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ABSTRACT 

 

Column-Stores database stores data column-by-column. The need for Column-Stores database arose for 

the efficient query processing in read-intensive relational databases. Also, for read-intensive relational 

databases,extensive research has performed for efficient data storage and query processing. This paper 

gives an overview of storage and performance optimization techniques used in Column-Stores. 

 

 

1. INTRODUCTION 

 
Database system storage technology is mainly composed by Column-Stores (CS) and Row-Stores 

(RS) [1]. Currently, the majority of popular database products use RS, i.e. to store each record’s 

attributes together, such as Microsoft SQL Server, Oracle and so on. A single disk writing action 

may bring all the columns of a record onto disk. RS system shows its high performance in the 

majority of database system applications like business data management. In contrast, RS system 

functions poorly for variety of analytical data applications, as the purpose of analytical operations 

is to gain new view point through data reading and to drive the production and implementation of 

plan. 

 

Therefore, researchers proposed the idea of CS in read-optimized databases [1]. CS database is 

different from traditional RS database, because the data in table is stored in column and visited by 

column. However, the CS access method is not quite suitable for transactional environment 

(activities), where activities and data in rows are tightly integrated. During the execution on CS 

database, query on metadata is the most frequent kind of operation [1]. The metadata table is 

always presented in the form of tuples to the upper interface. The metadata access efficiency is 

most concerned problem for ad-hoc query operations for large database. To improve the 

efficiency of read and write operations of metadata queries, the most simple and effective way is, 

column to row operation of CS metadata table in buffer. The objective of this survey is to present 

an overview of CS features for read-intensive relational databases. 

 

The organization of the paper is as follows: Section 2 elaborates CS approaches, its themes and 

aspects of general disciplines that help to improve performance for ad-hoc queries. Section 3 

emphasizes on the areas of performance optimization in CS. Moreover, it attempts to clarify the 

skills useful for improving the performance in CS. We conclude in Section 4 with the summary. 
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2. COLUMN-STORE APPROACHES 

 
There are different approaches proposed in the literature to build a CS namely; Vertical 

Partitioning, Index-Only Plans, and Fractured Mirror. 

 

2.1 Vertical Partitioning 

 
The most straightforward way to simulate CS in RS is through vertical partition. Tuple 

reconstruction is required to build a single row in fully vertically partitioned approach. For tuple 

reconstruction in vertical partition, an integer "position" column is been added to every partition, 

preferably primary key (Figure 1). For multi-attribute queries joins are performed on position 

attributes through rewriting the queries [2]. 

 

 
Figure 1: Vertical Partitioning 

 

 

2.2 Index-Only Plans 
 

The vertical partitioning approach wastes space by keeping the position attributes at each 

partition. To utilize the space efficiently, the second approach is index-only plans, in which each 

column of every table is indexed using unclustered B+Tree and base relations are stored using a 

standard, RS design. Index-only plan works through building and merging lists of (record-id, 

value) pairs that satisfy predicates on each table (Figure 2). 
 

 
Figure 2:Index-Only Plans 
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Indices do not store duplicate values, and hence have less tuple overhead. For no predicate, query 

scanning through the index-only approach may be slower than scanning a heap file. Hence, a 

composite key indexes are created for an optimization through the index-only approach. 

 

2.3 Fractured Mirrors Approach 
 

This approach is driven by hybrid row/column approach. The design of fractured mirror includes 

RS for updates and the CS for reads, with a background processes migrating the data from RS to 

CS (Figure 3). Exploration of vertically partitioned strategy has been done in detail with the 

conclusion that tuple reconstruction is a significant problem, and pre-fetching of tuples from the 

secondary storage is essential to improve tuple reconstruction times [3]. 

 

 
Figure 3 : Fractured Mirror Approach 

3. OPTIMIZATION TECHNIQUES 

Three common optimizations techniques are suggested in the literature for improving the 

performance in CS database systems. 

 

3.1 Compression 

The compression ratio through existing compression algorithms is more for CS, and has been 

shown to improve query performance [4], majorly through I/O cost. For a CS, if query execution 

can operate directly on compressed data, performance can further be improved, as decompression 

is avoided. Hu-Tucker algorithm is systematic and optimal logical compression algorithm for 

performing order preserving compression. The frequency of column values are considered to 

generate an optimal weighted binary tree. The dictionary is constituted from these frequent values 

[5]. 

