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ABSTRACT 

 
The conventional clustering algorithms mine static databases and generate a set of patterns in the form of 

clusters. Many real life databases keep growing incrementally. For such dynamic databases, the patterns 

extracted from the original database become obsolete. Thus the conventional clustering algorithms are not 

suitable for incremental databases due to lack of capability to modify the clustering results in accordance 

with recent updates. In this paper, the author proposes a new incremental clustering algorithm called 

CFICA(Cluster Feature-Based Incremental Clustering Approach for numerical data) to handle numerical 

data and suggests a new proximity metric called Inverse Proximity Estimate (IPE) which considers the 

proximity of a data point to a cluster representative as well as its proximity to a farthest point in its vicinity. 

CFICA makes use of the proposed proximity metric to determine the membership of a data point into a 

cluster. 
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1. INTRODUCTION  

 
Clustering discovers patterns from a wide variety of domain data, thus many clustering 

algorithms were developed by researchers. The main problem with the conventional clustering 

algorithms is that, they mine static databases and generate a set of patterns in the form of clusters. 

Numerous applications maintain their data in large databases or data warehouses and many real 

life databases keep growing incrementally. New data may be added periodically either on a daily 

or weekly basis. For such dynamic databases, the patterns extracted from the original database 

become obsolete. Conventional clustering algorithms handle this problem by repeating the 

process of clustering on the entire database whenever a significant set of data items are added. Let 

DS  be the original data base (static database) and DS∆ be the incremental database. 

Conventional clustering algorithms process the expanded database (SD + ∆ SD) to form new 

cluster solution from scratch. The process of re-running the clustering algorithm on the entire 
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dataset is inefficient and time-consuming. Thus most of the conventional clustering algorithms 

are not suitable for incremental databases due to lack of capability to modify the clustering results 

in accordance with recent updates. 

In this paper, the author proposes a new incremental clustering algorithm called CFICA (Cluster 

Feature-Based Incremental Clustering Approach for numerical data) to handle numerical data. It 

is an incremental approach to partitional clustering. CFICA uses the concept of Cluster Feature 

(CF) for abstracting out the details of data points maintained in the hard disk. At the same time 

Cluster Feature provides all essential information required for incremental update of a cluster. 

Most of the conventional clustering algorithms make use of Euclidean distance ( ED ) between the 

cluster representatives ( mean / mode / medoid ) and the data point to estimate the acceptability of 

the data point into the cluster. 

 

In the context of incremental clustering while adopting the existing patterns or clusters to the 

enhanced data upon the arrival of a significant chunk of data points, it is often required to 

elongate the existing cluster boundaries in order to accept new data points if there is no loss of 

cluster cohesion. The author has observed that the Euclidean distance (ED) between the single 

point cluster representative and the data point will not suffice for deciding the membership of the 

data point into the cluster except for uniformly distributed clusters. Instead, the set of farthest 

points of a cluster can represent the data spread within a cluster and hence has to be considered 

for formation of natural clusters. The authors suggest a new proximity metric called Inverse 

Proximity Estimate (IPE) which considers the proximity of a data point to a cluster representative 

as well as its proximity to a farthest point in its vicinity. CFICA makes use of the proposed 

proximity metric to determine the membership of a data point into a cluster. 

 

2. RELATED WORK 

 
Incremental clustering has attracted the attention of the research community with Hartigan’s 

Leader clustering algorithm [1] which uses a threshold to determine if an instance can be placed 

in an existing cluster or it should form a new cluster by itself. COBWEB [2] is an unsupervised 

conceptual clustering algorithm that produces a hierarchy of classes. Its incremental nature allows 

clustering of new data to be made without having to repeat the clustering already made. It has 

been successfully used in engineering applications [3]. CLASSIT [4] is an alternative version of 

COBWEB. It handles continuous or real valued data and organizes them into a hierarchy of 

concepts. It assumes that the attribute values of the data records belonging to a cluster are 

normally distributed. As a result, its application is limited. Another such algorithm was developed 

by Fazil Can to cluster documents [5]. Charikar et al. defined the incremental clustering problem 

and proposed a incremental clustering model which preserves all the desirable properties of HAC 

(hierarchical agglomerative clustering) while providing a extension to the dynamic case. [6]. 

