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ABSTRACT 

Subspace clustering discovers the clusters embedded in multiple, overlapping subspaces of high 

dimensional data. Many significant subspace clustering algorithms exist, each having different 

characteristics caused by the use of different techniques, assumptions, heuristics used etc. A comprehensive 

classification scheme is essential which will consider all such characteristics to divide subspace clustering 

approaches in various families. The algorithms belonging to same family will satisfy common 

characteristics. Such a categorization will help future developers to better understand the quality criteria to 

be used and similar algorithms to be used to compare results with their proposed clustering algorithms. In 

this paper, we first proposed the concept of SCAF (Subspace Clustering Algorithms’ Family). 

Characteristics of SCAF will be based on the classes such as cluster orientation, overlap of dimensions etc. 

As an illustration, we further provided a comprehensive, systematic description and comparison of few 

significant algorithms belonging to “Axis parallel, overlapping, density based” SCAF.  
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1. INTRODUCTION 

Clustering is the most common data mining process which aims at dividing datasets into subsets 

or clusters in such a way that the objects in one subset are similar to each other with respect to a 

given similarity measure, while objects in different subsets are dissimilar [1]. Clustering is 

commonly and heavily used in variety of application areas such as in medical science, 

environmental science, astronomy, geology, business intelligence and so on [2]. It helps users in 

understanding natural grouping in a dataset or structure of the dataset. Clustering is also treated as 

a form of data compression. Thus, in general, clustering can be treated as a first step in various 

data processing methods such as classification, indexing, data compression, etc.  

 

While lot of work has been already done in the area of clustering [1, 3, 4], new approaches need 

to be proposed to cope with the modern capabilities of huge data generation. Clustering the real 

world datasets need to deal with objects modeled by high dimensional data, where each object is 

described by hundreds or thousands of attributes.  For instance, there are many computer vision 

applications, such as motion segmentation, face clustering with varying illumination, pattern 

classification, temporal video segmentation etc. In such applications, image data is very high 

dimensional. Another example of high dimensional data can be found in the area of molecular 

biology [5] and CAD (Computer Aided Design) databases. However, such high dimensional data 

initiates different challenges for conventional clustering approaches [6]. In particular, the 
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traditional clustering algorithms [7, 8] fail in such cases due to the inherent sparsity of the data 

objects and do not produce meaningful clusters.  

 

In high dimensional data, clusters are embedded in various subsets of the entire dimension space 

[9]. A new research area of high dimensional data clustering detects such clusters embedded in 

different, variable length subspaces. There exist lot of approaches for subspace clustering and 

numerous algorithms are being proposed nearly every day. However, as this field is yet latest and 

emerging, there is no common ground on the basis of which we can bring all the algorithms on a 

universal platform, so as to compare their results. Hence, we need to effectively classify all these 

approaches to enable compare their various characteristics / features. 

 

Few surveys of high dimensional data clustering approaches are available in literature [5, 10, 11, 

12, 13]. An extremely comprehensive survey [10] illustrates different terminologies used and 

discusses various assumptions, heuristics or intuitions forming the basis of different high 

dimensional data clustering approaches. However, there is a need of classifying all subspace 

clustering approaches using multiple parameters which will group algorithms of similar 

characteristics in one family. Thus, the purpose of this paper is to provide the concept of 

clustering family SCAF (Subspace Clustering Algorithms’ Family). For example, “Axis parallel, 

overlapping, bottom up, density based subspace clustering algorithms” will form one family. A 

researcher, who is using the same techniques to develop his / her clustering algorithm, will 

compare only with the algorithms belonging to this family. 

 

This paper is structured as follows. The Remaining part of this section provides a short lead up to 

challenges involved in high dimensional data clustering and traditional methods of dimensionality 

reduction. Section 2 presents a detailed survey of various existing classification schemes of 

subspace clustering approaches followed by the introduction to the notion of SCAF. For ready 

reference, section 3 presents a comparative study of few significant algorithms belonging to 

“Axis parallel, overlapping, density based” SCAF. A comparative chart is shown indicating 

working principles, heuristics used, shape and size of the clusters, run time, accuracy as well as 

limitations etc. of different algorithms, followed by the conclusion in section 4. 

 

1.1 Challenges of High Dimensional Data Clustering 

There are three main challenges to high dimensional data clustering. 

1.1.1 Curse of Dimensionality or Sparse Data  

Many of the research streams like statistics, machine learning, data mining etc. contribute largely 

in the vigorous development of data clustering. However, these streams focus mainly on distance-

based cluster analysis. Intuitively, the distance indicates similarity or dissimilarity between two 

data points (Figure 1). The distance between any two data objects is usually measured by a 

distance metric using the differences between the values of the attributes [2]. Typically, few 

clustering approaches measure Euclidian distance, using one of the Lp-norms. Others use a 

pattern, based on the behavior of attribute values to decide the similarity between data points. As 

such, different approaches result in different clustering models [10].  
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Figure 1. Dividing data in 2-clear groups using the distance between data points 

Determination of simple Euclidian distance may not be useful in clustering high dimensional data 

[6]. Traditional clustering algorithms consider all the dimensions of an input dataset to measure 

such a distance between any two data points. While dealing with high dimensional data, 

clustering faces the hitches of ‘Curse of dimensionality’ [15] and the related sparsity problems. 

These hitches result from the fact that a fixed number of data points become increasingly ‘sparse’ 

as dimensionality increases.  

In effect, the amount of data to sustain a given density increases exponentially with the 

dimensionality of the input space. On the other hand, the sparsity increases exponentially given a 

constant amount of data, with data points tending to become equidistant from one another. This 

will badly affect any clustering method which is based on either density or the distance between 

data points. Curse of dimensionality is illustrated in a simple way in Figure 2.  

