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ABSTRACT 

Duplicate code adversely affects the quality of software systems and hence should be detected. We discuss 

an approach that improves source code retrieval using structural information of source code. A lexical 

parser is developed to extract control statements and method identifiers from Java programs. We propose a 

similarity measure that is defined by the ratio of the number of sequential fully matching statements to the 

number of sequential partially matching statements. The defined similarity measure is an extension of the 

set-based Sorensen-Dice similarity index. This research primarily contributes to the development of a 

similarity retrieval algorithm that derives meaningful search conditions from a given sequence, and then 

performs retrieval using all derived conditions. Experiments show that our retrieval model shows an 

improvement of up to 90.9% over other retrieval models relative to the number of retrieved methods. 
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1. INTRODUCTION 
 

Several studies have shown that approximately 5%–20% of a program can contain duplicate code 

[2, 13]. Many such duplications are often the result of copy-paste operations, which are simple 

and can significantly reduce programming time and effort when the same functionality is 

required. 

 

In many cases, duplicate code causes an adverse effect on the quality of software systems, 

particularly the maintainability and comprehensibility of source code. For example, duplicate 

code increases the probability of update anomalies. If a bug is found in a code fragment, all the 

similar code fragments should be investigated to fix the bug in question [11, 15]. This coding 

practice also produces code that is difficult to maintain and understand, primarily because it is 

difficult for maintenance engineers to determine which fragment is the original one and whether 

the copied fragment is intentional. Tool support that efficiently and effectively retrieves similar 

code is required to support software engineers' activities. 

 

Different approaches for identifying similar code fragments have been proposed in code clone 

detection. Based on the level of analysis applied to the source code, clone detection techniques 
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can be roughly classified into four main groups, i.e., text-based, token-based, structure-based, and 

metrics-based. 

 

(1) Text-based approaches 
 

In this approach, the target source program is considered as a sequence of strings. Baker [2] 

described an approach that identifies all pairs of matching “parameterized” code fragments. 

Johnson [7] proposed an approach to extract repetitions of text and a matching mechanism using 

fingerprints on a substring of the source code. Although these methods achieve high performance, 

they are sensitive to lexical aspects, such as the presence or absence of new lines and the ordering 

of matching lines. 

 

(2) Token-based approaches 
 

In the token-based detection approach, the entire source system is transformed into a sequence of 

tokens, which is then analyzed to identify duplicate subsequences. A sub-string matching 

algorithm is generally used to find common subsequences. CCFinder [22] adopts the token-based 

technique to efficiently detect “copy and paste” code clones. In CCFinder, the similarity metric 

between two sets of source code files is defined based on the concept of “correspondence.” CP-

Miner [11] uses a frequent subsequence mining technique to identify a similar sequence of 

tokenized statements. Token-based approaches are typically more robust against code changes 

compared to text-based approaches. 

 

(3) Structure-based approaches 
 

In this approach, a program is parsed into an abstract syntax tree (AST) or program dependency 

graph (PDG). Because ASTs and PDGs contain structural information about the source code, 

sophisticated methods can be applied to ASTs and PDGs for the clone detection. CloneDR [3] is 

one of the pioneering AST-based clone techniques. Wahler et al. [21] applied frequent itemset 

data mining techniques to ASTs represented in XML to detect clones with minor changes. 

DECKARD [6] also employs a tree-based approach in which certain characteristic vectors are 

computed to approximate the structural information within ASTs in Euclidean space.  

 

Typically, a PDG is defined to contain the control flow and data flow information of a program. 

An isomorphic subgraph matching algorithm is applied to identify similar subgraphs. Komondoor 

et al. [8] have also proposed a tool for C programs that finds clones. They use PDGs and a 

program slicing technique to find clones. Krinke [10] uses an iterative approach (k-length patch 

matching) to determine maximal similar subgraphs. Structure-based approaches are generally 

robust to code changes, such as reordered, inserted, and deleted code. However, they are not 

scalable to large programs. 

 

(4) Metrics-based approaches 
 

Metrics-based approaches calculate metrics from code fragments and compare these metric 

vectors rather than directly comparing source code. Kontogiannis et al. [9] developed an abstract 

pattern matching tool to measure similarity between two programs using Markov models. Some 

common metrics in this approach include a set of software metrics called “fingerprinting” [7], a 
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set of method-level metrics including McCabe’s cyclomatic complexity [14], and a characteristic 

vector to approximate the structural information in ASTs [6]. 

