
document t D∈ . Then the vector representation of a document d is: 

( ( , ), ..., ( , ))1t tf d t tf d tmd
=

uur

 

Although more frequent words are assumed to be more important, this is not usually the case in 
practice (in the Arabic language words like إلى that means to and ـــي  that means in). In fact, more ف

complicated strategies such as the tfidf weighting scheme as described below is normally used 

instead. So we choose in this work to produce the tfidf weighting for each term for the document 
representation.  
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In the practice terms those appear frequently in a small number of documents but rarely in the 
other documents tend to be more relevant and specific for that particular group of documents, and 
therefore more useful for finding similar documents. In order to capture these terms and reflect 

their importance, we transform the basic term frequencies ( , )tf d t into the tfidf (term frequency 

and inversed document frequency) weighting scheme. Tfidf weights the frequency of a term t in a 
document d with a factor that discounts its importance with its appearances in the whole 
document collection, which is defined as: 

( , ) ( , ) log( )
( )

D
tfidf d t tf d t

df t
= ×

 

Here ( )df t  is the number of documents in which term t appears, |D| is the numbers of documents 

in the dataset. We use ,w
t d to denote the weight of term t in document d in the following sections. 

4. SIMILARITY MEASURES 

In this section we discuss the five similarity measures that were tested in [3], and we include 
these five measures in our work to effect the Arabic text document clustering. 

4.1. Metric 

Not every distance measure is a metric. To qualify as a metric, a measure d must satisfy the 

following four conditions. Let x and y be any two objects in a set and ( , )d x y be the distance 
between x and y. 

1. The distance between any two points must be non-negative, that is, ( , ) 0d x y ≥ . 

2. The distance between two objects must be zero if and only if the two objects are identical, 

that is, ( , ) 0d x y = if and only if x y= . 

3. Distance must be symmetric, that is, distance from x to y is the same as the distance from 

y to x, i.e. ( , ) ( , )d x y d y x= . 

4. The measure must satisfy the triangle inequality, which is ( , ) ( , ) ( , )d x z d x y d y z≤ + . 

4.2. Euclidean Distance 

Euclidean distance is widely used in clustering problems, including clustering text. It satisfies all 
the above four conditions and therefore is a true metric. It is also the default distance measure 
used with the K-means algorithm. 

Measuring distance between text documents, given two documents da  and 
d

b  represented by 

their term vectors ta

ur

and 
t
b

ur

respectively, the Euclidean distance of the two documents is defined 
as 

2 1
2( , ) ( ) ,, ,1

m
D t t w wa t aE b t bt

= −∑
=

ur ur
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where the term set is 
}{ , ...,1T t tm=

. As mentioned previously, we use the tfidf value as term 

weights, that is
( , ),w tfidf d tat a =

. 

4.3. Cosine Similarity 

 Cosine similarity is one of the most popular similarity measure applied to text documents, such 
as in numerous information retrieval applications [6] and clustering too [7]. Given two documents 

ta

ur

 and
t
b

ur

, their cosine similarity is: 

.
( , ) ,

t ta bSIM t taC b
t ta b

=
×

ur ur
ur ur

ur ur

 

where ta

ur

 and 
t
b

ur

 are m-dimensional vectors over the term set 
}{ , ...,1T t tm=

. Each dimension 
represents a term with its weight in the document, which is non-negative. As a result, the cosine 

similarity is non-negative and bounded between
[ ]0,1

. An important property of the cosine 
similarity is its independence of document length. For example, combining two identical copies 

of a document d to get a new pseudo document 0d
, the cosine similarity between d and 0d

 is 1, 
which means that these two documents are regarded to be identical. 

4.4. Jaccard Coefficient 

The Jaccard coefficient, which is sometimes referred to as the Tanimoto coefficient, measures 
similarity as the intersection divided by the union of the objects. For text document, the Jaccard 
coefficient compares the sum weight of shared terms to the sum weight of terms that are present 
in either of the two documents but are not the shared terms. The formal definition is: 

.
( , ) 2 2

.

t ta b
SIM t taJ b

t t t ta ab b

=

+ −

ur ur
ur ur

ur ur ur ur

 

The Jaccard coefficient is a similarity measure and ranges between 0 and 1. It is 1 when the 

t ta b
=

ur ur

and 0 when ta

ur

and 
t
b

ur

are disjoint. The corresponding distance measure is 1D SIM
J J

= −  

and we will use D J  instead in subsequent experiments. 

