
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

DOI : 10.5121/ijdkp.2014.4301 1

BOUNDNESS OF A NEURAL NETWORK

WEIGHTS USING THE NOTION OF A LIMIT OF

A SEQUENCE

Dr. Hazem Migdady

Department of Mathematics and Computer Science, Tafila Technical University, P.O.

Box 179, Tafila 66110

ABSTRACT

feed forward neural network with backpropagation learning algorithm is considered as a black box

learning classifier since there is no certain interpretation or anticipation of the behavior of a neural

network weights. The weights of a neural network are considered as the learning tool of the classifier, and

the learning task is performed by the repetition modification of those weights. This modification is

performed using the delta rule which is mainly used in the gradient descent technique. In this article a

proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural

network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is

not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in the

neural network are upper bounded (i.e. they do not approach infinity).

KEYWORDS

Data Mining, Delta Rule, Machine Learning, Neural Networks, Gradient Descent.

1. INTRODUCTION

Mitchell (1997) argue that “Neural network learning methods provide a robust approach to

approximating target functions, and they are among the most effective learning methods currently

known”. Moreover, the author believes that “backpropagation learning algorithm has proven

surprisingly successful in many practical problems”. LeCun, et al. (1989), Cottrell (1990) and

Lang, et al. (1990) provided experimental results support the efficient characteristic of

backpropagation learning algorithm with neural networks.

A feed forward neural network is considered as a black box since there is no certain interpretation

or anticipation of its weights behavior. The weights of a neural network are considered as the

learning tool. During the training process of a neural network, the weights are repeatedly

modified, since the main characteristic of a neural network is: “those connections between

neurons leading to the right answer are strengthened by maximizing their corresponding weights,

while those leading to the wrong answer are weaken” (Negnevitsky, 2005).

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

2

“Each input node is connected with a real-valued constant (i.e. weight) that determines the

contribution of that input to the output. Learning a neural network involves choosing values for

the weights. Hence, the learning problem faced by Backpropagation is to search a large

hypotheses space defined by all possible weight values for all the units in the network” (Mitchell,

1997).

The gradient descent technique is among the common techniques that are used to perform the

search process that was mentioned by Mitchell (1997) by optimizing the weights of a neural

classifier, which is achieved by applying the delta rule that is used to find out the amount by

which the current value of a weight will be updated.

Mathew (2013) believes that “The most popular neural network algorithm is backpr opagation, a

kind of gradient descent method. Backpropagation iteratively process the data set, comparing the

network’s prediction for each tuple with actual known target value to find out an acceptable local

minimum in the NN weight space in turns achieves the least number of errors”. Moreover, in a

related context, Kumar, et al. (2012) mentioned that backpropagation algorithm “learns by

recursively processing a set of training tuples, comparing the network’s observed output for each

tuple with the actual known class attribute value. For each training tuple, the weights are edited

so as to reduce the mean squared error between the network’s output and the actual class label or

value. These changes are propagated in backward direction through each hidden layer down to

the first hidden layer. After running the process repetitively, the weights will finally converge,

and the training process stops”.

Even though a neural classifier is considered as a robust learning machine, it is not guaranteed to

converge to a global minimum; instead it is possible to stuck in a local minimum. In this notion a

proof is provided that helps to understand the characteristics and the nature of a neural network

weights, which in turn can be used to interpret the whole behavior of a neural classifier.

The remainder of this paper is organized as the following: the next section mentions the concept

of the gradient descent technique. This section contains two subsections show that the delta rules

for the input and hidden weights approaches zero. The paper ends with the conclusion.

2. GRADIENT DESCENT TECHNIQUE AND THE DELTA RULE

In this section the gradient descent technique and the delta rule will be introduced. We will show

that the delta rule approaches zero. Hence, taking into consideration that the delta rule is used to

update the values of the weights in a neural classifier, this implies that the weights are upper

bounded and they do not approach infinity.

