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ABSTRACT 

 

feed forward neural network with backpropagation learning algorithm is considered as a black box 

learning classifier since there is no certain interpretation or anticipation of the behavior of a neural 

network weights. The weights of a neural network are considered as the learning tool of the classifier, and 

the learning task is performed by the repetition modification of those weights. This modification is 

performed using the delta rule which is mainly used in the gradient descent technique. In this article a 

proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural 

network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is 

not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in the 

neural network are upper bounded (i.e. they do not approach infinity). 
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1. INTRODUCTION 

 
Mitchell (1997) argue that “Neural network learning methods provide a robust approach to 

approximating target functions, and they are among the most effective learning methods currently 

known”. Moreover, the author believes that “backpropagation learning algorithm has proven 

surprisingly successful in many practical problems”. LeCun, et al. (1989), Cottrell (1990) and 

Lang, et al. (1990) provided experimental results support the efficient characteristic of 

backpropagation learning algorithm with neural networks. 

 

A feed forward neural network is considered as a black box since there is no certain interpretation 

or anticipation of its weights behavior. The weights of a neural network are considered as the 

learning tool. During the training process of a neural network, the weights are repeatedly 

modified, since the main characteristic of a neural network is: “those connections between 

neurons leading to the right answer are strengthened by maximizing their corresponding weights, 

while those leading to the wrong answer are weaken” (Negnevitsky, 2005). 
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“Each input node is connected with a real-valued constant (i.e. weight) that determines the 

contribution of that input to the output. Learning a neural network involves choosing values for 

the weights. Hence, the learning problem faced by Backpropagation is to search a large 

hypotheses space defined by all possible weight values for all the units in the network” (Mitchell, 

1997). 

 

The gradient descent technique is among the common techniques that are used to perform the 

search process that was mentioned by Mitchell (1997) by optimizing the weights of a neural 

classifier, which is achieved by applying the delta rule that is used to find out the amount by 

which the current value of a weight will be updated.  

 

Mathew (2013) believes that “The most popular neural network algorithm is backpr opagation, a 

kind of gradient descent method. Backpropagation iteratively process the data set, comparing the 

network’s prediction for each tuple with actual known target value to find out an acceptable local 

minimum in the NN weight space in turns achieves the least number of errors”. Moreover, in a 

related context, Kumar, et al. (2012) mentioned that backpropagation algorithm “learns by 

recursively processing a set of training tuples, comparing the network’s observed output for each 

tuple with the actual known class attribute value. For each training tuple, the weights are edited 

so as to reduce the mean squared error between the network’s output and the actual class label or 

value. These changes are propagated in backward direction through each hidden layer down to 

the first hidden layer. After running the process repetitively, the weights will finally converge, 

and the training process stops”.  

 

Even though a neural classifier is considered as a robust learning machine, it is not guaranteed to 

converge to a global minimum; instead it is possible to stuck in a local minimum. In this notion a 

proof is provided that helps to understand the characteristics and the nature of a neural network 

weights, which in turn can be used to interpret the whole behavior of a neural classifier.   

 

The remainder of this paper is organized as the following: the next section mentions the concept 

of the gradient descent technique. This section contains two subsections show that the delta rules 

for the input and hidden weights approaches zero. The paper ends with the conclusion. 

 

2. GRADIENT DESCENT TECHNIQUE AND THE DELTA RULE 
 

In this section the gradient descent technique and the delta rule will be introduced. We will show 

that the delta rule approaches zero. Hence, taking into consideration that the delta rule is used to 

update the values of the weights in a neural classifier, this implies that the weights are upper 

bounded and they do not approach infinity.   

 

The learning task in a feed forward neural network with backpropagation training algorithm is 

achieved by the optimizing of the neural network weights in order to fit the data points in a 

dataset. This can be achieved by applying the gradient descent technique which mainly based on 

choosing the weights that minimize the error (i.e. the difference between the actual output and the 

target). Russell and Norvig (2010) provided some details about the error function and called it as: 

Loss function.  

 

According to Negnevitsky (2005) Equation (1) below shows the major equation to update a 

neural network weights. 
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���� =  �� + ∆��                                                   (1) 

 
where �� is the weight at the current training iteration �, and ���� is the weight at next training 

iteration � + 1. ∆�� is the amount of change in ��. ∆�� is known as the delta rule which is used to 

update the weights in the neural network. The delta rule is not identical for all weights in the 

neural network, since there are two kinds of weights: (1) Input Weights (connect the input layer 

to the output layer) and (2) Hidden Weights (connect the hidden layer to the output layer). 

 

(1) DELTA RULE FOR HIDDEN WEIGHTS 

 

Equation (2) below illustrates the delta rule ∆�� that is used to update the hidden weights in a 

feed forward neural network. 