 

Figure 2. The curse of dimensionality 

In Figure 2, randomly generated 200 data points have been used and difference between 

maximum distance and minimum distance among every pair of points is computed. Ref. [6, 16] 

show that, for certain data distributions, the relative difference of the distances between closest 

and farthest data points tends to 0 (for Ld metric, and d ≥ 3) as number of dimensions increases. 

i.e.  

0)(lim =
−

∞→

MinDist

MinDistMaxDist
d        (1) 

where d is the number of dimensions [17].  

Thus, eq. (1) shows the potential problems in high dimensional data clustering, in the cases where 

the data distribution generates relatively uniform distance between data points.     

Dimension 1 Dimension 1 

Dimension 2 Dimension 2 
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1.1.2 Irrelevant Dimensions  

Apart from the curse of dimensionality, high dimensional data contains many of the dimensions 

often irrelevant to clustering or data processing [9]. These irrelevant dimensions confuse 

clustering algorithms by hiding clusters in noisy data. In such a case, the common approach is to 

reduce the dimensionality of the data, of course, without losing important information. Thus, 

clustering is often preceded by a ‘feature selection’ step which attempts to remove irrelevant 

features from the data. However, in high dimensional data, clusters are embedded in various 

subspaces. One dimension may be useful in some combinations of subspace for clustering the 

data, whereas, it can be irrelevant in some other subspace formation. Thus a global filtering 

approach for feature selection is not feasible. 

 

1.1.3 Correlations among Dimensions  

As there is large number of dimensions, there is some correlation among attributes. So, it may be 

possible that the clusters are not aligned to axis parallel, but can be arbitrarily oriented. 

 

These problems make the average density in the data space quite low. Not only that the density in 

data space is low, but the noise values are also uniformly distributed in high dimensional space 

[18]. Thus, it is not effective to search for clusters in high dimensional data using the traditional 

clustering approaches.  

 

There can be two ways to deal with the problem of high dimensionality. The first way would be 

to use variety of techniques performing dimensionality reduction prior to clustering. It reduces the 

number of dimensions in the given data, so that one can use existing clustering approaches 

without changing the meaning of the data. The other way is known as subspace clustering which 

solves the problems of high dimensional data clustering by building clusters hidden in the lower 

dimensional subspaces of the original dimension space. 

 

1.2 Dimensionality Reduction 

Fundamental techniques to eliminate irrelevant dimensions can be considered as ‘Feature 

Selection’ or ‘Feature Transformation’ techniques [19].  

 

Feature transformation methods project the higher dimensional data onto a smaller space while 

preserving the distance between the original data objects. These methods use aggregation, 

dimensionality reduction etc. for summarizing data and creating linear combinations of the 

attributes. Such techniques enhance the data analysis in some cases as they are effective in 

removing noise. The commonly used methods are Principal Component Analysis [3, 20], Singular 

Value Decomposition [16] etc. There is a major limitation to feature transformation approach. 

This approach does not actually remove any of the attributes and hence the information from not-

so-useful dimensions is preserved, making the clusters less meaningful. Thus the method is best 

suited only when there are not irrelevant dimensions in the data.  

 

Feature selection methods try to remove some of the irrelevant dimensions from the high 

dimensional feature space. These methods require searching through various attribute subsets and 

need evaluating these subsets against some given criteria for clustering. Few popular feature 

selection techniques are discussed in ref. [21, 22, 23, 24]. The problem with these techniques is 

that they convert many dimensions to a single set of dimensions which later makes it difficult to 

interpret the results. Also, these approaches are inappropriate if the clusters lie in different 

subspaces of the dimension space.  
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While, all these dimensionality reduction techniques are quite successful on a large set of 

database applications, they face difficulty when clusters exist in various subspaces of the 

dimension space. 

 

1.3 Subspace Clustering 

Subspace clustering is the commonly used extension to feature selection which searches for 

groups of clusters in different subsets of the entire feature space of a high dimensional dataset. 

Subspace clustering thus finds interesting sub-sets of dimensions in the entire feature space and 

then the clusters hidden in those subspaces. Formally, a subspace cluster is defined as (Subspace 

of the feature space, Subset of data points). Or  

 

     C = (O, S) where O ⊆ DB, S ⊆ D  

     

Here, C is a subspace cluster, O is a set of objects in given database DB and S is a subspace 

projection of the dimension space D.       

 

Subspace clustering needs to face two challenges - First to search for the relevant subspaces and 

then to find out the clusters in each of these subspaces [10]. As the search space for subspaces in 

general is infinite, it is necessary to apply some heuristic approach to make the processing 

feasible [15, 16]. Heuristic approach decides the characteristics of the algorithm. Once the 

subspaces with higher probability of comprising good quality clusters are identified, any 

clustering algorithm can be applied to find the hidden clusters. 

 

Motivated with this fact that the clusters can be discovered in various subspaces of the dimension 

space, a significant amount of research has been presented aiming to discover such clusters of 

variable length subspaces. The first subspace clustering algorithm is proposed by R. Agrawal [9]. 

Later, many significant algorithms have been presented [14, 27, 28, 29, 30, 31, 32]. While all 

these approaches organize data objects into groups, each of them uses different methodologies to 

define clusters. They make different assumptions for input parameters. They define clusters in 

dissimilar ways as overlapping / non-overlapping, fixed size and shape / varying size and shape 

and so on. The choice of a search technique, such as top down / bottom up, can also determine the 

characteristics of the clustering approach.  

 

In addition to the expectations that the subspace clustering algorithms should be efficient and 

produce high quality, interpretable clusters; they must also be scalable with respect to the number 

of objects and number of dimensions. As such, it is nearly impossible to define a universal 

measure of quality to be used to compare the clustering results. Hence, a proper categorization of 

all such algorithms can help future developers to better understand the quality criteria to be used 

to test their proposed clustering algorithms. 

 

The next section talks about various classification schemes of subspace clustering approaches.  

 

2. CLASSIFICATION SCHEMES 

Existing subspace clustering approaches can be categorized using various classification schemes. 