 

Our approach is classified as a structure-based comparison. It features a sequence of statements as 

a retrieval condition. We have developed a lexical parser to extract source code structure, 

including control statements and method identifiers. The extracted structural information is input 

to a vector space model [1,12,17], an extended Sorensen-Dice model [4,16,19], and the proposed 

source code retrieval model, named the “derived sequence retrieval model” (DSRM). The DSRM 

takes a sequence of statements as a retrieval condition and derives meaningful search conditions 

from the given sequence. Because a program is composed of a sequence of statements, our 

retrieval model improves the performance of source code retrieval.  

 

The remainder of this paper is organized as follows. In Section 2, we present an outline of the 

process and the target source code of our research. In Section 3, we define source code similarity 

metrics. Retrieval results are discussed in Section 4. In Section 5, we analyze performance in 

elapsed time, and Section 6 presents conclusions and suggestions for future work. 

 

2. RESEARCH  PROCESS 

 

2.1. Outline 

Figure 1 shows an outline of our research process. Generally, similarity retrieval of source code is 

performed for a specific purpose. From this perspective, the original source code may include 

some uninteresting fragments. We have developed a lexical parser and applied it to a set of 

original Java source codes to extract interesting code, which includes class method signatures, 

control statements, and method calls. Our parser traces a variable type declaration and class 

instantiation to generate an identifier-type list. This list is then used to translate a variable 

identifier to its data type. A method call preceded by an identifier is converted into the method 

calls preceded by the data type of the identifier. 

 

 Code matching is performed using three retrieval models. The first model is the proposed 

DSRM, which takes a sequence of statements as a retrieval condition. The second model is based 

on the collection of statements, and is referred to as the derived collection retrieval model 

(DCRM). The DCRM is an extension of the Sorensen-Dice model of index [4,16,19]. The final 

retrieval model is the vector space model (VSM) [1,12,17], which has been developed to retrieve 

a natural language document. Source code can be perceived as a highly structured document; 

therefore, comparison with DSRM, DCRM, and VSM provides a baseline performance 

evaluation of how structure of a document will affect retrieval results. 
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 Figure 1. Outline of our research process 

2.2. Extracting Source Code Segments 

At the beginning of our approach, a set of Java source codes is partitioned into methods. Then, 

the code matching statements are extracted for each method. The extracted fragments comprise 

class method signatures, control statements, and method calls. 

 

(1) Class method signatures 

 

Each method in Java is declared in a class [5]. Our parser extracts class method signatures in the 

following syntax. 

 

   <class identifier>:<method signature> 

 

An anonymous class, which is a local class without a class declaration, is often used when a local 

class is used only once. An anonymous class is defined and instantiated in a single expression 

using the new operator to make code concise. Our parser extracts a method declared in an 

anonymous class in the following syntax. 

 

<class identifier>:<anonymous class identifier>:<method signature> 

 

Arrays and generics are widely used in Java to facilitate the manipulation of data collections. Our 

parser also extracts arrays and generic data types according to Java syntax. For example, Object[], 

String[][], List<String>, and List<Integer> are extracted and treated as different data types. 
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(2) Control statements 

 

Our parser also extracts control statements with various levels of nesting. The block is 

represented by the "{" and "}" symbols. Hence, the number of "{" symbols indicates the number 

of nesting levels. The following Java control statements [5] are extracted by our parser.  

 

- If-then (with or without else or else if statements) 

- Switch  

- While  

- Do  

- For and enhanced for  

- Break  

- Continue  

- Return  

- Throw  

- Synchronized 

- Try (with or without a catch or finally clause) 

 

(3) Method calls 

 

From the assumption that a method call characterizes a program, our parser extracts a method 

identifier called in a Java program. Generally, the instance method is preceded by a variable 

whose type refers to a class object to which the method belongs. Our parser traces a type 

declaration of a variable and translates a variable identifier to its data type or class identifier, i.e.,  

 

<variable>.<method identifier>  

 

is translated into 

    

<data type>.<method identifier>  

or  

   <class identifier>.<method identifier>. 