 

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is especially suitable for 

large number of data items [7]. Incremental DBSCAN was presented by Ester et al., which is 

suitable for mining in a data warehousing environment where the databases have frequent updates 

[8]. The GRIN algorithm, [9] is an incremental hierarchical clustering algorithm for numerical 

data sets based on gravity theory in physics. Serban and Campan have presented an incremental 

algorithm known as Core Based Incremental Clustering (CBIC), based on the k-means clustering 

method which is capable of re-partitioning the object set when the attribute set changes [10]. The 

new demand points that arrive one at a time have been assigned either to an existing cluster or a 
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newly created one by the algorithm in the incremental versions of Facility Location and k-median 

to maintain a good solution [11]. 

3. FUNCTIONALITY OF CFICA 

An incremental clustering algorithm has to perform the primary tasks namely, initial cluster 

formation and their summaries, acceptance of new data items into either existing clusters or new 

clusters followed by merging of clusters to maintain compaction and cohesion. CFICA also takes 

care of concept-drift and appropriately refreshes the cluster solution upon significant deviation 

from the original concept. 

 

It may be observed that once the initial cluster formation is done and summaries are represented 

as Cluster Features, all the basic tasks of the incremental clustering algorithm CFICA can be 

performed without requiring to read the actual data points ( probably maintained in hard disk ) 

constituting the clusters. The data points need to be refreshed only when the cluster solution has 

to be refreshed due to concept-drift. 

 

3.1 Initial clustering of the static database 

 
The proposed algorithm CFICA is capable of clustering incremental databases starting from 

scratch. However, during the initial stages refreshing the cluster solution happens very often as 

the size of the initial clusters is very small. Hence for efficiency reasons the author suggests to 

apply a partitional clustering algorithm  to  form  clusters  on  the  initial collection of data points 

( DS ). The author used the k-means clustering algorithm for initial clustering to obtain k  number 

of clusters as it is the simplest and most commonly used partitional clustering algorithm. Also k-

means is relatively scalable and efficient in processing large datasets because the computational 

complexity is O(nkt) where n is the total number of objects, k is the number of clusters and t 

represents the number of iterations. Normally, k<<n and t<<n and hence O(n) is taken as its time 

complexity [12]. 

3.2 Computation of Cluster Feature (CF)  

CFICA uses cluster features for accommodating the essential information required for 

incremental maintenance of clusters. The basic concept of cluster feature has been adopted from 

BIRCH as it supports incremental and dynamic clustering of incoming objects. As CFICA 

handles partitional clusters as against hierarchical clusters handled by BIRCH, the original 

structure of cluster feature went through appropriate modifications to make it suitable for 

partitional clustering. 

 

The Cluster Feature (CF ) is computed for every cluster ic  obtained from the k-means algorithm. 

In CFICA, the Cluster Feature is denoted as, 

CFi = {ni , mi ,  ��
′ , �� ,���} 

where ni  → number of data points,  
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mi  → mean vector of the cluster Ci with respect to which farthest points are calculated, 

 ��
′  → new mean vector of the cluster Ci that changes due to incremental updates, 

Qi → list of p-farthest points of cluster Ci   

���  → squared sum vector that changes during incremental updates. 

A Cluster Feature is aimed to provide all essential information of a cluster in the most concise 

manner. The first two components ni  and mi  are essential to represent the cluster prototype in a 

dynamic environment. ni will be incremented whenever new data point is added to a cluster.  ��
′ , 

the new mean is essential to keep track of dynamically changing nature / concept – drift occurring 

in the cluster while it is growing. It is updated upon inclusion of a new data point. 

The Qi , set of p-farthest points of cluster Ci from its existing mean mi , are used to handle non-

uniformly distributed and hence irregularly shaped clusters; The set of p - farthest points of the i
th 

cluster, are calculated as follows: First Euclidean distances are calculated between the data points 

within cluster ic  and the mean of the corresponding cluster mi. Then, the data points are arranged 

in descending order with the help of the measured Euclidean distances. Subsequently, the top p -

farthest points for every cluster are chosen from the sorted list and these points are known as the p 

- farthest points of the cluster ic with respect to the mean value, mi . Thus a list of p - farthest 

points is maintained in the Cluster Feature for every cluster, Ci. These p - farthest points are 

subsequently used for identifying the farthest point, qi . ���, is the squared sum which is essential 

for estimating the quality of cluster in terms of variance of data points from its mean 

In general, the variance of a cluster ( σ
2
 )containing ‘N’ data points is defined as   

��  =  	

   ∑ ( 
� −  
̅)�


��	     ( 	

  ∑  
�

� ) − 
̅�

��	    . 