There exist few survey papers which classify various subspace clustering approaches in different 

ways.  

 

The well known survey specified by P. Lance et al. [13] suggests two major types of subspace 

clustering as top down and bottom up, based on the search strategy used. The top down 

approaches are further classified as per cluster weighting methods and per instance weighting 

methods. However, in this classification, the authors have considered only grid based approaches 
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and have classified them further based on the size of grid as static grid and adaptive grid 

approaches. No clear division is stated by the authors about bottom up approaches as grid based 

or density based. We have shown this classification of bottom up approaches in the following 

sections. 

 

Ilango et al [11] classify high dimensional clustering approaches as partitioning approaches, 

hierarchical approaches, density based approaches, grid based approaches and model based 

approaches and further present a survey of various grid based approaches. However, there is no 

specific categorization about subspace clustering approaches or traditional clustering approaches.  

Karlton S. et al [33] classify subspace clustering approaches into two categories: density based 

clustering and projected clustering. As per the authors, density based clustering approaches such 

as CLIQUE (Clustering In QUEst) [9], MAFIA (Merging Adaptive Finite Intervals And is more 

than a clique) [28], SUBCLU (density connected SUBspace CLUstering) [14] are based on 

density of data. Projected clustering is observed in approaches such as PROCLUS (PROjected 

CLUStering) [30], CLARANS [34], ORCLUS (arbitrarily Oriented projected CLUStering) [35], 

DOC (Density based Optimal projective Clustering) [31] etc. However, it is not clearly stated by 

the authors on which basis the density based approaches differ from projected approaches. 

 

H.P. Kriegel et al [10] classify different high dimensional data clustering approaches as subspace 

clustering (or axis parallel clustering), correlation clustering (arbitrarily oriented clustering) and 

pattern based clustering. Correlation clustering approaches aim at finding clusters, which may 

exist in any arbitrarily oriented subspaces, e.g. ORCLUS [35]. Pattern based clustering aims at 

grouping objects in clusters exhibiting similar trend in a subset of attributes, e.g. p-Cluster [36]. 

Axis parallel subspace clustering algorithms are further classified using problem oriented 

categorization as subspace clustering, projected clustering, soft projected clustering and hybrid 

algorithms.  Projected clustering approaches aim at finding a unique assignment of each object to 

exactly one subspace cluster or noise, e.g. PreDeCon (subspace PREference weighted DEnsity 

CONnected clustering) [32]. In soft projected clustering algorithms, the number k of clusters is 

known in advance and an objective function is defined which is optimized to generate k-number 

of clusters, e.g. COSA (Clustering Objects on Subsets of Attributes) [37]. Subspace clustering 

algorithms aim at finding all subspaces where clusters can be identified, e.g. SUBCLU [14]; and 

hybrid algorithms aim at finding something in between, i.e. these algorithms may find 

overlapping clusters, but may not claim that these will search for every possible subspace and 

every possible cluster. e.g. FIRES (FIlter REfinement Subspace clustering) [29].  

 

One more simple classification is stated in [38]. Depending on the underlying cluster definition 

and parameterization of the resulting clusters, authors have classified subspace clustering 

approaches as cell based, density based and clustering oriented approaches. Cell based 

approaches search for sets of fixed or variable grid cells containing more than a certain threshold 

objects, e.g. CLIQUE [9]. Density based approaches define clusters as dense regions separated by 

sparse regions, e.g. SUBCLU [14] and  clustering oriented approaches define properties of the 

entire set of clusters, like the number of clusters, their average dimensionality or statistically 

oriented properties, e.g. PROCLUS [30]. In fact, there exist other classifications, which the 

authors have not taken care of.  

 

2.1 Subspace Clustering Algorithm Family (SCAF)  

Most of the classification schemes stated in the previous section are not comprehensive in nature. 

They classify existing approaches into various classes and the classes vary from author to author.  

 

However, a comprehensive classification scheme is necessary which will divide existing 

clustering approaches into various families, so that the algorithms belonging to one family will 

satisfy common characteristics. For example - axis parallel, overlapping, bottom up, density 
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based subspace clustering algorithms form one family. This concept will help categorize various 

existing approaches not only in different classes but also in different families. Thus, a new 

algorithm proposed by a researcher will be compared only with the algorithms belonging to the 

respective family.  

 

We propose that, various classes decide the characteristics of a common family so that similar 

algorithms will belong to that family. With this view, the characteristics of a family will be based 

on the classes as mentioned in Table 1. 

 

With reference to Table 1, combinations of different classes build different SCAF, such as – 

i. Axis parallel, overlapping, bottom up, grid based SCAF 

ii. Axis parallel, overlapping, bottom up, density based SCAF 

iii. Axis parallel, non-overlapping, bottom up, grid based SCAF 

iv. Axis parallel, non-overlapping, bottom up, density based SCAF 

v. Arbitrarily oriented, overlapping, bottom up, grid based SCAF 

vi. Arbitrarily oriented, overlapping, bottom up, density based SCAF 

vii. Arbitrarily oriented, non-overlapping, bottom up, grid based SCAF 

viii. Arbitrarily oriented, non-overlapping, bottom up, density based SCAF 

 

Table 1. SCAF classes and corresponding characteristics 

Sr. No. Class Characteristics of the family 

[1] Cluster orientation Axis parallel 

Arbitrarily Oriented 

[2] Overlap of dimensions or objects Overlapping 

Non-overlapping 

[3] Search methods Bottom up 

Top down 

[4] Use of grid Grid based 

Density based 

 

Similarly, different combinations of top down approaches could be identified. These classes 

building various SCAFs are discussed in the following sections.  

 

2.2 Overlap of Dimensions or Objects - Overlapping / Non-overlapping 

On a very elemental level, subspace clustering algorithms can be classified as overlapping 

clusters and non-overlapping clusters according to the results they produce. Overlapping clusters 

allow data points to belong to several clusters in varying subspace projections. Non-overlapping 

clusters assign each object either to a unique cluster or to a noise.  