 

2.3. Extracting Statements of Struts 2 

We selected Struts 2.3.1.1 Core as our target because Struts 2 [20] is a popular Java framework 

for web applications. We estimated the volume of source code using file metrics. Typical file 

metrics are as follows: 

Java Files           ----         368 

Classes               ----         414 

Methods             ----      2,667 

Lines of Code     ----   21,543 

Comment Lines  ----   17,954 

      Total Lines         ----   46,100 

 

Struts 2.3.1.1 Core consists of 46,100 lines of source code, including blank and comment lines. 

Struts 2.3.1.1 Core is classified as mid-scale software in the industry. Struts 2.3.1.1 Core is 

comprised of 368 Java files, which differs from the number of declared classes (414) because 
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some Java files include definitions of inner classes and anonymous classes. Figure 2 shows an 

example of the extracted structure of the evaluateClientSideJsEnablement() method in the 

Form.java file of the org.apache.struts2.components package. The three numbers preceded by the 

# symbol are the number of comment, blank, and code lines, respectively. The extracted 

structures include the depth of nesting of the control statements; thus, they supply sufficient 

information for retrieving methods using a source code substructure. 

 

 

 Figure 2. Example of extracted structure 

3. SIMILARITY METRICS 

3.1. Vector Space Model for Documents 

 
The VSM is widely used in retrieving and ranking documents written in natural languages. 

Documents and queries are represented as vectors. Each dimension of the vectors corresponds to 

a term that consists of documents and queries. The documents are ranked against queries by 

computing similarity, which is computed as the cosine of the angle between the two vectors. 

Given a set of documents D, a document dj in D is represented as a vector of term weights: 

 

��  =  ���,	 , �
,	 , . . . , ��,	  

 

where N is the total number of terms in document dj, and wi, j is the weight of the i-th term. 

 

There are many variations of the term weighting scheme. Salton et al. [17] proposed the well-

known “term frequency-inverse document frequency” (tf-idf) weighting scheme. According to 
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this weighting scheme, the weight of the j-th element of the document dj, i.e., wi,j, is computed by 

the product of the term frequency tfi,j and the inverse document frequency idfi. 

 

��,	 = ���,	・���� 
The term frequency tfi,j is defined as the number of occurrences of the term i in the document dj. 

The inverse document frequency is a measure of the general importance of the term i and is 

defined as follows: 

���� = ���
 � �
���

� 

where M denotes the total number of documents in a collection of documents. A high weight in 

wi,j is reached by a high term frequency in the given document and a low document frequency dfi 

of the term in the whole collection of documents. Hence, the weights tend to filter out common 

terms. 

A user query can be similarly converted into a vector q: 

� =  ���,� , �
,� , . . . , ��,�  

The similarity between document dj and query q can be computed as the cosine of the angle 

between the two vectors dj and q in the N-dimensional term space: 

���������, � = ∑ ��,	 ∗  ��,���"�
#∑ ��,	
��"�  ∗ #∑ ��,�
��"�

 

This similarity is often referred to as the cosine similarity. 

3.2. Extending Sorensen-Dice Index 

Over the last decade, many techniques that detect software cloning and refactoring opportunities 

have been proposed. Similarity coefficients play an important role in the literature. However, 

most similarity definitions are validated by empirical studies. The choice of measure depends on 

the characteristics of the domain to which they are applied. Among many different similarity 

indexes, the similarity defined in CloneDR is worth notice. Baxter et al. [3] define the similarity 

between two trees T1 and T2 as follows: 

 

Similarity(T1, T2) = 2H / (2H + L + R) 

 

where H is the number of shared nodes in trees T1 and T2, L is the number of unique nodes in 

T1, and R is the number of unique nodes in T2. Within the context of a tree structure, this 

definition can be seen as an extension of the Sorensen-Dice index. 

 

 The Sorensen-Dice index is originally defined by two sets and is formulated as follows: 

 

SimSorensen-Dice( X�, X
 ) =   
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Here, |X1∩X2| indicates the number of elements in the intersection of sets X1 and X2. 

  

Another well-known index is the Jaccard index of binary features, which is defined by the 

following formula: 

 

 

Sim Jaccard (  ) =   

 

In software, the Sorensen-Dice index and the Jaccard index are known experimentally to produce 

better results than other indexes, such as a simple matching index, which counts the number of 

features absent in both sets [16,19]. The absence of a feature in two entities does not indicate 

similarity in software source code. For example, if two classes do not include the same method, it 

does not mean that the two classes are similar. The Jaccard and Sorensen-Dice indexes perform 

identically except for the value of the similarity because assigning more weight to the features 

present in both entities does not have a significant impact on the results. Our study takes the 

Sorensen-Dice index as a basis for defining the similarity measure between source codes. The 

extension of the Sorensen-Dice index on N sets is straightforward. 

