
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

DOI : 10.5121/ijdkp.2014.4302 9

EVALUATION OF RULE EXTRACTION

ALGORITHMS

Tiruveedula GopiKrishna

Department of Computer Science, Sirt University, Hoon, Libya

ABSTRACT

For the data mining domain, the lack of explanation facilities seems to be a serious drawback for

techniques based on Artificial Neural Networks, or, for that matter, any technique producing opaque

models In particular, the ability to generate even limited explanations is absolutely crucial for user

acceptance of such systems. Since the purpose of most data mining systems is to support decision making,

the need for explanation facilities in these systems is apparent. The task for the data miner is thus to

identify the complex but general relationships that are likely to carry over to production data and the

explanation facility makes this easier. Also focused the quality of the extracted rules; i.e. how well the

required explanation is performed. In this research some important rule extraction algorithms are

discussed and identified the algorithmic complexity; i.e. how efficient the underlying rule extraction

algorithm is.

KEYWORDS

Extraction Algorithms; taxonomy of rule extraction; evolution of rule extraction algorithms; scalability;

comprehensibility.

1. INTRODUCTION

For the data mining domain, the lack of explanation facilities seems to be a serious drawback for

techniques based on Artificial Neural Networks (ANNs), or, for that matter, any technique

producing opaque models. Within the field of symbolic AI, the term explanation refers to an

explicit structure which is used internally for reasoning and learning and externally for the

explanation of the results to the user. Normally, the explanation facility in symbolic AI includes

intermediate steps of the reasoning process, like trace of rules firing and proof structures.

Generally speaking, the explanation facilities are capable of answering the “how” and “why”

questions. The answer to a how-question is an explanation of how the result was found. A why-

question is supplied by the user during execution of the system and the answer specifies why the

system performed a certain operation; e.g. queried the user.

Experience from the field of expert systems has shown that an explanation capability is a vital

function provided by symbolic AI systems. In particular, the ability to generate even limited

explanations is absolutely crucial for user acceptance of such systems [1]. Since the purpose of

most data mining systems is to support decision making, the need for explanation facilities in

these systems is apparent. Nevertheless many systems (especially those using ANN techniques,

but also ensemble methods like boosting) must be regarded as black boxes; i.e. they are opaque to

the user.

In [2] the authors Andrews, Diederich and Tickle highlight this deficiency of ANNs, and argue

for rule extraction; i.e. to create more transparent representations from trained ANNs:

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

10

It is becoming increasingly apparent that the absence of an explanation capability in ANN

systems limits the realizations of the full potential of such systems, and it is this precise

deficiency that the rule extraction process seeks to reduce.

Andrews, Diederich and Tickle also list five more reasons for the importance of being able to

interpret trained ANNs:

• For ANNs to be used in safety-critical problem domains, the explanation facility must be

considered mandatory.

• If ANNs are integrated into larger software systems without an explanation facility, the

entire systems would be very hard to verify.

• An explanation facility may provide an experienced user with the capability to anticipate

or predict a set of circumstances under which the ANN is likely to generalize poorly.

• ANNs may discover previously unknown dependencies, but without an explanation

facility these dependencies are incomprehensibly encoded in the model.

• Extracted rules from ANNs could be directly added to the knowledge base of a symbolic

AI system.

It should be noted that an explanation facility also offers a way to determine data quality, since it

makes it possible to examine and interpret relationships found. If the discovered relationships are

deemed doubtful when inspected by a human, they are less probable to actually add value.

“Nonsense” relationships found would, if used on a production set, most likely produce poor

results. The task for the data miner is thus to identify the complex but general relationships that

are likely to carry over to production data and the explanation facility makes this easier.

There are basically two methods that can be used to gain understanding of the relationship found

by a trained ANN; sensitivity analysis and rule extraction. Sensitivity analysis does not produce a

new model, but is used to gain some basic understanding of the relationship between input

variables and the output. Rule extraction is an activity where the trained ANN is transformed into

another, more comprehensible model, representing the same relationship.

2. SENSITIVITY ANALYSIS

Sensitivity analysis does not provide explicit rules, but is used to find the relative importance of

the inputs to the output of the neural net. There are some small variations in how the analysis is

performed, but the overall procedure is to record changes in the output following changes in

specific input attributes. Normally, the average value for each input is chosen as the starting point

and the changes should vary from small changes all the way up to the extreme values. If the

difference in output is small even for large changes in a specific attribute, this attribute is

probably not very important; i.e. the network is insensitive to that attribute. Other attributes might

have a large effect on the output and the network is then said to be sensitive to these attributes.