The learning task in a feed forward neural network with backpropagation training algorithm is

achieved by the optimizing of the neural network weights in order to fit the data points in a

dataset. This can be achieved by applying the gradient descent technique which mainly based on

choosing the weights that minimize the error (i.e. the difference between the actual output and the

target). Russell and Norvig (2010) provided some details about the error function and called it as:

Loss function.

According to Negnevitsky (2005) Equation (1) below shows the major equation to update a

neural network weights.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

3

���� = �� + ∆�� (1)

where �� is the weight at the current training iteration �, and ���� is the weight at next training

iteration � + 1. ∆�� is the amount of change in ��. ∆�� is known as the delta rule which is used to

update the weights in the neural network. The delta rule is not identical for all weights in the

neural network, since there are two kinds of weights: (1) Input Weights (connect the input layer

to the output layer) and (2) Hidden Weights (connect the hidden layer to the output layer).

(1) DELTA RULE FOR HIDDEN WEIGHTS

Equation (2) below illustrates the delta rule ∆�� that is used to update the hidden weights in a

feed forward neural network.

 ∆�� = � (�� − ��) ��(1 − ��) ���� (2)

where �� and �� are the target and the actual outputs on the output layer respectively, where �� ∈ �0,1�. �� is the output of the hidden neuron �. �� is the hidden weight that connects the

hidden neuron � to the output layer in the neural network. � is a small positive value that is

known as the learning rate. �� is calculated using the logistic regression function as equation (3)

illustrates.

�� = 1
1 + ��� (3)

where is a multiple regression function, �� … �" are the outputs of the hidden neurons, and �� … �" are the weights that connect the hidden layer to the output layer. The major aim here is

to prove that the delta rule in (2) approaches zero, since this implies that the weights will be

stable in some level, which means that the weights are bounded and they do not approach

infinity. Such feature causes the neural classifier to stuck in a local minimum or a global minima.

As mentioned before, the desired output takes two values only: �� ∈ �0,1�.

(1) when �� = 1, there are three cases: �� = 0, �� = 1, and �� ∈ (0,1).

Now let ��� be the weight of the hidden output �� at iteration �. Thus:

 ∆��� = � �� (1 − ��) ��(1 − ��) (4)

 = � �� (1 − ��)$ ��

 = � �� �� (�� − 1)$
 = %� �� (�� − 1)$

where %� = � ��

 = %� & �
� � '()* & �

� �'() − 1*$

Case (I): when �� ∈ (0,1) => %� = � �� is positive (note that � is a small positive value such

that � = 0.1, 0.01, 0.001)

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

4

- if �� → +∞ then = ���� + ~ → +∞

where ~ = �. + ���� + ⋯ + �������� + �������� + ⋯ + �"�"

� ��� → 0

�
�

��'() → 1

� (�
��'() − 1) → 0

� ∆ ��� = %� & �
�� '()* & �

�� '() − 1*$ → 0

� ∆��� → 0

Thus, as ��� increases (��� → +∞), then the sequence ∆��� decreases and approaches to 0

(∆��� → 0). This result can be used with the notion of limit of a sequence, which is considered as

the most basic concept among different concepts of limit in real analysis see Bartle and Sherbert

(2000).

According to Bartle and Sherbert (2000), the notion of a limit of a sequence implies that: when a

sequence converges to 0, then for each 0 > 0 ∃ 3∗ ∈ ℕ such that if � ≥ 3∗ then |∆��� − 0| < 0.

That means for any 0 > 0 there is some number 3∗ such that all the terms of the sequence ∆���
that are produced after the term ∆��"∗ (i.e. ∆��"∗��, ∆��"∗�$, …) will be less than 0. Hence, if 0 = 1 × 10��. for instance, then there is 3∗ ∈ ℕ such that all the terms ∆��"∗��, ∆��"∗�$, … are less than 0. In other words ∆�� will not exceed 1 × 10��. for any term

that is produced after the term 3∗.