 

Sim Sorensen-Dice (  ) =   

 

The function SetComb(X1∩X2∩...∩Xn, r) defines intersections of sets {X1, X2, ... , Xn} whose r 

elements are replaced by the elements with the negation symbol. The summation of r = 0 to n−1 

of SetComb(X1∩X2∩...∩Xn, r) generates the power set of sets X1, X2,..., Xn, excluding the empty 

set. (n−r) indicates the number of sets without the negation symbol. |X1∩X2, …,∩Xn| indicates the 

number of tuples <x1,x2, ... ,xn> where x1∈X1, x2∈X2, ... , xn∈Xn. 

 

For example, in case n = 3, the numerator of the extended Sorensen-Dice index on sets X1, X2, 

and X3 equals 3|X1∩X2∩X3|, and the denominator equals 3|X1∩X2∩X3| + 2| X1∩X2∩¬X3 | + 2| 

X1∩¬X2∩X3 | + 2| ¬X1∩X2∩X3 | + | X1∩¬X2∩¬X3 | + | ¬X1∩X2∩¬X3 | + | ¬X1∩¬X2∩X3 |. 

 

 

3.3. Similarity Metric for Source Codes 

In the vector space retrieval model, a document is represented as a vector of terms that comprise 

the document. The similarity of a document and a query is calculated as the cosine of the angle 

between a document vector and a query vector. This means that the order in which the terms 

appear in a document is lost in the vector space model. On the other hand, a computer program is 

a sequence of instructions written to perform a specified task [18]. The source code is essentially 

a sequence of characters forming a more complex text structure, such as statements, blocks, 

classes, and methods. This means that it is preferable or even crucial to consider the order of 

terms for a similarity index. In our study, the similarity measure is tailored to measure the 

similarity of sequentially structured text. 

 

We first define the notion of a sequence. Let S1 and S2 be statements extracted by the structure 

extraction tool. [S1→S2] denotes a sequence of S1 followed by S2. In general, for a positive 

integer n, let Si (i ranges between 1 and n) be a statement. [S1→S2 →...→Sn] denotes a sequence 

of n statements. 
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The similarity of the DSRM can be considered the same as the extended Sorensen-Dice index 

except for symbols, i.e., using → symbol in place of ∩ symbol. The DSRM’s similarity between 

two sequences is defined as follows: 

 

SimDSRM ( [S1→S2→… →Sm], [T1→T2→… →Tn] ) = 

 
 

Here, without loss of generality, we can assume that m ≥ n. In case m < n, we replace the 

sequence [S1→S2 →...→Sm] with [T1→T2→…→Tn]. 

 

The numerator of the definition, i.e., | [S1→S2 →...→Sm],  [T1→T2→… →Tn] | indicates the 

number of statements in the sequence where Sj+1=T1, Sj+2=S2, ... , Sj+n=Tn for some j (0 ≤ j ≤ m 

−n). The denominator of the definition indicates the iteration of the sequence match that counts 

the sequence of statements from r = 0 to r = n−1. Note that the first sequence [S1→S2 →...→Sm] 

is renewed when the sequence match succeeds, i.e., replacing the matched statements with a not 

applicable symbol “n/a.” SqcComb ([T1→T2→…→Tn], r) generates a set of sequence 

combinations by replacing the r (0 ≤ r < n) statements with the negation of the statements. 

 

For example, for m = 4 and n = 2, SimDSRM ( [A1→A1→A2→A2], [A1→A2] ) equals 0.5. The 

numerator of SimDSRM ( [A1→A1→A2→A2], [A1→A2] ) is 2 because the sequence [A1→A2] is 

included in the first sequence, 2*| [A1→A1→A2→A2], [A1→A2] |= 2*1= 2. The denominator of 

SimDSRM ([A1→A1→A2→A2], [A1→A2]) is computed as follows. First, for set r = 0, 

SqcComb([A1→A2], 0) generates [A1→A2]. Then, 2*|| [A1→A1→A2→A2], [A1→A2] || is 

estimated as 2 because [A1→A2] is a subsequence of [A1→A1→A2→A2]. Then, the first sequence 

is renewed by [A1→n/a→n/a→A2].  