 

In Figure 3, Cluster1 and Cluster2 represent overlapping subspace clusters as they share a 

common object p7. Cluster3, cluster5 are non-overlapping subspace clusters appearing in 

dimensions {d5, d6, d7} and {d13, d14, d15} respectively. Cluster4 represents a traditional full 

dimensional cluster. 
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Figure 3. Overlapping and non-overlapping clusters 

Overlapping cluster algorithms aim at finding every possible cluster in every possible subspace of 

the feature space. The major examples of such algorithms include CLIQUE [9], ENCLUS 

(ENtropy based subspace CLUStering) [27], MAFIA [28], SUBCLU [14], FIRES [29] etc. 

Significant examples of non-overlapping approaches are PROCLUS [30], DOC [31], PreDeCon 

[32] etc.  

 

Figure 4.  Overlapping / non-overlapping subspace clusters 

2.3 Search Methods : Bottom Up / Top Down 

Another fundamental classification of subspace clustering approaches is based on search 

techniques employed, such as ‘top down’ or ‘bottom up’ [13]. The top down approach starts 

finding clusters in full feature space by giving equal weights to all dimensions. Each dimension is 

assigned with a weight for each cluster and iterates multiple times to regenerate the clusters. This 

continues till it reaches the intended length of subspaces, which is an input parameter. These 

clusters are partitions of dataset, thus creating non-overlapping clusters, e.g. PROCLUS [30], 

ORCLUS [35], FINDIT (Fast and INtelligent subspace clustering algorithm using Dimension 

voTing) [39].  

 

Bottom up search methods are based on downward closure property of density as in apriori 

property, which reduces the search space significantly [9]. These approaches initially test each 

dimension for clustering and select those dimensions which have quality above a given threshold. 

This process subsequently combines these dimensions to build candidate subspaces which can be 

checked against given threshold value, to prune not so important subspaces. The algorithm stops 

Subspace Clustering 

Algorithms 

Non-overlapping 

Algorithms 

Overlapping 

Algorithms 

e.g. CLIQUE 

       MAFIA 

       SUBCLU 

e.g. PROCLUS 

       DOC 

       PreDeCon 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.2, March 2013 

77 

when it cannot find any more quality subspaces. Few significant algorithms of this category are 

CLIQUE [9], DOC [31] and MAFIA [28].  

 

Figure 5. Top down / bottom up search based subspace clustering 

Both top down and bottom up approaches are commonly used in the domain of data mining. Both 

types of algorithms attempt to detect subspace clusters efficiently. Top down approaches first 

identify cluster members and then decide the related subspaces of these clusters. Whereas, bottom 

up approaches first predict interesting subspaces and then search for the clusters in those 

subspaces. Figure 5 presents a classification scheme based on search techniques employed in 

subspace clustering approaches.  

 

2.4 Cluster Orientation – Axis Parallel / Arbitrarily Oriented 

Subspace clustering algorithms can also be classified as axis parallel approaches which aim at 

finding clusters in axis parallel subspaces of the data space, e.g. CLIQUE [9]. Correlation 

clustering aims at finding clusters in arbitrarily oriented subspaces of the feature space, e.g. 

ORCLUS [35]. These approaches are also known by the names as correlation clustering, 

generalized subspace clustering or oriented clustering. 

 

      

 

 

 

 

Figure 6. Axis parallel clusters and arbitrarily oriented clusters 

Figure 6 shows that, clusters can be better expressed in arbitrarily oriented subspaces. However, if 

we consider arbitrarily oriented clusters, the computational efficiency goes quite low compared to 

axis-parallel approaches, as the number of possible subspaces goes to infinite. Thus, depending 

on the applications, sometimes it is reasonable to simply locate axis parallel clusters, as finding 

such clusters is more efficient compared to correlation clusters.   
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2.5 Use of Grid – Grid Based / Density Based 

Grid based clustering approach is based on cell approximation of data space. This approach uses a 

multi-resolution grid data structure which quantizes the object space into a finite number of cells 

forming an axis parallel grid structure. It first partitions the range of values in every dimension 

into equal sized / variable sized cells and then combines the high density adjacent cells to form a 

cluster. Resultant clusters thus consist of set of cells containing more than a threshold τ number of 

objects.  

|Oi | ≥ τ for i = 1..k,  k = total number of clusters detected 

Figure 3 shows an example of 2-d static grid containing clusters.  

CLIQUE [9], the pioneering approach, uses grid based technique for subspace clustering. Few 

variants of CLIQUE are DOC [31], ENCLUS [27], MAFIA [28], STING (STatistical 

INformation Grid) [40], etc. 

 

Depending on the grid of fixed width or variable width, these approaches can be further 

categorized as static or adaptive. Static grid can be regarded as discretization of the data space, 

whereas adaptive grid can be positioned arbitrarily to maximize the objects in a particular region. 

MAFIA [28] is the first adaptive grid based clustering approach. AMR (Adaptive Mesh 

Refinement) [41] is another variant of MAFIA.  

 

In summary, grid based approaches are the first subspace clustering approaches based on simple 

but efficient cluster model. However, the major limitation of all these techniques is caused by 

positioning of grid. Shapes of the clusters found, are always a polygon with lines parallel to axes 

corresponding to subspaces. Sizes of the clusters always depend on orientation of the grid. These 

algorithms give better efficiency in medium range of dimensions. However, as the number of 

dimensions increases, the number of cells increases exponentially and this may degrade the 

efficiency to a large extent. In such cases, density based approaches are found superior. 