Obviously, there could be combinations of features that are very important for the network, which

would require the sensitivity analysis to be performed on two or more attributes at the same time,

in order to find these particular patterns.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

11

It is safe to say that sensitivity analysis is a good tool to get some basic understanding of the

underlying problem, but also that it normally is unable to produce explanations. The purpose of

performing a sensitivity analysis is thus usually not to actually explain the relationship found.

Instead sensitivity analysis is normally used either as a tool to find and remove unimportant input

attributes or as a starting point for some more powerful explanation technique.

3. RULE EXTRACTION FROM TRAINED NEURAL NETWORKS

The knowledge acquired by an ANN during training is encoded as the architecture and the

weights. The task of extracting explanations from the network is therefore to interpret, in a

comprehensible form, the knowledge represented by the architecture and the weights.

Craven and Shavlik [3] coined the term representation language for the language used to describe

the network’s learned model. They also used the expression extraction strategy for the process of

transforming the trained network into the new representation language.

4. TAXONOMY OF RULE EXTRACTION APPROACHES

In [2] the authors proposed a classification schema for rule extraction approaches. The

presentation below intentionally follows the one given in the paper closely. In the paper, the

method of classification is based on five dimensions:

• The expressive power of the extracted rules; i.e. the chosen representation language.

• The translucency of the view taken within the rule extraction technique of the underlying

ANN units; i.e. does the technique look inside the trained neural net and utilize

knowledge about connections and weights or is the network treated as an oracle.

• The extent to which the underlying ANN incorporates specialized training regimes.

• The quality of the extracted rules; i.e. how well the required explanation is performed.

• The algorithmic complexity; i.e. how efficient the underlying rule extraction algorithm

is.

Representation languages typically used include (if-then) inference rules, M-of-N rules, fuzzy

rules, decision trees and finite-state automata. In the translucency dimension there are two

fundamentally different approaches; decompositional

(open-box or white-box) and pedagogical (black-box).

Decompositional approaches focus on extracting rules at the level of individual units within the

trained ANN; i.e. the view of the underlying ANN is one of transparency. According to Andrews,

Diederich and Tickle, a basic requirement for this category of rule extraction is that the computed

output from each unit must be mapped into a binary outcome, corresponding to a rule consequent.

Each unit can be interpreted as a step function, meaning that the problem is reduced to finding a

set of incoming links whose summed weights guarantee that the unit’s bias is exceeded regardless

of other incoming links. When such a combination of links is found, this is readily translated into

a rule where the output of that unit is a consequent of the inputs. The rules extracted at the

individual unit level are then aggregated to form the composite rule set for the ANN as a whole.

Pedagogical approaches treat the trained ANN as a black box; i.e. the view of the underlying

ANN is opaque. The core idea in the pedagogical approach is to treat the ANN as an oracle and

view the rule extraction as a learning task, where the target concept is the function learnt by the

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

12

ANN. Hence the rules extracted directly map inputs to outputs. Black-box techniques typically

use some symbolic learning algorithm, where the ANN is used to generate the training examples.

The easiest way to understand the process is to regard black-box rule extraction as an instance of

predictive modeling, where each input-output pattern consists of the original input vector and the

corresponding prediction from the opaque model. From this perspective, black-box rule extraction

becomes the task of modeling the function from the (original) input variables to the opaque model

predictions; see Figure 1.

The first two dimensions (i.e. expressive power and translucency) are in [2] suggested to be the

primary classifiers of rule extraction algorithms.

5. EVALUATION OF RULE EXTRACTION ALGORITHMS

There are several criteria used for evaluating rule extraction algorithms. In [4] Craven and

Shavlik listed five criteria:

Comprehensibility

The extent to which extracted representations are humanly comprehensible.

Fidelity

The extent to which extracted representations accurately model the networks from which they

where extracted.

Accuracy

The ability of extracted representations to make accurate predictions on previously unseen cases.

Scalability

The ability of the method to scale to networks with large input spaces and large numbers of

weighted connections.

Generality

The extent to which the method requires special training regimes or places restrictions on network

architectures.

Most researchers have evaluated their rule extraction methods using the first three criteria but,

according to Craven and Shavlik, scalability and generality have often been overlooked. In the

paper, scalability is defined in the following way:

Scalability refers to how the running time of a rule extraction algorithm and the comprehensibility

of its extracted models vary as a function of such factors as network, feature-set and training-set

size.

Craven and Shavlik argue that methods that scale well in terms of running time, but not in terms

of comprehensibility will be of little use. The reason is obvious from the fact that the overall

purpose of rule extraction always is to produce a comprehensible model available for human

interpretation. If this becomes impossible for larger problems it must be considered a serious

limitation for a proposed method.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

13

It should be noted that scaling is an inherent problem, regarding both running time and

comprehensibility, for decompositional methods. The potential size of a rule for a unit with n

inputs each having k possible values is kn, meaning that a straightforward search for possible

rules is normally impossible for larger networks. This, and the problem with continuous inputs,

are normally to some extent handled by clustering inputs into disjoint ranges. Craven and Shavlik

also highlight that the size of rule sets produced by decompositional algorithms tend to be

proportional to the network size.