In the present context, the error associated with i
th 

cluster represented by its Cluster Feature, CFi is 

calculated as given  

   ��
� = � 	

��
 ∗  ��� � − ��

�    

3.3 Insertion of a new data point 

Data points in a cluster can either be uniformly or non-uniformly distributed. The shape of a 

uniformly distributed cluster is nearly globular and its centroid is located in the middle 

(geometrical middle). Non-uniformly distributed clusters have their centroid  located in the midst 

of dense area, especially if there is a clear variation in the density of data points among dense and 

sparse areas of the cluster. The shape of such clusters is not spherical and the farthest points of a 

non-uniformly distributed cluster are generally located in the sparse areas. 
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Fig.1 Uniformly Distributed cluster                                  Fig.2 Non-Uniformly Distributed cluster 

Here,    refers to entities in a cluster 

   is the cluster representative ( mean / mode / medoid )   

    represent p-farthest points of a cluster 

    farthest point in the vicinity of the entity 

    new entity to be incorporated 

 

Fig.3 

In the above figure 3, let point 1, be located on the sparser side and point 2 be located on the 

denser side of the cluster at nearly equal distances from the centroid. Point C is the farthest point 

in the vicinity of point 1 and Point A is the farthest point in the vicinity of point 2. Even if the 

point 1 is at a slightly larger distance than point 2 to the centroid it is natural to include point 1 

into the cluster Ci compared to point 2, due to point 1’s closeness to existing members ( though 

farthest points) of the cluster as well as the discontinuity between point 2 to the existing boundary 

of the cluster on its side.  

 

The results produced by standard partitional clustering algorithms like K-means are not in 

concurrence with this natural expectation as they rely upon Euclidean distance metric (ED) for 

discriminating data points while determining their membership into a cluster. So, the author 

proposes a new proximity metric called Inverse Proximity Estimate (IPE) to determine the 
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membership of a data point into a cluster considering the data distribution within the cluster 

through a Bias factor in addition to normal Euclidean distance as shown below 

 

��� ∆�
(�)  = �� (�� , ∆ ) +  "        

where, ��� ∆�
(�)  � proposed distance metric 

 �� (�� , ∆ ) �Euclidean distance between the centroid, �#$$$$%  of the cluster Ci   

   and the incoming data point, ∆ . 

 B �  Bias factor 

Bias is the increment added to the conventional distance metric in view of formation of more 

natural clusters and better detection of outliers. It considers the unevenness / shape of the cluster 

reflected through a set of p- farthest points to estimate the proximity of new data points to the 

cluster. 

 

3.3.1  Bias 

 

 
 

Fig.4 

 

In Figure 4, A, B, C are the set of farthest points and it can be observed that they are located in 

the sparser areas of the cluster while its centroid is in the midst of dense area. Point C is the 

farthest point in the vicinity of point 1 and Point A is the farthest point in the vicinity of point 2. 

But the distance between C and point 1 is much smaller than the distance between A and point 2 

which is taken as one of the factors that assess the bias and the bias increases with the distance of 

the new point to a farther point. So, bias is proportional to the Euclidean distance, ED between 

the farthest point ( &�) and the incoming new data point ( ∆  ). 
 

∴        "    (   �� (&� , ∆ ) 

 

Another aspect to be considered is, as the distance between the centroid and the particular farthest 

point in the vicinity of the new point increases, elongation of the cluster with respect to that 

farthest point should be discouraged. This is depicted in the Figure 5 below. 
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Fig.5 

In the Figure 5, point 1 is in the vicinity of C and Point 3 is in the vicinity of A while both A and 

C are farthest points. In this context point 3 is more acceptable than point 1 into the cluster as C is 

farther than A to the centroid. The bias increases with the distance of a particular farthest point to 

its centroid. Therefore, bias is proportional to the Euclidean distance, ED between the centroid 

( �#$$$$% ) and the farthest point in the vicinity of the incoming data point ( ∆  ). 
 