 

In dictionary encoding logical compression algorithm, values are defined in schema and, in the 

source dataset these values are replaced by equivalent symbols, as the index value in the 

dictionary. To reduce the effect of decompression, indexes are used to scan the dictionary. An 

extensive research is being carried in dictionary based domain compression, which is extensively 

used in relational database. Dictionary encoding logical compression algorithm is frequently used 

for commercial database applications [6, 7]. 
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Entropy encoding logical compression, including Huffman encoding [6], are considered heavy-

weight algorithms, since decompressing variable length entropy encoded data is more processor 

intensive. These algorithms are modified to perform better in relational databases [7, 8]. Initially 

compression work mainly focused on disk space savings and I/O performance [7, 10, 11]. In 

addition literature shows that, with lower decompression cost; compression can also lead to better 

CPU performance [12, 13]. There exists important aspect related to the cost calculation of query 

optimizer in recent database literature. 

 

3.2 Materialization Strategies 
 

For read-intensive relational databases, vertical partitioning plays vital role for performance 

improvement. Recently several read-intensive relational databases have adopted the idea of fully 

vertically partition [1, 14]. Research on CS has shown that for certain read-mostly workloads, this 

approach can provide substantial performance benefits over traditional RS database systems. CS 

are essentially a modification only to the physical view of a database and at the logical and view 

level, CS looks identical to a RS. 

 

Separate columns must ultimately be stitched into tuples. Determining the stitching schedule in a 

query plan is critical. Lessons from RS suggest a natural tuple construction policy i.e. for each 

column access, column is being added to an intermediate tuple representation for later 

requirement. Adding columns to the intermediate results as early as possible in the literature is 

known as early materialization. Early materialization approach in CS is more CPU bound. Late 

materialization approach is more CPU efficient, as less intermediate tuples to be stitched. 

However, sometime rescanning of the base columns is required to form tuples, which can be slow 

[15, 16]. 

 

 
(a)                                                        (b) 

 
Figure 4 : Early Materialization Query Plan 

 

 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.5, September 2013 

87 

 
(a)                                                                (b) 

Figure 5: Late Materialization Query Plan 

To overcome disadvantages, an invisible join can be used in CS for foreign-key/primary-key joins 

by minimizing the values that need to be extracted in arbitrary order. The joins are rewritten for 

predicates of foreign key columns. Predicate evaluation is carried through hash lookup. Only after 

evaluation of predicates the appropriate tuples are extracted from the relevant dimensions [17]. 

 

The successful CS systems C-Store and Vertica, exploit projection to support tuple 

reconstruction. They divide logically a relation into sub-relations, called projections. Each 

attribute may appear in more than one projection. The attributes in the same projection are sorted 

on one or more sort key(s) and are stored respectively on the sorted order [18]. Projection makes 

multiple attributes referenced by a query to be stored in the same order, but not all the attributes 

be the part of the projection and hence pays tuple reconstruction time penalty. In the past, the 

series of CS databases C-Store and MonetDB have attracted researchers in CS area due to their 

good performance [18]. 

 

C-Store series exploit projections to organize logically the attributes of base tables. Each 

projection may contain multiple attributes from a base table. An attribute may appear in more 

than one projection and stored in different sorted order. The objective of projections is to improve 

the tuple reconstruction time. Though the issue of partitioning strategies and techniques has not 

been addressed well, a good solution is to cluster attributes into sub-relations based on the usage 

patterns. The Bond Energy Algorithm (BEA) was developed to cluster the attributes of the 

relation based on compatibility [19]. 

 

MonetDB proposed self-organization tuple reconstruction strategy in a main memory structure 

called cracker map [14]. Split-up and combination of the pieces of the existing relevant cracker 

maps make the current or subsequent query select qualified result set faster. But for the large 

databases, cracker map pays performance penalty due to high maintenance cost [14]. Therefore, 

the cracker map is only adapted to the main memory database systems such as MonetDB. 
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3.3 Block Searching 
 

Block Searching in CS is greatly influenced by the address lookup process. Block search process 

has been carried through hashing algorithms [4, 20, 1]. Hashing algorithms have been used 

widely to avoid block conflicts in multiprocessor systems. To compute the block number, integer 

arithmetic is widely used in linear skewing functions. Burroughs Scientific Processor introduced 

fragmentation to minimize the block search time. For stride patterns, block conflicts may be 

reduce by XOR-based hash functions. XOR-based functions design mainly focused on conflict-

free hash function for various patterns [22]. Bob Jenkins' hash produces uniformly distributed 

values. However, the handling of partial final block increases the complexity of Bob Jenkins' 

hash [21]. 

 

4. CONCLUSION 

 
In this paper, we presented various CS approaches to optimize performance of read-intensive 

relational database systems. CS enables read-intensive relational database engineers to broaden 

the areas of storage architecture and design, by exploration of entities, attributes and frequency of 

data values. Moreover, all disciplines require knowledge that constitutes data structures, data 

behaviour, and relational database design. 
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