Craven and Shavlik recommend rule extraction researchers to pursue different lines of research

that have not been explored to a large extent, to try to overcome the problem of scalability:

• Methods for controlling the comprehensibility vs. fidelity trade-off; i.e. the possibility to

improve the comprehensibility of an extracted rule set by compromising on its fidelity

and accuracy.

• Methods for anytime rule extraction; i.e. the ability to interrupt the rule extraction at any

time and still get a solution.

Regarding generality, Craven and Shavlik argue that rule extraction algorithms must exhibit a

high level of generality to have a large impact. In particular, algorithms requiring specific training

regimes or algorithms limited to narrow architectural classes are deemed less interesting. Craven

and Shavlik finally say that rule extraction algorithms ideally should be so general that the models

they are trying to describe must not even be ANNs. Obviously there is also a need to explain

complex models like ensembles or classifiers using boosting, so it is natural to extend the task of

rule extraction to operate on these models. A rule extraction algorithm capable of coping with

different underlying kinds of models would therefore be of high value.

Yet another important criterion, often overlooked but recognized in [5], is consistency. A rule

extraction algorithm is consistent if it extracts similar rules every time it is applied to a specific

data set. According to Towell and Shavlik, consistency is important since it would be very hard to

give any significance to a specific rule set if the extracted rules vary significantly between runs.

Craven and Shavlik also pointed out another issue they believe to be a key to the success of rule

extraction methods, namely software availability; i.e. researchers should make their methods

available to potential users and fellow researchers to receive testing and evaluation.

An interesting discussion about the purpose of rule extraction is found in [6], where Zhou argues

that rule extraction really should be seen as two very different tasks; rule extraction using neural

networks and rule extraction for neural networks. The first task prioritizes accuracy while the

second focuses on fidelity. Rule extraction using neural networks thus is aimed at finding a

comprehensible model with higher accuracy than a comprehensible model created directly from

the data set using, for instance, a decision tree algorithm. Rule extraction for neural networks, on

the other hand, is solely aimed at understanding the inner workings of a trained neural network.

The claim made by Zhou is that it is never important to obtain both high fidelity and high

accuracy; the goal is always one of them, and, consequently the other should be ignored.

6. RELATED WORK CONCERNING RULE EXTRACTION

Since one key contribution of this thesis is a novel method for rule extraction from opaque

models, one very important related research area is previously presented rule extraction

algorithms. In this section some important rule extraction algorithms are discussed.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

14

Below, three specific algorithms for rule extraction are presented. The motivation for including

RX [7] and TREPAN [8] is that they are well-known, general techniques, representing very

different approaches.

6.1 Rule Extraction(RX)

With the RX algorithm [7], Lu, Setino and Liu present a decompositional rule extraction

algorithm producing Boolean rules from feed-forward ANNs. The description below is a slight

simplification of the presented method; for more details see the original paper. Lu, Setino and Liu

use an approach consisting of three steps to create classification rules:

1. Network training: A three-layer ANN is trained using standard techniques; e.g. back

propagation. The coding used for the classes is localist; i.e. there is one output unit per class. To

facilitate the following pruning, it is desirable to have many weights with values so small that

they can be set to zero. This is accomplished by adding a penalty function to the error function;

for details see the original paper.

2. Network pruning: The fully connected network of step 1 is pruned to produce a much smaller

net without raising the classification error “too much”. More specifically, links with small

weights are iteratively removed and the smaller network is retrained until the accuracy on the

training set falls below an acceptable level.

3. Rule Extraction: Rules are extracted from the pruned network. The rules generated are of the

form if (a1 θ v1) and (a2 θ v2)… and (an θ vn) then Cj where ai’s are the attributes of an input

instance, vi’s are constants, Cj is one of the class labels and θ is a relational operator.

The process for the actual rule extraction is given in pseudocode below:

Input:

D // Training data

N //Pruned neural network

Output:

R // Extracted rules

Algorithm (RX):

Cluster hidden nodes activation values; Generate rules that describe the output values in terms of

the discretized hidden activation values; Generate rules that describe the discretized hidden output

values in terms of input values; Combine the two sets of rules; It should be noted that continuous

inputs must first be discretized, here by dividing their range into subintervals. Normally,

continuous inputs are then coded using thermometer coding. The RX algorithm relies heavily on

the success of the pruning since, if a node has n input links, there could be as many as 2n distinct

input patterns. Another problem is the fact that the activation value of a hidden node could be

anywhere in the range [-1, 1], (assuming a hyperbolic tangent activation function), depending on

the input instance. For a large training set this makes the activation function almost continuous.