 

Figure 7. Classification based on use of grid and density notion 

Density connected clustering approaches are based on the clustering paradigm specified by 

DBSCAN [42]. They compute the density around a certain point by searching its ε–

neighborhood. It requires two input parameters, µ-threshold and ε–radius, to define whether an 

area is dense or not. A cluster is then defined as a set of dense objects having more than µ number 

of objects in ε–neighborhood. A density based subspace cluster (O, S) with respect to density 

threshold µ and ε–radius, can be defined as– an objects o is dense : ∀o ϵ DB, |Nε(o)| ≥ µ, where 

|Nε(o)| is the ε–neighborhood of object o and can be derived as – 

e.g. SUBCLU 

       SURFING 
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|Nε(o)| = { p ϵ DB | DistS(o,p) ≤ ε }. 

DistS designates the distance function applied on a set of dimensions S. 

 

Thus, all core objects together which share common neighbourhood, define the outline of a 

cluster. Non-core objects within the neighbourhood of core objects form the boundary of the 

cluster. The objects which do not belong to any of the clusters are regarded as noise points. 

Density based approaches can thus find clusters of any shape and size and are noise tolerant. 

The first density based subspace clustering algorithm is SUBCLU [14]. Other examples are 

FIRES [29], PreDeCon [32], DUSC (Dimensionality Unbiased Subspace Clustering) [43] and  

SURFING (SUbspace Relevant For ClusterING) [44]. 

 

Density based subspace clustering approaches can detect clusters of any size / shape which may 

be positioned arbitrarily, thus eliminating the problems associated with grid based approaches. 

However, as the density measurement is again based on distance, density based clustering 

approaches compute distances by considering only the relevant dimensions.  

 

Until now, we have discussed individual classes, classifying various subspace clustering 

algorithms. SCAF helps classify these algorithms into families making it friendlier to researchers. 

 

2.6 Advantages of SCAF 

In general, comparing and evaluating the results of any subspace clustering algorithm is based on 

parameters and techniques used. Clustering being an unsupervised learning, there is no 

information as to which subspaces contains clusters in real life data. As this field of subspace 

clustering is yet latest and emerging, there is no common ground available to bring all the 

algorithms on a universal platform, so that their results could be compared. As a result, when a 

research publication claims that its proposed algorithm offers better results, it might have limited 

comparison of the results with its preferred algorithms or its preferred paradigm only. 

  

The concept of SCAF will help solve this problem of comparing clustering results against the 

preferred one. As a future work, we can further identify appropriate comparison measures or 

evaluation paradigms for each of the family. Whenever, a researcher suggests a new subspace 

clustering algorithm, he / she will apply various classes and decide the family to which the new 

algorithm belongs. Each family will have few benchmarking clustering algorithms against which 

the results of the new algorithm can be compared and tested. Thus the concept of clustering 

family will present a common basis for research in subspace clustering, enabling the researchers 

to have appropriate experimentation and testing with correct assumptions. 

 

A comparative study of few significant algorithms belonging to “Axis parallel, overlapping, 

bottom up, density based” SCAF is presented in the next section. We tested these algorithms 

using synthetic dataset ‘diabetes’ consisting of 8 dimensions and 779 instances, which is 

supported by OpenSubspace [38], an open source framework for evaluation and exploration of 

subspace clustering algorithms in Weka. OpenSubspace supports SUBCLU and FIRES which 

belongs to our example subspace clustering family. So we compared the results of other 

approaches with FIRES & SUBCLU.  

 

3.  “AXIS PARALLEL, OVERLAPPING, DENSITY BASED” SCAF 

“Axis parallel, overlapping, density based” algorithms are summarized based on their working 

strategies, heuristics used, data structures used, shape and size of the clusters, run time, accuracy, 

limitations etc. as follows. 
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3.1 SUBCLU (density-connected SUBspace CLUstering) 

SUBCLU [14] is the first density based subspace clustering approach extending the concept of 

DBSCAN for high dimensional data. It is based on a greedy algorithm to detect the density 

connected clusters in all subspaces of high dimensional data. It uses monotonicity property to 

remove higher dimensional projections reducing the search space largely. It overcomes the 

limitations of grid-based approaches such as dependence on the positioning of the grids or fixed 

shape of clusters.  

 

The algorithm starts by generating all 1-dimensional clusters using input parameters, µ- density 

threshold and ε-distance (radius), by applying DBSCAN [42] to each 1-dimensional subspace. 

Then, it checks for every k-dim cluster, whether it exists in any of (k-1)-dim clusters and if it does 

not exist, it will be pruned. Lastly, clusters are generated by applying DBSCAN on each (k+1) 

dimensional candidate subspace. These steps are recursively executed as long as the set of k-

dimensional subspaces containing clusters is not empty.  

 

We tested SUBCLU using OpenSubspace [38], an open source framework for evaluation and 

exploration of subspace clustering algorithms in Weka. Compared to FIRES, SUBCLU achieves 

a better clustering quality; however, it takes longer time to execute.  

 

3.2 FIRES (FIlter REfinement Subspace clustering) 

FIRES [29] is an efficient subspace clustering algorithm as it uses approximate solution. Rather 

than going bottom up, it makes use of 1-d histogram information (called base clusters) and jumps 

directly to interesting subspace regions. Moreover, generation of these base clusters can be done 

using any clustering approach and may not restrict to DBSCAN.  

 

FIRES then generate cluster approximations by combining base clusters to find maximum 

dimensional subspace clusters. These clusters are not merged in an apriori style. But FIRES uses 

an algorithm that scales at most quadratic with respect to the number of dimensions. It refines 

these cluster approximations as a post processing step to better structure the subspace clusters. 

 

We also tested FIRES using OpenSubspace in Weka. Compared to SUBCLU, FIRES takes too 

small execution time and gives more accurate results than SUBCLU. 

 

3.3 DUSC (Dimensionality Unbiased Subspace Clustering)  

To overcome the effect of varying dimensionality of subspaces, DUSC [43] gives a formal 

definition of dimensionality bias, based on statistical foundations.  