∴        "    (   �� (�� , &�) 

Hence, bias is estimated as a product of ED (&� , ∆ ) , �� (��  , &�) mathematically from the 

above equations. Therefore bias is expressed as,  

" = [ �� (&� , ∆ )  ∗ �� ( ��  , &�) ] 

3.3.2 Proposed Proximity Metric – Inverse Proximity Estimate (IPE) 

The authors have devised a new proximity estimate ��� ∆�
(�) 

 to determine the acceptability of an 

incoming data point ∆  into a possibly non-uniformly distributed cluster represented by its mean 

�� which is calculated as follows   

��� ∆�
(�) =  �� (��   , ∆ ) +  " 

Substituting B from the above, now (��� ∆�
(�) 

) is estimated as 

��� ∆�
(�) =  �� (��    , ∆ ) + [ �� (&� , ∆ )  ∗ ED (��  , &�)] 

For clusters with uniformly distributed points, the usual distance measures like Euclidean 

distance hold good for deciding the membership of a data point into a cluster. But there exist 

applications where clusters have non-uniform distribution of data points. In such cases, the new 

distance metric proposed above will be useful. The inverse proximity estimate,  ��� ∆�
(�) 

 better 

recognizes the discontinuities in data space while extending the cluster boundaries as explained 

below. 

3.3.3 Extendibility of the cluster boundary towards Sparse area Vs Dense area 

Extendibility of a cluster to include a new point towards sparse area is based on a set of farthest 

points defining its boundary around the sparse area. 
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The points that can be included in the region nearer to the dense area by extending the boundary 

of the cluster towards dense area are much nearer to the centroid of this cluster only, based on the 

original distance metric, ED as well as the inverse proximity estimate,  ��� ∆�
(�) . In other words 

such data points that are outside the present cluster boundary are closer to the centroid compared 

to existing farther members. 

 

However, an external point which is located towards dense area at an equal distance from the 

centroid as the farthest points is clearly separated from the dense area with a discontinuity in 

between. The inverse proximity estimate,  ��� ∆�
(�)   does not allow extension of the boundary of 

the cluster on the denser side, if there is a discontinuity between dense area and the new point, 

whereas such discontinuity may be overlooked by the original distance metric, ED.  

 

Let point 5 and point 6 are equidistant from the centroid of the cluster. As shown in the Figure 6, 

point 5 is towards its sparse area and point 6 is towards its dense area. 

 

 
Fig. 7 

Though point 6 is at an equal distance to centroid as point 5, point 6 is not acceptable into the 

cluster because of the discontinuity. 

 

The only cluster members in the vicinity of point 6, with a possible discontinuity between itself 

and the cluster boundary, are located in the dense area. Hence, none of them are considered as 

farther points of the cluster. Since the sparse area containing farther points is away from point 6, 

Euclidean distance between the farthest point and the incoming new data point,  �-   (&� , ∆ ) is 

high for point 6 compared to point 5, increasing the value of bias for point 6. This in turn 

increases the inverse proximity estimate,  ��� ∆�
(�)  for point 6 compared to point 5, thereby, 

reducing the acceptability of point 6 into the cluster. 

 

3.4. Incremental Clustering Approach with CFICA 

CFICA uses the inverse proximity estimate,  ��� ∆�
(�) 

 for effectively identifying the appropriate 

cluster of an incoming data point y∆ . In other words, it estimates the proximity of the incoming 

point to a cluster based on the cluster centroid (mean ��), farthest point in the vicinity of the 

incoming point ( qi) and the incoming data point (∆y).  

For each cluster ic , the Euclidean distance ED is calculated for the following pairs of points: 

centroid and incoming point (��, ∆ ), farthest point in the vicinity of the incoming point and 

incoming point(&� , ∆ ), centroid and farthest point in the vicinity of the incoming point (�� , &�). 
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Upon the arrival of a new data point y∆  to the existing database DS  which is already clustered 

into C = {C1, C2, …….., Ck} clusters, its distance,  ��� ∆�
(�) 

  to i
th
 cluster for all i = 1 to k is 

calculated using the Equation specified in section 2.3.2 

��� ∆�
(�) =  �� (��    , ∆ ) + [ �� (&� , ∆ )  ∗ ED (��  , &�)] 

where,  �� (��  , ∆ ) �  Euclidean distance between the points im  and y∆  

�� (&� , ∆ ) �  Euclidean distance between the points iQ  and y∆  

ED (�� , &�) �  Euclidean distance between the points im  and iQ
 

3.5 Finding the farthest point in the vicinity of incoming data point y∆  

In order to find the farthest point qi  ( data point in Qi ) which is in the vicinity of the incoming 

data point y∆ , the Euclidean distance is calculated for that data point y∆  to each of the p -

farthest points of that cluster and the data point with minimum distance is designated as qi 

thereby, for each cluster, the point having minimum distance is taken as the farthest point qi.. 