- if �� → −∞ then = ���� + ~ → −∞

where ~ = �. + ���� + ⋯ + �������� + �������� + ⋯ + �"�"

� ��� → +∞

�
�

��'() → 0

� & �
��'() − 1* → −1

� ∆ ��� = %� & �
�� '()* & �

�� '() − 1*$ → 0

� ∆��� → 0

So as ��� decreases (��� → −∞), then the sequence ∆��� decreases and approaches to 0

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned

earlier when �� → +∞, and it proves that ∆�� is a sequence approaches 0.

Case (II): when �� = 1 => %� = � ��: � �� ∈ (0,1) (note that � is a small positive value such that

� = 0.1, 0.01, 0.001)

- if �� → +∞ then = ���� + ~ → +∞

� ��� → 0

 where ~ = �. + ���� + ⋯ + �������� + �������� + ⋯ + �"�"

�
�

��'() → 1

� & �
��'() − 1* → 0

� ∆ ��� = %� & �
�� '()* & �

�� '() − 1*$ → 0

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

5

� ∆��� → 0

So as ��� increases (��� → +∞), then the sequence ∆��� decreases and approaches to 0

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned

earlier.

- if �� → −∞ then = ���� + ~ → −∞

� ��� → +∞

�
�

��'() → 0

� & �
��'() − 1* → −1

� ∆ ��� = %� & �
�� '()* & �

�� '() − 1*$ → 0

� ∆��� → 0

So as ��� decreases (��� → −∞), then the sequence ∆��� decreases and approaches to 0

(∆��� → 0). This result also satisfies the notion of limit of a sequence which was mentioned

earlier.

Case (III): when �� = 0 this implies that the delta rule is also 0. Recall the delta rule from

equation (2): ∆��� = � �� (1 − ��) ��(1 − ��)

� ∆��� = 0 since �� = 0

And this also satisfies the notion of a limit of a sequence.

(2) when �� = 0, there are also three cases: �� = 0, �� = 1, and �� ∈ (0,1).

Now let ��� be the weight of the hidden output �� at iteration �. Thus:

 ∆��� = � �� (0 − ��) ��(1 − ��)
 = � �� (��$)(�� − 1)

 = %� ��$ (�� − 1)

where %� = � ��

 = %� & �
� �'()*$ & �

� � '() − 1*

Hence, by using the same argument above when �� = 1 we will end up that: when �� ∈ (0,1) or

�� ∈ �0,1� then ∆��� → 0 when �� → +∞ or �� → −∞.

Since ∆��� → 0 for large �, then:

� (����� = ��� + ∆���) → 0

� (����� − ��� = ∆���) → 0

� (����� − ���) → 0

� (����� → ���) for large �.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

6

(2) DELTA RULE FOR INPUT WEIGHTS

Equation (5) below illustrates the delta rule ∆�< that is used to update the input weights.

∆�< = � ∙ >< &��?1 − ��@* AB ?∆��@?��@C
�D� E (5)

where >< an input variable, �� the output of the hidden neuron �, and F is the number of the

hidden neurons in the neural classifier.

Since the delta rule ∆�< in equation (5) depends on the amount ∆�� which approaches zero for

large � (as proved earlier), then the delta rule ∆�< also approaches zero for large �. Moreover, the

hidden output �� affects the value of the delta rule ∆�<, but �� is a hidden output of the logistic

regression function at hidden neuron �, thus the values of �� are: �� ∈ �0,1�, or �� ∈ (0,1). Thus,

by applying the former argument with the delta rule for hidden weights, it is easy to show that

when �� ∈ �0,1� then ∆�< → 0.