In density based clustering, density of an object o is determined by simply counting the number of 

objects in a fixed ε-neighbourhood )(ON
S

ε
. DUSC generalizes this idea by assigning weights to 

each object contained in )(ON
S

ε
. Thus an object o in subapce S is called dense if the weighted 

distances to objects in its area of influence sum up to more than a given density threshold τ i.e. 

τϕ ≥)(o
S

. It further uses Epanechnikov kernel estimator [43] to estimate density value at any 

position in the data space. It assigns decreasing weights to objects with increasing distance. 

Density of any object is then measured with respect to the expected density α (S). Thus, an object 

o is dense in subspace S according to the expected density α (S), if and only if,  

Fo
s

S

≥)(
)(

1
ϕ

α
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where F denotes the density threshold. F is independent of the dimensionality and data set size, 

and is much easier to specify than traditional density thresholds. DUSC also combines the major 

paradigms for improving the runtime.  

The experiments on large high dimensional synthetic and real world data sets show that DUSC 

outperforms other subspace clustering algorithms in terms of accuracy and runtime. 

3.4 INSCY (INdexing Subspace Clusters with in-process-removal of redundancY), 

INSCY [45] is another efficient subspace clustering algorithm which is based on the subspace 

clustering notion of [43]. It uses a depth first approach to mine recursively in a region of all 

clusters in all subspace projections and then continue with the next region. Because of this, it 

evaluates the maximal high dimensional projection first, quickly pruning all its redundant low 

dimensional projections. This approach leads to major efficiency gains as it overcomes the 

drawbacks of breadth first subspace clustering reducing runtimes substantially. Also, this allows 

indexing of promising subspace cluster regions. INSCY proposes a novel index structure SCY-

tree, which provides a compact representation of the data allowing arbitrary access to subspaces. 

SCY-tree combines in-process redundancy pruning, for very efficient subspace clustering. This 

makes INSCY fast and concise.  

Thorough experiments on real and synthetic data show that INSCY yields substantial efficiency 

and quality improvements over traditional density based subspace clustering algorithms. 

3.5 Scalable Density Based Subspace Clustering 

Scalable density based subspace clustering [46] is a method that steers mining to few selected 

subspace clusters only. It reduces subspace processing by identifying and clustering promising 

subspaces and their combinations directly, narrowing down the search space while maintaining 

accuracy. It uses the principle that any high dimensional subspace cluster appears in many low 

dimensional projections. By mining only some of them, the algorithm gathers enough information 

to jump directly to the more interesting high dimensional subspace clusters without processing the 

in between subspaces. Database scans are completely avoided with this approach for many 

intermediate, redundant subspace projections, steering the process of subspace clustering. 

It uses priority queue to initialize the information of density estimates. It gives a basis for 

selecting the best candidate from the priority queue. The priority queue is split into three levels 

for multiple density granularities. It skips intermediate subspaces in a best first manner and jumps 

directly to high dimensional subspaces. The experiments prove that the best first selection of 

subspace clusters enables a scalable subspace clustering algorithm with enhanced run time and it 

also produces high quality subspace clustering.  

3.6 DENCOS (DENsity COnscious Subspace clustering) 

DENCOS [47] addresses the critical problem of high dimensional data clustering as "density 

divergence problem” i.e. different subspace cardinalities have different region densities. It uses a 

novel data structure DFP-tree (Density Frequent Pattern-tree) to save the information of all dense 

units. It discovers clusters in divide-and-conquer manner using this data structure. DENCOS 

works in two phases – pre-processing phase where it constructs DFP-tree; and discovering phase 

where clusters are discovered using dense units’ information saved in DFP-tree.  

To solve the problem of density divergence, DENCOS formulates a novel subspace clustering 

model which discovers the clusters based on the relative region densities. Different density 

thresholds are adaptively calculated to locate the clusters in different subspace dimensionalities. 

As validated by the extensive experiments on various data sets, DENCOS finds out clusters in all 

subspaces efficiently. 
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Section 3 thus covered a reasonable description of all those state of the art algorithms belonging 

to the same subspace clustering algorithms’ family. Further, table 2 summarizes the important 

aspects, characteristics of all these algorithms. 

4. CONCLUSION  

In this paper, a detailed introduction to cluster analysis in high dimensional data and challenges 

faced by such clustering approaches are presented. The major challenges in high dimensional data 

clustering are curse of dimensionality, irrelevant dimensions and correlations among various 

dimensions. We described in brief, traditional approaches such as feature selection and feature 

transformation, to solve the problem of high dimensional data clustering. We then presented 

details about subspace clustering - a most commonly used high dimensional data clustering 

approach.  

Lots of approaches exist for subspace clustering and numerous algorithms are being proposed 

nearly every day. Proper selection of a clustering approach to suit a particular application and 

data, should be based on –  

i. Understanding of the exact requirement of clustering application and  

ii. Principles of working of available approaches.  

Hence, an attempt is made to present various classification schemes for existing subspace 

clustering algorithms to better understand group-characteristics of various families of algorithms.  

The concept of SCAF, Subspace Clustering Algorithm Family, is presented to help solve the 

problem of building a uniform platform to classify and hence test new subspace clustering 

algorithms. Examples of few families are created by assigning different values to classes which 

define SCAF. A comparative study of few specific algorithms belonging to “Axis parallel, 

overlapping, density based” SCAF has been presented for ready reference. Their comparison 

based on different parameters such as run time, shape and size of the clusters etc. is also 

presented. We implemented few of these techniques on OpenSubspace (Weka) to better 

understand their working, strengths and limitations; although there is a need for more extensive 

testing and comparative study of all these techniques.  

Finally, it is not possible that every clustering approach will be suitable to every type of data. We 

limited the scope of this paper only to continuous valued data; though, there exist many clustering 

algorithms which are specially designed for stream data, graph data, spatial data, text data, 

heterogeneous data etc. We hope to stimulate further research in these areas. 
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Table 2. Characteristics of axis parallel, density based subspace clustering algorithms 

ACKNOWLEDGEMENT  

We would like to thank our student Shweta Daptari, for providing help in implementing and 

testing the algorithms. 