3.6 Finding the appropriate cluster 

The proximity metric, IPE is used to find the appropriate cluster for the new data point, y∆ . The 

new data point, y∆  is assigned to the closest cluster only if the calculated proximity, ��� ∆�
(�) 

 is 

less than the predefined threshold value, λ. Otherwise, the data point y∆ is not included in any of 

the existing clusters, but it separately forms a new singleton cluster. In such a case, the number of 

clusters is incremented by one. 

3.7 Updating of Cluster Feature  

 
From the above section, it can be seen that, whenever a new data point, ∆  is added to the 

existing database, that new data point may be included into any of the existing clusters or it may 

form a new cluster. So after the new point gets inserted, updating of CF  is important for further 

processing.  

 

Case 1: Inclusion of new data point into any of the existing clusters 

Whenever a new data point, ∆  is included into an already existing cluster Ci its cluster feature 

(CFi) is updated without requiring the original data points of Ci and hence supports incremental 

update of the clustering solution. 

 

In particular, the ni,  �#′ ,$$$$$$$% and ��� fields of CFi are updated upon the arrival of a new data point ∆  

into the cluster Ci as given below: 
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(1) ni = ni + 1 

 

(2)  ��
′    = 

��  ∗  /�
′0∆�

��
 

 

(3)  ��� = ���  + squared components of ∆ . 

 

However, the Qi representing the p-farthest points and the centroid of the previous snapshot ��
′ ,   

were kept without any changes until the next periodical refresh. 

 

Case 2: New data point forms a singleton cluster 

If the new data point forms a new cluster separately, the cluster feature (CFi ) has to be computed 

for the new cluster containing the data point y∆ . CFi for the new cluster contains the following 

information:  

 

(1) Number of data points. Here n=1, as it is a singleton cluster, 

(2) Mean of the new cluster; In this case,  mi =    ��
′ =  1  

(3) The list of p-farthest points includes 1  only. 

(4) Squared sum is squared sum of components of 1 .  

Finding the appropriate cluster to incorporate the new data point y∆  and updating of the cluster 

feature after adding it to the existing cluster or forming a separate cluster are iteratively 

performed for all the data points in the incremental database DS∆ . 

3.8 Merging of closest cluster pair 

Once the incremental database DS∆  is processed with CFICA, the need to merge the closest 

clusters may arise. A merging strategy is used to maintain reasonable number of clusters with 

high quality. Therefore, merging is performed when the number of clusters increases beyond ‘k’  

( k in k-means) while ensuring that increase in variance which indicates error is minimum due to 

merging. It is intuitive to expect an increase in the error with the decrease in the number of 

clusters. A closest cluster pair is considered for merging if only the Euclidean distance between 

the centroids of the pair of clusters is smaller than user defined merging threshold (θ).  

The procedure used for the merging process is described below: 

Step 1: Calculate the Euclidean distance ED between every pair of cluster centroids (�#$$$$%).  

Step 2: For every cluster pair, with Euclidean distance, ED less than the merging threshold  

 value, 2  ( ED ≪ 2 ), find increase in variance (��) as described in section 3.2.           

Step 3: Identify the cluster pair (Ci, Cj) with minimum increase in variance. 
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Step 4 : Merge Ci and Cj to form the new cluster, Ck and compute the Cluster Feature  for Ck            

and delete Ci and Cj along with their CF’s. 

Step 5 : Repeat steps 1 to 4 until no cluster pair is mergable or until the value of ‘k’ is adjusted. 

Computing Cluster Feature of merged cluster 

After merging the closest cluster pair, now the Cluster Feature ( CF ) has to be computed for the 

merged cluster. The CF of the merged cluster is calculated by: 

(1) Adding the number of data points in both the clusters 

(2) Calculating the mean of the merged cluster 

(3) Finding the p-farthest points of the merged cluster 

(4) Incrementing the squared sum. 