By now we need to show that ∆�< approaches 0 when �� ∈ (0,1):

let �G� be the weight of the input >< at iteration �. Thus:

� ∆�G� = %� ��?1 − ��@

where %� = � ><?∑ ?∆��@?��@C�D� @

 ∆�G� = %� & �
� � '()* &1 − �

� � '()*

- If �< → +∞ then = ><�< + ~ → +∞

where ~ = �. + ��>� + ⋯ + �<��><�� + �<��><�� + ⋯ + �">"

� ��� → 0

�
�

��'() → 1

� (1 − �
��'()) → 0

� ∆ �G� = %� & �
�� '()* (1 − �

��'()) → 0

� ∆�G� → 0

Thus as �G� increases (�G� → +∞), then the sequence ∆�G� decreases and approaches to 0

(∆�G� → 0). This result satisfies the notion of limit of a sequence that was mentioned earlier.

- If �< → −∞ then = ><�< + ~ → −∞

where ~ = �. + ��>� + ⋯ + �<��><�� + �<��><�� + ⋯ + �">"

� ��� → +∞

�
�

��'() → 0

� &1 − �
��'()* → 1

� ∆ �G� = %� & �
�� '()* &1 − �

��'()* → 0

∆�G� → 0

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

7

So as �G� decreases (�G� → −∞), then the sequence ∆�G� decreases and approaches to 0

(∆�G� → 0). This result also satisfies the notion of limit of a sequence which was mentioned in

the previous case when �< → +∞.

Thus, we proved that ∆�G is a sequence approaches to 0 for large �, since it satisfies the notion of

limit of a sequence.

Since ∆�G� → 0 for large �, then:

� (�G��� = �G� + ∆�G�) → 0

� (�G��� − �G� = ∆�G�) → 0

� (�G��� − �G�) → 0

� (�G��� → �G�) for large �.

Therefore, both sequences in (2) and (5) approach zero, which implies that the weights in the

neural network are bounded.

3. CONCLUSION

In this notion a proof was introduced that identifies the upper bounds of a neural network

weights. This was achieved by applying the notion of a limit of a sequence on the delta rule

which is part of the gradient descent technique. The result showed that the weights in a neural

classifier are upper bounded (i.e. they do not approach infinity) since the amount of the delta rule

is decreased though training epochs and it approaches zero. This, in turn, minimizes the change

of the weights amounts which satisfies the notion of a limit of a sequence. Such result helps to

understand the behavior of a neural network classifier and explains why a neural network is not

always guaranteed to find the global minimum in the solution surface, and stuck in a local

minimum.

REFERENCES

[1] Bartle, R. G., & Sherbert, D. R. (2000). Introduction to Real Analysis. 3rd ed., Wiley. ISBN:

0471321486.

[2] Cottrell, G. W. (1990). Extracting features from faces using compression networks: Face, identity,

trol, signals, and systems, 2, 303-314.

[3] Kumar, P., Sehgal, K., V. & N., Chauhan, S., D. (2012). A Benchmark to Select Data Mining Based

Classification Algorithms for Business Intelligence and Decision Support Systems. International

Journal of Data Mining & Knowledge Management Process (IJDKP), Vol.2, No.5.

[4] Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network architecture for

isolated word recognition. Neural Networks, 3, 33-43.

[5] LeCun, Y., Boser, B., Denker, J. S., & Solla, S. A. (1990). Optimal Brain Damage. In D. Touretzky

(Ed.), Advances in Neural Information Processing Systems (Vol. 2, pp. 598 - 605).

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

8

[6] Mathew, L., S. (2013). Integrated Associative Classification and Neural Network Model Enhanced

By Using A statistical Approach. International Journal of Data Mining & Knowledge Management

Process (IJDKP), Vol.3, No.4.

[7] Mitchell, T. (1997). Machine learning. Singapore: McGRAW-HILL.

[8] Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems (2nd ed.). Britain:

Addison-Wesley.

[9] Russell, S., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd ed.). USA: Prentice

Hall.

AUTHORS

Dr. HAZEM MIGDADY

• A PhD in data mining and machine learning, with an emphasis on inductive

learning from large datasets and patterns.

• Lecturer in the Department of Mathematics and Computer Science.