 

Next, for set r = 1, SqcComb ([A1→A2], 1) generates [A1→¬A2] and [¬A1→A2]. || 

[A1→n/a→n/a→A2], [A1→¬A2] || is estimated as 1 because A1 is included in 

[A1→n/a→n/a→A2], and then the first sequence is renewed by [n/a→n/a→n/a→A2]. Finally, || 

[n/a→n/a→n/a→A2], [¬A1→A2] || is estimated as 1 and the first sequence is renewed by 

[n/a→n/a→n/a→n/a]. The denominator of SimDSRM ([A1→A1→A2→A2], [A1→A2]) is 4. Thus, 

SimDSRM ([A1→A1→A2→A2], [A1→A2] ) equals 2/4 = 0.5. 
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Figure 3.  Algorithm to compute similarity for a sequence [S1→S2→...→Sn] 

A simplified version of the algorithm to compute the DSRM’s similarity is shown in Figure 3. It 

takes a set of method structures and a sequence as retrieval conditions as arguments and returns 

an array of similarity values for the set of method structures. 

 

It is assumed that the getMethodStructure(j) function returns a structure of the j-th method 

extracted by the structure extraction tool. The function abstracts the implementation of the 

internal structure of the method. This is represented as a sequence of statements. 

 

The Count function takes three arguments, i.e., a method_structure MS, a sequence of statements 

TN, and an integer R. Note that an element of the method_structure is compatible with a sequence 

of statements.  

 

The SqcComb( TN, R ) function generates combinations of statement sequences that replace the 

R statements with the negation of the statements in the sequence TN. Then, matching between the 

method_structure MS and the combinations of statement sequences is processed. The Count 
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function returns the number of positive statements that match the combinations of statement 

sequences. 

 

The SimDSRM function calculates the similarity according to the DSRM’s defined similarity. 

Note that the similarity is 1.0 when a method includes the sequence [S1→S2→...→Sn] and does 

not include any of the derived sequences from [S1→S2→...→Sn]. 

 

4. CODE RETRIEVAL EXPERIMENTS  

4.1. Approach 

Cosine similarity is extensively used in research on retrieving documents written in natural 

languages and recovering links between software artifacts [1,12]. Set-based indexes, such as the 

Jaccard index and the Sorensen-Dice index, are used in a variety of research, including software 

clustering [16] and generating refactoring guidelines [19]. Here, we present experimental results 

obtained using cosine similarity, the Sorensen-Dice index, and the DSRM’s similarity. 

4.2. Vector Space Model Results 

It is natural to assign structural metrics to the elements of a document vector. For example, the 

evaluateClientSideJs-Enablement() method shown in Figure 2 is represented by the vector (4, 1, 

2, 1, 1, 1, 1, 1, 1), where we assume that the first element of the vector corresponds to if-

statements, the second corresponds to for-statements, the third corresponds to the addParameter 

method identifier, and the fourth corresponds to the configuration.getRuntimeConfiguration 

method identifier, and so on. Thus, the extracted fragments of Struts 2.3.1.1 Core are vectorized 

to produce a 1,420 × 2,667 matrix.  

 

In Struts 2 Core, the addParameter method is often called after an if-statement because the 

addParameter method adds a key and a value given by the arguments to the parameter list 

maintained by the Struts 2 process after checking the existence of a key. Thus, the same number 

of if-statements and addParameter method identifiers are a reasonable retrieval condition in the 

vector space retrieval model.  

 

Table 1 shows the top 27 methods retrieved by a query vector that consists of one if-statement, 

one addParameter method identifier, and one curly brace “}.” The third column of Table 1 shows 

the similarity values calculated by the cosine similarity. It can be seen that 2,667 methods were 

retrieved because all methods include at least one curly brace “}.” There were only 38 methods 

whose similarity values were greater than 0.3. The result looks fairly good at a glance; however, 

the results include some controversial methods in the sense that we are retrieving an 

addParameter method identifier that is called just after an if-statement. Figure 4 shows 

ActionError::void evaluateExtraParams(), which has the same structure as Action Message::void 

evaluateExtraParams() except for string arguments “actionErrors” and “actionMessages.” The 

cosine similarity of ActionError::void evaluateExtraParams() is 0.846, and the extended 

Sorensen-Dice index is 0.750 because the method includes two if-statements and two 

addParameter methods. However, the method does not include any sequences of if-statements or 

an addParameter method. Thus, the DSRM’s similarity is estimated to be 0.  