 

In particular, when the i
th
 cluster with CFi = { ni, mi , mi

’
, Qi , ssi} and j

th
 cluster with CFj =  { nj , 

mj , mj
’
, Qj ,ssj } are merged to form k

th
 cluster, its cluster feature CFk is calculated as given below: 

1) nk = ( ni + nj ) 

2) �4$$$$$%  = 
(56 ∗ /7$$$$$% ) 0 (58 ∗ /9$$$$$$% )

�:
 

3)  �4
′$$$$$% = �4$$$$$% 

4) p-farthest points are selected from farthest points in qi and qj . 

5)  ssk = ssi + ssj 

Hence the Cluster Feature of the new cluster ‘k’ which is formed by merging two existing clusters 

‘i’ and ‘j’ is determined as a function of CFi and CFj.  

CFk = f ( CFi , CFj) 

Thus Cluster Feature provides the essence of the clustered data points thereby avoiding explicit 

referencing of individual objects of the clusters which may be maintained in the external memory 

space.  

3.9 Need for Cluster Refresh 

The addition of new data points into some of the existing clusters naturally results in change of 

mean. So, the set of p-farthest points of cluster Ci, need not be the p-farthest points of cluster >�
′ , 

modified version of Ci. Whether or not, the p-farthest points of the cluster are the same, depend 

upon the recently added data points. Ideally, a new set of p-farthest points have to be computed 

for the incremented cluster >�
′. Calculating p-farthest points again, every time the cluster gets 

updated, is not an easy task as it involves recalculation of the Euclidean distance, ED for every 

data point in the incremented cluster >�
′

 
with the updated mean, �� 

′ .  



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.5, September 2013

For pragmatic reasons, it was suggested to refresh the 

from its original value indicating concept drift [Chen H.L et al. 2009]. After processing a new 

chunk of data points from ∆SD the deviation in mean is calculated 

 

 

Those clusters with deviation in mean greater than 

clusters with significant concept 

refresh involves finding a new set of p

clusters, the same set of p-farthest points along with the old mean value, m

be noted that mi in the CFi always represents the centro

identified. Hence needs to be changed whenever new set of p

above process of cluster refresh is applicable only to the incremented cluster C

of additional data points  
 

4. EXPERIMENTAL ANALYSIS

 
CFICA has been implemented using the Iris [13], wine [14] and yeast [15] datasets from the UCI 

machine learning repository. All the datasets were preprocessed. Iris and Wine datasets do not 

have any missing values but Yeast dataset has some missing attribute values and such instances 

were ignored. After preprocessing, yeast dataset had 1419 instances. Normally datasets used for 

the purpose of analysis may contain too many attributes, which may or may not be relevant. 

Therefore dimensionality reduction has been done on Wine and Yeast datasets as they contain a 

considerable number of attributes. So the number of attributes came down from 13 to 3 for wine, 

from 8 to 5 attributes for yeast datasets.

 

Fig 1. Purity of Wine dataset before and after dimensionality reduction

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4

of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.5, September 2013

ragmatic reasons, it was suggested to refresh the CFi, only in case it deviates significantly 

from its original value indicating concept drift [Chen H.L et al. 2009]. After processing a new 

the deviation in mean is calculated as follows 

 Deviation in mean = 
/� 
′ @ /�

/�
     

 

Those clusters with deviation in mean greater than δ, based on a threshold are identified as 

clusters with significant concept – drift and hence needs to be refreshed. The process of c

refresh involves finding a new set of p-farthest points for such clusters. For the remaining 

farthest points along with the old mean value, mi is maintained. It may 

always represents the centroid based on which the p-farthest points are 

identified. Hence needs to be changed whenever new set of p-farthest points are identified. The 

above process of cluster refresh is applicable only to the incremented cluster Ci
’
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Fig 2. Purity of Yeast dataset before and after dimensionality reduction

It can be seen from the above figures that the cluster purity increases after dimensionality 

reduction has been done. 