5.5. Pearson Correlation Coefficient 

Pearson’s correlation coefficient is another measure of the extent to which two vectors are related. 
There are different forms of the Pearson correlation coefficient formula. Given the term set 

}{ , ...,1T t tm=
, a commonly used form is 

,1 ,
( , )

2 2 2 2
,1 1 ,

mm w w TF TFat at t b b
SIM t taP b

m mm w TF m w TFat at t t b b

× − ×∑
=

=

− −∑ ∑
= =

  
   

ur ur

 

where ,1
mTF wa t at

= ∑ = and 1 ,
m

TF wtb t b
= ∑ =  
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This is also a similarity measure. However, unlike the other measures, it ranges from -1 to +1 and 

it is 1 when t ta b
=

ur ur

. In subsequent experiments we use the corresponding distance measure, 

which is 
1D SIM

P P
= −

 when 
0SIM P ≥

and 
D SIM

P P
=

when 
0SIM P p

. 

4.6. Averaged Kullback-Leibler Divergence 

In information theory based clustering, a document is considered as a probability distribution of 
terms. The similarity of two documents is measured as the distance between the two 
corresponding probability distributions. The Kullback-Leibler divergence (KL divergence), also 
called the relative entropy, is a widely applied measure for evaluating the differences between 
two probability distributions. 

Given two distributions P and Q, the KL divergence from distribution P to distribution Q is 
defined as 

( || ) log( )
P

D P Q PKL
Q

=

 

In the document scenario, the divergence between two distributions of words is: 

,
( || ) log( ).,1 ,

wm t a
D t t wa t aKL b t w

t b

= ×∑
=

ur ur

 

However, unlike the previous measures, the KL divergence is not symmetric, i.e. 
( || ) ( || )D P Q D Q PK L K L≠ . Therefore it is not a true metric. As a result, we use the averaged KL 

divergence instead, which is defined as: 

( || ) ( || ) ( || ),1 2D P Q D P M D Q M
KL KLAvgKL

π π= +
 

where 
,1 2

P Q

P Q P Q
π π= =

+ +  and 1 2M P Qπ π= +
 For documents, the averaged KL divergence can 

be computed with the following formula: 

( || ) ( ( || ) ( || )),,1 2 ,1

m
D t t D w w D w wa t a t tAvgKL b t bt

π π= × + ×∑
=

ur ur

 

where

, ,
, ,1 2

, ,, ,

ww t a t b

w w w wt a t at b t b

π π= =
+ +

and ,1 2 ,w w wt t a t b
π π= × + ×

  

The average weighting between two vectors ensures symmetry, that is, the divergence from 
document i to document j is the same as the divergence from document j to document i. The 
averaged KL divergence has recently been applied to clustering text documents, such as in the 
family of the Information Bottleneck clustering algorithms [8], to good effect. 

5. EXPERIMENTS AND RESULTS 

In our experiments (Figure 4), we used the K-means algorithm as document clustering method. It 
works with distance measures which basically aim to minimize the within-cluster distances. 
Therefore, similarity measures do not directly fit into the algorithm, because smaller values  
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Figure 4. Description of Our Experiments 

indicate dissimilarity. The Euclidean distance and the averaged KL divergence are distance 
measures, while the cosine similarity, Jaccard coefficient and Pearson coefficient are similarity 
measures. [3] applies a simple transformation to convert the similarity measure to distance values. 

Because both cosine similarity and Jaccard coefficient are bounded in [ ]0 , 1
and monotonic, we 

take 1D SIM= − as the corresponding distance value. For Pearson coefficient, which ranges from 

−1 to +1, we take 1D SIM= − when 0SIM ≥  and D SIM= when 0SIM p . For the testing 
dataset, we experimented with different similarity measures for three times: without stemming, 
and with stemming using the Morphological Analyzer from Khoja and Garside [4] , and the Light 
Stemmer [5],  in  two case: in the first one, we apply the proposed method above to summarize 
for the all documents in dataset and then cluster them. In the second case, we cluster the original 
documents without summarization.  Moreover, each experiment was run 5 times and the results 
are the averaged value over 5 runs. Each run has different initial seed sets. 
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5.1. Dataset 

The testing dataset [9] (Corpus of Contemporary Arabic (CCA)) is composed of 12 several 
categories, each latter contains documents from websites and from radio Qatar. A summary of the 
testing dataset is shown in Table 3.  