 ∆�� =  � (�� −  ��) ��(1 −  ��) ����                    (2) 

 

where �� and �� are the target and the actual outputs on the output layer respectively, where  �� ∈ �0,1�. ��  is the output of the hidden neuron �. �� is the hidden weight that connects the 

hidden neuron � to the output layer in the neural network. � is a small positive value that is 

known as the learning rate. �� is calculated using the logistic regression function as equation (3) 

illustrates.  

 

�� =  1
1 +  ���                                                           (3) 

 
where   is a multiple regression function, �� … �" are the outputs of the hidden neurons, and �� … �" are the weights that connect the hidden layer to the output layer. The major aim here is 

to prove that the delta rule in (2) approaches zero, since this implies that the weights will be 

stable in some level, which means that the weights are bounded and they do not approach 

infinity. Such feature causes the neural classifier to stuck in a local minimum or a global minima.  

 

As mentioned before, the desired output takes two values only: �� ∈ �0,1�.  

 

(1) when �� = 1, there are three cases: �� = 0, �� = 1, and �� ∈ (0,1). 

Now let ��� be the weight of the hidden output �� at iteration �. Thus:    

 ∆��� =  � ��  (1 −  ��) ��(1 −  ��)                        (4) 

                                                    =  � �� (1 − ��)$ �� 

                                                    =  � �� �� (�� − 1)$                                                     
                                                           =  %� �� (�� − 1)$   

where %�  =  � �� 

                                                    =  %�  & �
� � '()* & �

� �'() − 1*$
 

 

Case (I): when �� ∈ (0,1) => %�  =  � �� is positive (note that � is a small positive value such 

that � = 0.1, 0.01, 0.001)  
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- if �� →  +∞ then  =  ���� +  ~ → +∞  

where  ~ =  �. + ���� + ⋯ + �������� +  �������� + ⋯ + �"�" 

� ��� →  0 

� 
�

��'() → 1   

�  ( �
��'() − 1) → 0  

� ∆ ��� =  %� & �
�� '()* & �

�� '() − 1*$ → 0 

� ∆��� → 0 
 

Thus, as  ��� increases (��� →  +∞), then the sequence ∆��� decreases and approaches to 0 

(∆��� → 0). This result can be used with the notion of limit of a sequence, which is considered as 

the most basic concept among different concepts of limit in real analysis see Bartle and Sherbert 

(2000). 

 

According to Bartle and Sherbert (2000), the notion of a limit of a sequence implies that: when a 

sequence converges to 0, then for each 0 > 0 ∃ 3∗  ∈ ℕ such that if � ≥  3∗ then |∆��� − 0| <  0. 

That means for any 0 > 0 there is some number 3∗ such that all the terms of the sequence ∆��� 
that are produced after the term ∆��"∗ (i.e. ∆��"∗��, ∆��"∗�$, … ) will be less than 0. Hence, if 0 = 1 ×  10��. for instance, then there is 3∗ ∈  ℕ such that all the terms ∆��"∗��, ∆��"∗�$, … are less than 0. In other words ∆�� will not exceed 1 × 10��. for any term 

that is produced after the term 3∗. 

 

- if  �� →  −∞ then  =  ���� +  ~ → −∞  

where  ~ =  �. + ���� + ⋯ + �������� +  �������� + ⋯ + �"�" 

� ��� → +∞ 

� 
�

��'() → 0   

�  & �
��'() − 1* → −1  

� ∆ ��� =  %� & �
�� '()* & �

�� '() − 1*$ → 0 

� ∆��� → 0  

 

So as  ��� decreases (��� →  −∞), then the sequence ∆��� decreases and approaches to 0 

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned 

earlier when �� →  +∞, and it proves that ∆�� is a sequence approaches 0. 

 

Case (II): when �� = 1 => %�  = � ��: � �� ∈ (0,1) (note that � is a small positive value such that 

� = 0.1, 0.01, 0.001) 

 

- if �� →  +∞ then  =  ���� +  ~ → +∞  

� ��� →  0 

             where  ~ =  �. + ���� + ⋯ + �������� +  �������� + ⋯ + �"�" 

� 
�

��'() → 1   

�  & �
��'() − 1* → 0  

� ∆ ��� =  %� & �
�� '()* & �

�� '() − 1*$ → 0 
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� ∆��� → 0  
 

So as  ��� increases (��� →  +∞), then the sequence ∆��� decreases and approaches to 0 

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned 

earlier. 

 

- if �� →  −∞ then  =  ���� +  ~ → −∞  

� ��� →  +∞ 

� 
�

��'() → 0   

�  & �
��'() − 1* → −1  

� ∆ ��� =  %� & �
�� '()* & �

�� '() − 1*$ → 0 

� ∆��� → 0 

 

So as  ��� decreases (��� →  −∞), then the sequence ∆��� decreases and approaches to 0 

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned 

earlier. 