 

4.1 Cluster formation 

The above datasets are processed dynamically by dividing the data points in each dataset into 

chunks.  For example, the Iris dataset is divided into 4 chunks (Iris1 consisting of 75 instances, 

Iris2, Iris3 and Iris4 consisting of 25 instances each). Initially, the first chunk of data points is 

given as input to the k-means algorithm for initial clustering i.e Iris1. It generates k number of 

clusters. Then, the cluster feature is computed for those k initial clusters. The nex

points is input to the new approach incrementally. For each data point from the second chunk, the 

Inverse Proximity Estimate (IPE) is computed and the data points are assigned to the 

corresponding cluster if the calculated distance measure 

value, λ. Otherwise, it forms as a separate cluster. Subsequently, the cluster feature is updated for 

each data point. Once the whole chunk of data points is processed, the merging process is done if 

only the Euclidean distance between the centroids of the pair of clusters is smaller than user 

defined merging threshold, θ. Here, 

obtained from the merging process and the cluster solution is updated incrementally

receiving the later chunks of data Iris3 and Iris4. Similarly, wine and yeast datasets are also 

divided into 4 chunks as follows: wine1 

wine4 - 28 instances, yeast1 - 700 instances, yeast 2 

yeast4 - 168 instances and handled as above.

 

4.2 Metrics in which performance is estimated

Validation of clustering results is important. Therefore, the Purity Measure has been used to 

evaluate the clustering results ob

to a single class. The purity measure described in [16] [17] has been used for evaluating the 

performance of CFICA. The evaluation metric used in CFICA is given below,
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Fig 2. Purity of Yeast dataset before and after dimensionality reduction 

It can be seen from the above figures that the cluster purity increases after dimensionality 

The above datasets are processed dynamically by dividing the data points in each dataset into 

chunks.  For example, the Iris dataset is divided into 4 chunks (Iris1 consisting of 75 instances, 

ing of 25 instances each). Initially, the first chunk of data points is 

means algorithm for initial clustering i.e Iris1. It generates k number of 

clusters. Then, the cluster feature is computed for those k initial clusters. The next chunk of data 

points is input to the new approach incrementally. For each data point from the second chunk, the 

Inverse Proximity Estimate (IPE) is computed and the data points are assigned to the 

corresponding cluster if the calculated distance measure is less than the predefined threshold 

. Otherwise, it forms as a separate cluster. Subsequently, the cluster feature is updated for 

each data point. Once the whole chunk of data points is processed, the merging process is done if 

distance between the centroids of the pair of clusters is smaller than user 

θ. Here, λ = 10 and θ = 4.Finally, the set of resultant clusters are 

obtained from the merging process and the cluster solution is updated incrementally

receiving the later chunks of data Iris3 and Iris4. Similarly, wine and yeast datasets are also 

divided into 4 chunks as follows: wine1 - 100 instances, wine2 and wine3 - 25 instances each, 

700 instances, yeast 2 – 350 instances, yeast3 - 200 instances,  

168 instances and handled as above. 

4.2 Metrics in which performance is estimated 

Validation of clustering results is important. Therefore, the Purity Measure has been used to 

evaluate the clustering results obtained. A cluster is called a pure cluster if all the objects belong 

to a single class. The purity measure described in [16] [17] has been used for evaluating the 

performance of CFICA. The evaluation metric used in CFICA is given below, 

Purity = 
	

  ∑ A�

B
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It can be seen from the above figures that the cluster purity increases after dimensionality 

The above datasets are processed dynamically by dividing the data points in each dataset into 

chunks.  For example, the Iris dataset is divided into 4 chunks (Iris1 consisting of 75 instances, 

ing of 25 instances each). Initially, the first chunk of data points is 

means algorithm for initial clustering i.e Iris1. It generates k number of 

t chunk of data 

points is input to the new approach incrementally. For each data point from the second chunk, the 

Inverse Proximity Estimate (IPE) is computed and the data points are assigned to the 

is less than the predefined threshold 

. Otherwise, it forms as a separate cluster. Subsequently, the cluster feature is updated for 

each data point. Once the whole chunk of data points is processed, the merging process is done if 

distance between the centroids of the pair of clusters is smaller than user 

 = 4.Finally, the set of resultant clusters are 

obtained from the merging process and the cluster solution is updated incrementally upon 

receiving the later chunks of data Iris3 and Iris4. Similarly, wine and yeast datasets are also 

25 instances each, 

200 instances,  

Validation of clustering results is important. Therefore, the Purity Measure has been used to 

tained. A cluster is called a pure cluster if all the objects belong 

to a single class. The purity measure described in [16] [17] has been used for evaluating the 
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where, N � Number of data points in the dataset 

            T � Number of resultant cluster 

           iX � Number of data points of majority class in cluster i  

 

The purity of the resultant clusters is calculated by changing the k-value (order of initial 

clustering) and is graphically presented in Figures 3 to 5. 