REFERENCES 

[1] Kaufman, L. & Rousseeuw P.J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. 

John Wiley and Sons, New York. 

[2] Han, J. & M. Kamber (2001) Data Mining : Concepts and Techniques, Morgan Kaufmann Publishers, 

San Francisco, CA. 

[3] Jain, A. & Dubes, R. (1988) Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ.  

[4] Xu, R. (2005) Survey of Clustering Algorithms, IEEE Transaction on Neural networks, Vol. 16, Issue 

3, pp 645–678. 

[5] Daxin, J., Tang, C. & Zhang, A. (2004) Cluster Analysis for Gene Expression Data: A Survey, IEEE 

Transaction on Knowledge and Data Engineering, Vol. 16 Issue 11, pp. 1370-1386. 

[6] Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. (1998) When is ‘Nearest Neighbor’ 

Meaningful?, In Proceedings of 7th International Conference on Database Theory (ICDT-1999), 

Jerusalem, Israel, pp. 217-235. 

[7] Cutting, D., Karger, D., Pedersen J. & Tukey, J. (1992) Scatter/Gather: A Cluster-Based Approach to 

Browsing Large Document Collections, Proceedings of the 15th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval, June 21-24, Copenhagen, 

Denmark, pp: 318-329. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.2, March 2013 

84 

[8] Frank, I.E. & Roberto, T. (1994), Data Analysis Handbook, Elsevier Science Inc., New York, pp: 227-

228. 

[9] Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan (1998) Automatic Subspace Clustering of High 

Dimensional Data for Data Mining Applications, In Proceedings of the SIGMOD, Vol. 27 Issue 2, pp. 

94-105. 

[10] Kriegel, H. P., Kroger, P. & Zimek, A. (2009) Clustering High-Dimensional Data : A Survey on 

Subspace Clustering, Pattern-Based Clustering, & Correlation Clustering. ACM Transactions on 

Knowledge Discovery from Data (TKDD), Vol. 3, Issue 1, Article 1. 

[11] Ilango, M. R. & Mohan, V. (2010) A survey of Grid Based Clustering Algorithms, International 

Journal of Engineering Science and Technology, Vol. 2(8), 3441-3446.  

[12] Patrikainen, A. & Meila, M. (2006) Comparing Subspace Clusterings, IEEE Transactions on 

Knowledge and Data Engineering, Vol. 18, Issue 7, pp. 902-916. 

[13] Lance, P., Haque, E. & Liu, H. (2004) Subspace Clustering for High Dimensional Data: A Review, 

ACM SIGKDD Explorations Newsletter, Vol. 6 Issue 1, pp 90–105. 

[14] Kailing, K., Kriegel, H.P. & Kroger, P. (2004) Density-Connected Subspace Clustering for High 

Dimensional Data, In Proceedings of the 4th SIAM International Conference on Data Mining, 

Orlando, FL, pp. 46-257. 

[15] Friedman, J. (1994) An Overview of Computational Learning and Function Approximation, In: From 

Statistics to Neural Networks. Theory and Pattern Recognition Applications. (Cherkassky, Friedman, 

Wechsler, eds.) Springer-Verlag 1 

[16] Gilbert Strang (1986) Linear Algebra and its Applications. Harcourt Brace Jovanovich, third edition. 

[17] Hinneburg, A., Aggarwal, C. & Keim D. (2000) What is the Nearest Neighbor in High Dimensional 

Spaces?, In Proceedings of 26th International Conference on Very Large Data Bases (VLDB-2000), 

Cairo, Egypt, September 2000, pp 506-515. 

[18] Berchtold, S., Bohm, C., Keim, D. & Kriegel, H.-P. (1997) A Cost Model for Nearest Neighbour 

Search in High Dimensional Data Space, In Proceedings of the 16th Symposium on Principles of 

Database Systems (PODS), pp. 78-86. 

[19] Gao, J., Kwan, P.W. & Guo, Y. (2009) Robust Multivariate L1 Principal Component Analysis and 

Dimensionality Reduction, Neurocomputing, Vol. 72: 1242-1249. 

[20] Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition, Academic Press, New York. 

[21] Blum, A. & Langley, P. (1997) Selection of Relevant Features and Examples in Machine Learning, 

Artificial Intelligence, Vol. 97:245–271. 

[22] Liu, H. & Motoda, H. (1998), Feature Selection for Knowledge Discovery & Data Mining, Boston: 

Kluwer Academic Publishers. 

[23] Pena, J. M., Lozano, J. A., Larranaga, P.  & Inza, I. (2001) Dimensionality Reduction in Unsupervised 

Learning of Conditional Gaussian Networks, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 23(6):590 - 603. 

[24] Yu, L. & Liu, H. (2003), Feature Selection for High Dimensional Data: A Fast Correlation Based 

Filter Solution, In Proceedings of the Twentieth International Conference on Machine Learning, pp. 

856-863. 

[25] Kohavi, R.  & John, G. (1997) Wrappers for feature subset selection, Artificial Intelligence, 97(1-

2):273-324. 

[26] Blum, A. & Rivest, R. (1992) Training a 3-node Neural Networks is NP-complete, Neural Networks, 

5:pp. 117-127. 

[27] Cheng, C. H., Fu A. W. & Zhang, Y. (1999) Entropy-Based Subspace Clustering for Mining 

Numerical Data, In Proceedings of the 5th ACM International Conference on Knowledge Discovery 

and Data Mining (SIGKDD), San Diego, CA, pp. 84-93. 

[28] Technical Report CPDC-TR-9906-010 (1999) MAFIA: Efficient and Scalable Subspace Clustering for 

Very Large Data Sets, Goil, S., Nagesh, H. & Choudhary, A., Northwestern University. 