 
Let a "boundary method" be a retrieved method whose DSRM’s similarity is greater than 0 and 

whose cosine similarity is minimum. The evaluateClientSideJsEnablement(), which is shown at 
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No.19 in Table 1, is the boundary method with the minimum cosine similarity 0.472. Table 1 

consists of a set of retrieved methods whose cosine similarities are greater than or equal to the 

cosine similarity of  the boundary method (0.472). The methods whose "No" column is shaded in 

Table 1 are those methods whose DSRM’s similarities equals 0. The methods are a kind of 

controversial candidates. Details are discussed in the following sections. 

 

Table 1.  Top 27 retrieved methods 

 

 
4.3 Extended Sorensen-Dice Index Results 

The extended Sorensen-Dice index defined in Section 3.2 is greater than 0 when all three 

elements are included in a method structure. In the vector space model, the similarity is greater 

than 0 when at least one element of the three elements is included in a method structure. In other 

words, the extended Sorensen-Dice index requires the AND condition on the retrieval elements, 

while the vector space model requires the OR condition. Thus, the results of the extended 

Sorensen-Dice index are a subset of the results of the vector space model.  

 

For example, the extended Sorensen-Dice index evaluated 0 for the FieldError::void 

setFieldName() method (No. 25 in Table 1) and the Text::void addParameter() method (No. 26 in 

Table 1), while the similarities obtained for these methods by the vector space model are 0.928. 

Both methods contain "addParameter" and "}"; however, these methods contain no if-statements. 
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Because "addParameter" is a rare term, the term weight for "addParameter" is so high that the 

similarity value works out to 0.928. 

 

4.4. Derived Sequence Model Results 

The DSRM’s similarity is greater than 0 when the sequence [ if{→addParameter→} ] is included 

in an extracted method structure. This means that the DSRM imposes a more severe retrieval 

condition than the extended Sorensen-Dice model. In other words, the results of the DSRM are a 

subset of the results of the extended Sorensen-Dice model. The source code of ActionError::void 

evaluateExtra Params() (No. 22 in Table 1) is shown in Figure 4. The similarity of the method is 

estimated to be 0 by the derived sequence model because the method does not include the 

sequence [ if{→addParameter→} ]. Its similarity is 0.75 in the extended Sorensen-Dice model 

because the method includes two if-statements and two addParameter method calls. 

 

A program is essentially represented by a sequence of statements. Because the DSRM computes 

the similarity based on a sequence of statements, it achieves higher performance than the other 

models. 

 

 
 

Figure 4. Example method that does not include any sequences of if-statements and 

addParameter 

 
4.5. Summary of Experiments  

Table 2 shows a summary of 27 retrieval experiments using the three models. Column three of 

Table 2 presents the number of methods retrieved by the DSRM with similarity values greater 

than 0. Column four presents the number of methods retrieved by the extended Sorensen-Dice 

model with similarity values greater than 0, and column five shows the number of methods 

retrieved by the vector space model with tf-idf weighting. The results of the experiment shown in 

Table 1 correspond to No. 14 in Table 2. 

 

The degree of improvement of the DSRM over the extended Sorensen-Dice index is calculated by 

the following formula:  
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The degree of improvement of DSRM to the vector space model with tf-idf weighing is 

calculated by the similar formula. 

 

The degree of improvement ranges from 0% to 90.1% over the extended Sorensen-Dice model, 

and ranges from 22.2% to 90.9% over the vector space model with tf-idf weighting. As 

previously mentioned, when the similarity is greater than 0, the results of the DSRM are a subset 

of the results of the extended Sorensen-Dice index, and the results of the extended Sorensen-Dice 

index are a subset of the results of the vector space model. Note that this set inclusion relationship 

is not always true when the top N-methods are selected. For example, for No. 23 and No. 27 in 

Table 2, the degree of improvement over the extended Sorensen-Dice model is 80.0%, and that of 

the vector space model is 60.9%. In these cases, the similarity of the vector space model with tf-

idf weighting is 0.413, which is well above 0. 