As mentioned previously, the baseline method is the full-text representation, for each document, 
we removed stop words and stem the remaining words by using Khoja stemmer’s and Larkey 
stemmer’s. Then, to illustrate the benefits of our proposed approach, we use document summaries 
to cluster our dataset. 

Table 3.  Number of texts and number of Terms in each category of the testing dataset 

Text Categories Number of Texts Number of Terms 

Economics 29 67 478 
Education 10 25 574 

Health and Medicine 32 40 480 
Interviews 24 58 408 

Politics 9 46 291 
Recipes 9 4 973 
Religion 19 111 199 
Science 45 104 795 

Sociology 30 85 688 
Spoken 7 5 605 
Sports 3 8 290 

Tourist and Travel 61 46 093 
 

5.2. Results 

The quality of the clustering result was evaluated using two evaluation measures: purity and 
entropy, which are widely used to evaluate the performance of unsupervised learning algorithms 
[10] [11].  

The purity measure evaluates the coherence of a cluster, that is, the degree to which a cluster 
contains documents from a single category. Given a particular cluster Ci of size ni, the purity of Ci 
is formally defined as: 

1
( ) max( )h

i i
hi

P C n
n

=  

where max( )h

i
h

n is the number of documents that are from the dominant category in cluster Ci 

and 
h

in represents the number of documents from cluster Ci assigned to category h. In general, the 
higher the purity value, the better the quality of the cluster is. 

The entropy measure evaluates the distribution of categories in a given cluster. The entropy of a 
cluster Ci with size ni is defined to be 
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where c is the total number of categories in the data set and 
h

in is the number of documents from 
the hth class that were assigned to cluster Ci. 

The entropy measure is more comprehensive than purity because rather than just considering the 
number of objects in and not in the dominant category, it considers the overall distribution of all 
the categories in a given cluster. Contrary to the purity measure, for an ideal cluster with 
documents from only a single category, the entropy of the cluster will be 0. In general, the smaller 
the entropy value, the better the quality of the cluster is. Moreover, the averaged entropy of the 
overall solution is defined to be the weighted sum of the individual entropy value of each cluster, 
that is, 

1

( )
k

i
i

i

n
Entropy E C

n=

=∑  

where n is the number of  documents in our dataset. 

In the following, The Table 4 and the Table 5 show the average purity and entropy results for 
each similarity/distance measure with the Morphological Analyzer from Khoja and Garside [4], 
the Larkey’s Stemmer [5], and without stemming using the full- text representation. 

On the other hand, the Table 6 and the Table 7 illustrate the results using document summaries 
with the same stemmers and similarity/distance measures.  

5.2.1. Results Using Full-Text Representation 

5.2.1.a. Results with Stemming 

In Table 4, with Khoja’s stemmer, the overall purity values for the Euclidean Distance, the 
Cosine Similarity and the averaged KL Divergence are quite similar and perform bad relatively to 
the other measures. Meanwhile, the Jaccard measure is the better in generating more coherent 
clusters with a considerable purity score.  

In this context, using the Larkey’s stemmer, the purity value of the averaged KL Divergence 
measure is the best one with only 1% difference relatively to the other four measures. 

Table 4.  Purity and Entropy Results with Khoja’s Stemmer, and Larkey’s Stemmer Using    
Full-Text Representation 

 

5.2.2.b. Results without Stemming 

The Table 5, shows the higher purity scores (0.77) than those shown in the Table 4 for the 
Euclidean Distance, the Cosine Similarity and the Jaccard measures. In the other hand the 

 Euclidean Cosine Jaccard Pearson KLD 

Khoja’s stemmer 
Entropy 0.26 0.25 0.23 0.27 0.26 
Purity 0.6 0.6 0.64 0.61 0.6 

Larkey’s stemmer 
Entropy 0. 286 0. 286 0. 286 0. 286 0.30 
Purity 0.52 0.52 0.52 0.52 0.53 
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Pearson Correlation and averaged KL Divergence are quite similar but still better than purity 
values for these measures in the Table 4. 

The overall entropy value for each measure is shown in the two Tables. Again, the best results are 
there in the Table 5 that shows the better and similar entropy values for the Euclidean Distance, 
the Cosine Similarity and the Jaccard measures. However, the averaged KL Divergence performs 
worst than the other measures but better than the other one in the other Table (Table 4). 