 

 
Fig 3. Purity vs. number of clusters ( k ) for Iris dataset. 

 

 
 

Fig 4. Purity vs. number of clusters ( k ) for Wine dataset. 

 

Fig 5. Purity vs. number of clusters ( k ) for Yeast dataset. 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.5, September 2013 

105 

The above results demonstrate that CFICA performs better than BIRCH in terms of purity. 

BIRCH algorithm is unable to deliver satisfactory clustering quality if the clusters are not 

spherical in shape because it employs the notion of radius or diameter to control the boundary of 

a cluster.  

 

5. THE PSEUDO-CODE FOR CFICA 

 
The various steps constituting the proposed algorithm CFICA is listed out in the form of pseudo-

code. CFICA accepts the clustering solution for existing database SD in the form of cluster 

features as input and incrementally updates the set of cluster features in ∆SD. in accordance with 

newly arrived chunk of data points. 

 
Input 

�- → Initial set of CF’s for SD. 

∆�- → Set of data points added to SD 

K → Number of clusters 

θ → Predefined merging threshold value 

δ → Allowed deviation in mean 

λ → User defined radius threshold 

 

Output 

Set of CF’s { CF1, CF2, . . . . . . , CFK } for ( SD.+ ∆SD) 

 

Variables 

∆   → New data point 

>C� → Cluster Feature of i
th
 cluster 

��� ∆�
(�) 

 → Inverse Proximity Estimate between ∆  and i
th
 cluster 

ED → Euclidean distance 

D�  → Number of data points 

��  → Mean vector of the cluster  

��
′   → New mean vector of the cluster 

��  → List of p-farthest points of i
th 

cluster  

&� → The data point in �� which is closest to ∆   

ssi → Squared sum vector  
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Algorithm 

1) Compute Cluster Feature for every cluster >� 

 CFi = { ni, mi, mi
'
, Qi, ssi} 

 a = k; 

2)  For each data point ∆  E ∆�- 

            a) For i from 1 to a 

                 Calculate Inverse Proximity Estimate of ∆  to the i
th
 cluster  

��� ∆�
(�) =  �� (��    , ∆ ) + [ �� (&� , ∆ )  ∗ ED (��  , &�)] 

              b) Find suitable cluster j = arg mini { ��� ∆�
(�) 

 }  

       if  (  ��� ∆�
(�) 

 < λ ) 

                 {  

             insert ∆  into its closest cluster j and update its CF as follows: 

        CFj = { (nj +1), mj,  
�F∗ /F0 ∆�

 �F0 	  , qj,(SSi +squared components of ∆ )} 

          if ( deviation in mean = 
|/F

′  @ /F|
|/F|  >  I) 

  Read the data points of j
th
 cluster to recompute CFj. 

                 } 

    else create a new cluster 

    {  

         increment a   

        insert ∆  into a
th 

cluster 

   CFa = {1, ma , ma
'
, ∆y, squared components of ∆y} 

  } 
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3)          If ( a > k ) merge cluster pair 

               (i) Compute ED between every pair of cluster centroids based on ��. 

               (ii) For cluster pairs with  ( ED ≪ 2 ), find increase in variance. 

              (iii) Merge the cluster pair with minimum increase in variance  

                     Decrement a  

               (iv) Recalculate CF of merged cluster   

                      CFk = { ( ni + nj ), 
(56 ∗ J6) 0 (58 ∗ J8)

�:
, �k = �4

′ , qk,, SSk = SSi + SSj } 

         Find its ED to other clusters. 

               (v) Repeat steps (i) to (iv) until ( a = k ) 

4) Print cluster solution as the set of cluster features.  

 Wait for the arrival of new chunk of data points upon which call  CFICA 

again. 

 

6. CONCLUSIONS 

 

An incremental clustering algorithm called Cluster Feature-Based Incremental Clustering 

Approach for numerical data (CFICA) which makes use of Inverse Proximity Estimate to handle 

entities described in terms of only numerical attributes was developed and evaluated. Cluster 

Feature while being compact includes all essential information required for maintenance and 

expansion of clusters. Thus CFICA avoids redundant processing which is the essential feature of 

an incremental algorithm. The performance of this algorithm, in terms of purity is compared with 

the state of art incremental clustering algorithm namely BIRCH on different bench mark datasets.  
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