 
Table 2. Summary of 27 retrieval experiments 
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Figure 5 shows a graph of the degree of improvement sorted by degree of improvement over the 

extended Sorensen-Dice model. The horizontal axis shows the sample number given in the first 

column of Table 2, and the vertical axis shows the degree of improvement in percentage. For all 

retrieval samples, the DSRM outperformed the extended Sorensen-Dice model except for samples 

No. 7, 8, 9, and 10. The extended Sorensen-Dice model is more successful than the vector space 

model with tf-idf weighting except for samples No. 23 and No. 27. 

 

 

 Figure 5. Degree of DSRM's improvement 

 

5. ELAPSED TIME COMPARISONS 

Table 3 summarizes the elapsed time in milliseconds of the three retrieval models for 27 sample 

retrievals. We measured the elapsed time using the following experimental environment: 

 

CPU: Intel Core i3 540 3.07 GHz 

 

Main memory: 4.00 GB 

 

OS: Windows 7 64 Bit 

 

The three retrieval models were implemented using Visual Basic for Excel 2010. The unique 

1,420 statement fragments, including control statements and method calls, were extracted from 

the Struts 2.3.1.1 Core source code. Thus, a 1,420 × 2,667 matrix was stored in an Excel sheet for 

the retrieval experiments by the vector space model. All 2,667 methods were transformed into 

2,667 sequences of extracted statements. They were also stored in an Excel sheet for the extended 

Sorensen-Dice model and the DSRM experiments. Through the experiments, all the data 

concerning retrieval were accessed from the Excel sheet cells. Thus, it is fair to say that the three 

retrieval model experiments were performed under equal conditions. 
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Table 3. Elapsed time of the three retrieval models (ms) 

 

 

Figure 6 shows a graph of the elapsed times presented in Table 3. The horizontal axis shows the 

sample number given in column one of Table 2, and the vertical axis shows the elapsed time in 

milliseconds. All 27 samples were processed in near-constant time in the vector space model 

because a given query is evaluated on the 1,420 × 2,667 matrix.  

 

On the other hand, the extended Sorensen-Dice model and the DSRM require an elapsed time 

approximately proportional to the number of derived sequences related to a given retrieval 

condition. Both retrieval models generate two derived sequences for samples No. 1 to No. 13. As 

a result, three retrievals were executed. The average execution time was 0.171. For samples No. 

14 to No. 23, both retrieval models executed seven retrievals. The average execution time was 

0.187 milliseconds. For samples No. 24 to No. 27, both retrieval models executed 15 retrievals. 

The average execution time was 0.193 milliseconds. The elapsed time required for each derived 

sequence increases approximately 3%–8% due to the overhead involved in the retrieval process. 

The results in Table 3 indicate that the DSRM is approximately 10 times faster than the vector 

space model.  
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Figure 6. Elapsed time comparison 

 

6. CONCLUSIONS 

We presented a source code retrieval model that takes a sequence of statements as a retrieval 

condition. We conducted three types of experiments using the vector space model, the extended 

Sorensen-Dice model, and the derived sequence retrieval model (DSRM). 

 

The key contribution of our approach is the definition of the DSRM's similarity measure as an 

extension of the Sorensen-Dice index and the evaluation of the DSRM's similarity measure on the 

Struts 2 Core source code, which is a moderate-sized Java program. The experimental results 

demonstrate that the DSRM's similarity measure shows higher selectivity than the other models, 

which is a natural consequence because a program is essentially a sequence of statements. 

 

The results are promising enough to warrant further research. In future, we intend to improve our 

algorithms by combining information, such as the inheritance of a class and method overloading. 

We also plan to develop a better user interface, which would allow us to conduct further user 

studies and to more easily and precisely assess the retrieved code. In addition, we plan to conduct 

experiments using various types of open source programs available on the Internet. 

 

ACKNOWLEDGMENTS 

We would like to thank Nobuhiro Kataoka, Tamotsu Noji, and Hisayuki Masui for their 

suggestions on engineering tasks to improve software quality. 

 

REFERENCES 

[1] Antoniol, G., Penta, M.D., and Merlo, E. (2004) An automatic approach to identify class evolution 

discontinuities. In Proceedings of the 7th International Workshop on Principles of Software 

Evolution, pp31-40. 