Table 5. Purity and Entropy Results without Stemming Using Full-Text Representation 

 

 

 

5.2. 2. Results Using Document Summaries 

5.2.2.a. Results with Stemming 

Table 6 presents the average purity and entropy results for each similarity/distance measures 
using document summaries instead the full-text representation with Khoja’s stemmer and 
Larkey’s stemmer. 

As shown in Table 6, for the two stemmers, Euclidean Distance, Cosine Similarity, and Jaccard 
measures are slightly better in generating more coherent clusters which means the clusters have 
higher purity and lower entropy scores. On the other hand, Pearson and KLD measures perform 
worst relatively to the other measures. Comparing these results with those obtained in Table 4, we 
can conclude that the obtained scores was improved specially the overall entropy values. 

Table 6.  Purity and Entropy Results with Khoja’s Stemmer, and Larkey’s Stemmer Using    
Documents Summaries 

 

5.2.2.b. Results without Stemming 

A closer look at Tables 5 and 7 shows that, in this latter, the overall entropy values of Euclidean 
Distance, Cosine Similarity, Jaccard and Pearson measures are nearly similar and proves their 
ability to produce coherent clusters. 

On the one side, in the Table 6 we can remark that the purity scores (0.385 Khoja’s stemmer, 
0.339 Larkey’s stemmer) are generally higher than those shown in the Table 7 for the all 
similarity/distance measures, on the other side, the overall entropy values in this table for the 
Euclidean Distance, the Cosine Similarity and the Jaccard measures with Khoja’s stemmer 
performs bad than those in the Table 7. However, with Larkey’s stemmer the overall entropy 
values for each measure performs contrary to their exiting in Table 7. 

 

 

 Euclidean  Cosine  Jaccard Pearson  KLD 

Entropy  0.16 0.16 0.16 0.17 0.18 
Purity  0.77 0.77 0.77 0.69 0.69 

 Euclidean Cosine Jaccard Pearson KLD 

Khoja’s 
stemmer 

Entropy 0.1272 0.1275 0.1275 0.150 0.151 
Purity 0.385 0.385 0.385 0.381 0.370 

Larkey’s 
stemmer 

Entropy 0.168 0.169 0.169 0.173 0.178 
Purity 0.336 0.342 0.339 0.316 0.342 
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Table 7. Purity and Entropy Results without Stemming Using Documents Summaries 

 

 

 

The above results lead as to conclude that: 

First, the Tables 4 and 5 show  that the use of stemming affects negatively the clustering, this is 
mainly due to the ambiguity created when we applied the stemming (for example, we can obtain 
two roots that made of the same letters but semantically different). Our observation broadly 
agrees with M.El kourdi, A.Bensaid, and T.Rachidi in [12], and with our works in [14][17]. 

Second, the obtained overall entropy values shown in Tables 6 and 7 proves that the summarizing 
documents can make their topics salient and improve the clustering performance [13] for two 
times: with and without stemming. However, the obtained purity values seem not promising to 
improve the clustering task; this is can be due to the bad choice of the number of sentences in 
summaries because this latter has great impact on the quality of summaries thus could lead to 
different clustering results. Too few sentences will result in mach sparse vector representation and 
are not enough to represent the document fully. Too many sentences may introduce noise and 
degrade the benefits of the summarization. 

6. CONCLUSION 

In this paper, we have proposed to illustrate the benefits of the summarization using the Latent 
Semantic Analysis Model, by comparing the clustering results based on summarization with the 
full-text baseline on the Arabic Documents Clustering for five similarity/distance measures for 
three times: without stemming, and with stemming using Khoja’s stemmer, and the Larkey’s 
stemmer.  

We found that the Euclidean Distance, the Cosine Similarity and the Jaccard measures have 
comparable effectiveness for the partitional Arabic Documents Clustering task for finding more 
coherent clusters in case we didn’t use the stemming for the full-text representation. On the other 
hand the Pearson Correlation and averaged KL Divergence are quite similar in theirs results but 
there are not better than the other measures in the same case. 

Instead of using full-text as the representation for document clustering, we use LSA model as 
summarization techniques to eliminate the noise on the documents and select the most salient 
sentences to represent the original documents. Furthermore, summarization can help overcome 
the varying length problem of the diverse documents. In our experiments using document 
summaries, we remark that again the Euclidean Distance, the Cosine Similarity and the Jaccard 
measures have comparable effectiveness to produce more coherent clusters than the Pearson 
Correlation and averaged KL Divergence, in the two times: with and without stemming. 
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