[29] Kriegel, H.P., Kroger, P., Renz, M. & Wurst, S. (2005) A Generic Framework for Efficient Subspace 

Clustering of High Dimensional Data, In Proceedings of the 5th International Conference on Data 

Mining (ICDM), Houston, TX, pp. 250-257. 

[30] Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C. & Park J. S. (1999) Fast Algorithms for 

Projected Clustering, In Proceedings of the 1999 ACM SIGMOD International Conference on 

Management of Data, pp.61-72. 

[31] Procopiuc, C., Jones, M., Agarwal, P. K. & Murali, T. M. (2002) A Monte Carlo Algorithm for Fast 

Projective Clustering, In Proceedings of the 2002 ACM SIGMOD International conference on 

Management of data, pp. 418-427. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.2, March 2013 

85 

[32] Bohm, C., Kailing, K., Kriegel, H.-P. & Kroger, P. (2004) Density Connected Clustering with Local 

Subspace Preferences, In Proceedings of the Fourth IEEE International Conference on Data Mining 

(ICDM-04), Washington DC, USA, pp. 27-34. 

[33] Karlton, S. & Zaki, M. (2005) SCHISM: A New Approach to Interesting Subspace Mining, Int. J. of 

Business Intelligence and Data Mining, Vol. 1, No. 2, pp. 137-160. 

[34] Ng, R.T. & Han, J. (2002) CLARANS: A Method for Clustering Objects for Spatial Data Mining, 

IEEE Transaction on Knowledge Data Engg. 14 (5) pp. 1003–1016. 

[35] Aggarwal, C. & Yu, P. (2000) Finding Generalized Projected Clusters in High Dimensional Spaces. 

In Proc. of ACM SIGMOD Intl. Conf. Management of Data, pages 70–81, 2000. 
[36] Wang, H., Wang, W., Yang, J. & Yu, P. (2002) Clustering by Pattern Similarity in Large Data Sets, In 

Proceedings of the ACM International Conference on Management of Data (SIGMOD-02), pp. 394-

405. 

[37] Friedman, J. & Meulman, J. (2004) Clustering objects on subsets of attributes. J. R. Stat. Soc. Ser. B, 

66: 815-849. 

[38] Müller E., Günnemann S., Assent I. & Seidl T. (2009) Evaluating Clustering in Subspace Projections 

of High Dimensional Data, In Proc. of the Very Large Data Bases Endowment, Volume 2 issue 1, pp. 

1270-1281. 

[39] Woo, K., Lee, J., Kim, M. & Lee, Y. (2002) FINDIT: A Fast and Intelligent Subspace Clustering 

Algorithm using Dimension Voting, Information and Software Technology, Vol-46 Issue 4, pp.255-

271. 

[40] Wang, W., Yang, J. & Muntz, R. (1997) STING: A Statistical Information Grid Approach to Spatial 

Data Mining, In Proc. of 23rd Int. Conf. on VLDB, pages 186-195. 

[41] Liao, W.K., Liu, Y. & Choudhary, A. (2004) A Grid-Based Clustering Algorithm using Adaptive 

Mesh Refinement, Appears in 7
th

 Workshop on Mining Scientific and Engineering Data Sets, Lake 

Buena Vista, FL, USA. 

[42] Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. (1996) A Density-Based Algorithm for Discovering 

Clusters in Large Spatial Databases with Noise, In Proceedings of the 2nd ACM International 

Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR., pp. 226-231. 

[43] Assent, I., Krieger, R., Muller, E. & Seidl, T. (2007) DUSC: Dimensionality Unbiased Subspace 

Clustering. In Proc. IEEE Intl. Conf. on Data Mining (ICDM 2007), Omaha, Nebraska, pp 409-414. 

[44] Baumgartner, C., Plant, C., Kailing, K., Kriegel, H. P. & Kroger, K. (2004) Subspace Selection for 

Clustering High-Dimensional Data. In Proc. 4
th

 IEEE Int. Conf. on Data Mining (ICDM 04), 

Brighton, UK, pp 11–18 

[45] Assent, I., Krieger, R., Müller, E. & Seidl, T. (2008) INSCY: Indexing Subspace Clusters with In 

Process-Removal of Redundancy", Eighth IEEE International Conference on Data Mining In ICDM, 

pp. 414–425 

[46] Muller, E., Assesnt, I., Gunnemann, S. & Seidl, T. (2011) Scalable Density based Subspace 

Clustering. Proceedings of the 20th ACM Conference on Information and Knowledge Management 

(CIKM’11), pp: 1076-1086. 

[47] Chu, Y.H., Huang, J.W., Chuang, K.T., Yang D.N. & Chen, M.S. (2010) Density conscious subspace 

clustering for high-dimensional data. IEEE Trans. Knowledge Data Eng., 22: 16-30. 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.2, March 2013 

86 

Authors 

Sunita Jahirabadkar is working as Asst. Professor in Computer Department, 

Cummins College of Engineering, Pune (India) for more than 14 years. She has 10 

research publications in various national / international conferences / journals. She 

is a co-author of the book "e-business" by Oxford Publications. Her areas of interest 

and research include Data Mining, Artificial Intelligence, Machine Learning, 

Computer Architectures etc. 

 

Dr. Parag Kulkarni holds PhD from IIT Kharagpur. UGSM Monarch Business 

School - Switzerland conferred DSc - Higher Doctorate on him. He is the founder 

and Chief Scientist of EKLat Research where he has empowered businesses 

through machine learning, knowledge management, and systemic management. He 

has been working within the IT industry for over twenty years. The recipient of 

several awards, Dr. Kulkarni is a pioneer in the field of Systemic Machine 

Learning. He has over 120 research publications including more than half a dozen 

books and 3 patents. His areas of research and product development include M-

maps, intelligent systems, text mining, image processing, decision systems, 

forecasting, IT strategy, artificial intelligence, and machine learning. 

        

 

 

 