 

Case (III): when �� = 0 this implies that the delta rule is also 0. Recall the delta rule from 

equation (2):   ∆��� =  � ��  (1 −  ��) ��(1 − ��) 

� ∆��� = 0 since �� = 0 

 

And this also satisfies the notion of a limit of a sequence. 

  

(2) when �� = 0, there are also three cases: �� = 0, �� = 1, and �� ∈ (0,1).  

 

Now let ��� be the weight of the hidden output �� at iteration �. Thus:    

 ∆��� =  � �� (0 − ��) ��(1 − ��)                                   
                                                         =  � ��  (��$)(�� − 1)  

                                                         =  %� ��$ (�� − 1) 

where %�  =  � �� 

                                                         =  %� & �
� �'()*$ & �

� � '() − 1* 

 

Hence, by using the same argument above when �� = 1 we will end up that: when �� ∈ (0,1) or 

�� ∈ �0,1� then ∆��� → 0 when �� →  +∞ or �� →  −∞. 

 

Since ∆��� → 0 for large �, then: 

� (����� =  ��� +  ∆���) → 0 

� (����� −  ��� =  ∆���) → 0 

� (����� −  ���) → 0  

� (����� →  ���) for large �. 
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(2) DELTA RULE FOR INPUT WEIGHTS 

 

Equation (5) below illustrates the delta rule ∆�< that is used to update the input weights. 

∆�< = � ∙ ><  &��?1 − ��@* AB ?∆��@?��@C
�D� E             (5) 

where >< an input variable, �� the output of the hidden neuron �, and F is the number of the 

hidden neurons in the neural classifier. 

 

Since the delta rule ∆�< in equation (5) depends on the amount ∆�� which approaches zero for 

large � (as proved earlier), then the delta rule ∆�< also approaches zero for large �. Moreover, the 

hidden output �� affects the value of the delta rule ∆�<, but �� is a hidden output of the logistic 

regression function at hidden neuron �, thus the values of �� are: �� ∈ �0,1�, or �� ∈ (0,1). Thus, 

by applying the former argument with the delta rule for hidden weights, it is easy to show that 

when �� ∈ �0,1� then ∆�< → 0.    

 

By now we need to show that ∆�< approaches 0 when �� ∈ (0,1): 

 

let �G� be the weight of the input >< at iteration �. Thus:       

 

� ∆�G� =  %� ��?1 − ��@ 

where %�  =  � ><?∑ ?∆��@?��@C�D� @ 

                                                  ∆�G� =  %�  & �
� � '()* &1 − �

� � '()*         
 

- If �< →  +∞ then  =  ><�< +  ~ → +∞  

where  ~ =  �. + ��>� + ⋯ + �<��><�� +  �<��><�� + ⋯ + �">" 

� ��� →  0 

� 
�

��'() → 1   

�  (1 − �
��'()) → 0  

� ∆ �G� =  %� & �
�� '()* (1 − �

��'()) → 0 

� ∆�G� → 0 
 

Thus as �G� increases (�G� →  +∞), then the sequence ∆�G� decreases and approaches to 0 

(∆�G� → 0). This result satisfies the notion of limit of a sequence that was mentioned earlier. 

 

- If  �< →  −∞ then  =  ><�< +  ~ → −∞ 

where  ~ =  �. + ��>� + ⋯ + �<��><�� +  �<��><�� + ⋯ + �">"  

� ��� → +∞ 

� 
�

��'() → 0   

�  &1 − �
��'()* → 1  

� ∆ �G� =  %� & �
�� '()* &1 − �

��'()* → 0 

∆�G� → 0 
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So as  �G� decreases (�G� →  −∞), then the sequence ∆�G� decreases and approaches to 0 

(∆�G� → 0). This result also satisfies the notion of limit of a sequence which was mentioned in 

the previous case when �< →  +∞. 

 

Thus, we proved that ∆�G is a sequence approaches to 0 for large �, since it satisfies the notion of 

limit of a sequence. 

 

Since ∆�G� → 0 for large �, then: 

 

� (�G��� =  �G� + ∆�G�) → 0 

� (�G��� −  �G� =  ∆�G�) → 0 

� (�G��� − �G�) → 0 

� (�G��� →  �G�) for large �. 
 

Therefore, both sequences in (2) and (5) approach zero, which implies that the weights in the 

neural network are bounded. 

 

3. CONCLUSION 

 
In this notion a proof was introduced that identifies the upper bounds of a neural network 

weights. This was achieved by applying the notion of a limit of a sequence on the delta rule 

which is part of the gradient descent technique. The result showed that the weights in a neural 

classifier are upper bounded (i.e. they do not approach infinity) since the amount of the delta rule 

is decreased though training epochs and it approaches zero. This, in turn, minimizes the change 

of the weights amounts which satisfies the notion of a limit of a sequence. Such result helps to 

understand the behavior of a neural network classifier and explains why a neural network is not 

always guaranteed to find the global minimum in the solution surface, and stuck in a local 

minimum. 
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