[2] Baker, B.S. (1996) Parameterized Pattern Matching: Algorithms and Applications, Journal of 

computer and system sciences, 52, 1, pp28-42. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.4, July 2013 

74 

[3] Baxter, I. D., Yahin, A., Moura, L. Sant'Anna, M., and Bier, L. (1998) Clone detection using abstract 

syntax trees. In Proceedings of the 14th International Conference on Software Maintenance, pp368-

377. 

[4] Choi, S.S., Cha, S.H, and Tappert, C.C. (2010) A Survey of Binary Similarity and Distance Measures, 

Journal of Systemics, Cybernetics and Informatics ISSN 1690-4532, Vol.8, 1, pp43-48. 

[5] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005) The Java Language Specification, Third 

Edition, ADDISON-WESLEY.  

[6] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007) DECKARD: Scalable and Accurate Tree-

based Detection of Code Clones. In Proceedings of the 29th International Conference on Software 

Engineering, pp96-105. 

[7] Johnson, J.H. (1993) Identifying Redundancy in Source Code Using Fingerprints. In Proceeding of 

the 1993  Conference of the Centre for Advanced Studies Conference, pp171-183. 

[8] Komondoor, R., and Horwitz, S. (2001) Using Slicing to Identify Duplication in Source Code. In 

Proceedings of the 8th International Symposium on Static Analysis, LNCS Vol.2126, pp40-56. 

[9] Kontogiannis, K., Demori, R., Merlo, E., Galler, M., and Bernstein, M. (1996) Pattern matching for 

clone and concept detection. Journal of Automated Software Engineering 3, pp77-108. 

[10] Krinke, J. (2001) Identifying Similar Code with Program Dependence Graphs. In Proceedings of the 

8th Working Conference on Reverse Engineering, pp301-309. 

[11] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006) CP-Miner: Finding Copy-Paste and Related Bugs in 

Large-Scale Software Code. In IEEE Transactions on Software Engineering, Vol.32, 3, pp176-192. 

[12] Marcus, A., and Maletic, J.I. (2003) Recovering documentation-to source-code traceability links 

using latent semantic indexing. In Proceedings of the 25th International Conference on Software 

Engineering, pp125-135. 

[13] Mayrand, J., Leblanc, C., Merlo, E. (1996) Experiment on the Automatic Detection of Function 

Clones in a Software System Using Metrics. In Proceedings of the 12th International Conference on 

Software Maintenance, pp244-253. 

[14] McCabe, T.J. (1976) A complexity measure, IEEE Transactions on software engineering, 2, 4, pp308-

320. 

[15] Roy, C.K., Cordya, J.R., and Koschkeb, R. (2009) Comparison and Evaluation of Code Clone 

Detection Techniques and Tools: A Qualitative Approach, Science of Computer Programming. 

Volume 74, Issue 7, 1, pp470-495. 

[16] Saeed, M., Maqbool, O., Babri, H.A., Hassan, S.Z., and Sarwar, S.M. (2003) Software Clustering 

Techniques and the Use of Combined Algorithm、IEEE Seventh European Conference on Soft 

Maintenance and Reengineering, pp301-306. 

[17] Salton, G., and Buckley, C.  (1988) Term-weighting approaches in automatic text retrieval. 

Information Processing and Management, 24, 5, pp513-523. 

[18] Stair, R. M., and Reynolds, G.W. (2003) Principles of Information Systems. Sixth Edition. Thomson 

Learning, Inc. 

[19] Terra, R., Valente, M.T., Czarnecki, K., and Bigonha, R. (2012) Recommending refactorings to 

reverse software architecture erosion. In Proceedings of the 16th European Conference on Software 

Maintenance and Reengineering(CSMR), Early Research Achievements Track, pp335-340. 

[20] The Apache Software Foundation. (2013) About Apache Struts 2. http://struts.apache.org/release/ 

2.3.x/. 

[21] Wahler, V., Seipel, D., Gudenberg, J.W., and Fischer, G. (2004) Clone detection in source code by 

frequent itemset techniques. In Proceedings of the 4th IEEE International Workshop Source Code 

Analysis and Manipulation, pp128-135. 

[22] Yamamoto,T., Matsushita,M., Kamiya,T., and Inoue,K. (2005) Measuring similarity of large software 

systems based on source code correspondence. In Proceedings of the 6th International Conference on 

Product Focused Software Process Improvement, pp530-544. 

 