The RX algorithm handles this by discretizing the activation values of hidden nodes into a

“manageable” number of discrete values. A small set of discrete activation values makes it

possible to determine the dependencies between hidden node and output node values, as well as

the dependencies between input and hidden node values. From these dependencies, rules can be

generated; in the RX algorithm this is done by using the X2R rule generator [10].

Although the RX algorithm is often cited, and even sometimes used as an example of typical rule

extraction; see e.g. [11], it is not widely used in practice. The source code is not publicly

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

15

available, which makes it hard to correctly evaluate the performance. It is obvious that RX most

likely will fail regarding scalability. The case study reported in the original paper uses a fairly

small data set (1000 instances with initially 7 attributes each) and the pruning is very successful;

only 17 of 386 links remain after the pruning, while the accuracy is still over 90%. Although most

criteria regarding rule quality (comprehensibility, accuracy and fidelity) seem to be well met, this

is very hard to judge from just one problem.

Regarding generality, RX is tightly bound to feed-forward ANNs. The demands for repeated

training during the pruning phase, a tailored error function and the many “tricks” to get inputs,

outputs and activation values into suitable formats also make RX a very specialized algorithm. It

should, in addition, be noted that RX extracts rules from one network only. If, as often is the case,

the predictive model consists of an ensemble of networks, RX would have to extract from a less

accurate model. This is a disadvantage compared to pedagogical methods, which would operate

directly on the actual predictive model.

A rule extraction technique based on RX is CaST (Cluster and See Through) [12]. The main idea

of CaST is to apply a clustering technique similar to the one used by RX, but to the activation

values of the input nodes; i.e. to the input values directly. This alteration in reality makes CaST a

black-box rule extraction algorithm because the extracted rules now describe outputs in terms of

inputs. Naturally, this makes it possible for CaST to extract rules from any opaque model, not just

single feed-forward ANNs. In the study reported in [12], CaST is evaluated against NeuroRule

(RX) and C5.0 on three data sets. The main result is that CaST and NeuroRule have almost

identical accuracy on two problems, but the rules found by CaST are significantly more compact.

On the third problem (Soybean) NeuroRule fails to extract rules since the pruning is not effective

enough. CaST on the other hand, produces a fairly complex rule set having higher accuracy than

C5.0.

6.2 TREPAN

TREPAN [8] is a pedagogical rule extraction algorithm for classification problems producing

decision trees. Each internal node in the extracted tree represents a splitting criterion and each

leaf represents a predicted class. TREPAN uses M-of-N expressions for its splits. M-of-N

expressions are Boolean expressions in disjunctive normal form, with N conjuncts and the

requirement that at least M of these should be true for the entire expression to be true.

TREPAN is a black-box method since it focuses exclusively on the input-output relationship,

instead of looking inside the neural net. In a way, TREPAN uses the network as an oracle; i.e. its

results are regarded as ground truth. TREPAN grows trees in a best-first fashion, since the node

with the greatest potential to increase the fidelity of the extracted tree is expanded first.

The TREPAN algorithm is given in pseudocode below:

Input:

D // Training data

N // Trained neural network

Output:

DT // Extracted decision tree

Algorithm (TREPAN):

Initialize the tree as a leaf node;

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

16

While stopping criteria not met.

Pick the most promising leaf node to expand Draw a sample of instances;

Use the network to label the instances;

Select splitting test for the node;

For each possible outcome of the test make a new leaf node;

The task of TREPAN is, according to Craven and Shavlik, to induce the function represented by

the trained ANN; i.e. fidelity is the basis of the score function.

 Craven and Shavlik [4] describe TREPAN as similar to conventional decision tree algorithms

such as C4.5 with some basic differences. Below is a summary of the main properties of

TREPAN:

• TREPAN uses the ANN to label all instances. This also means that TREPAN can use the

ANN to label new instances and thus learn from arbitrarily large samples.

• In order to decide which node to expand next, TREPAN uses an evaluation function to

rank all of the leaves in the current tree. The evaluation function used for node N is: f (N)

= reach (N) - (1 − fidelity (N)) where reach (N) is the estimated fraction of instances that

reach node N and fidelity (N) is the estimated fidelity of the tree to the network for those

instances.

• TREPAN gets a sample of instances from two sources to find the logical test with which

to partition the instances that reach the node and to determine the class labels for the

leaves. First, it uses the ANN’s training examples that reach the node. Second, TREPAN

constructs a model (using the training examples) of the underlying distribution and uses

this model to draw instances. These instances are randomly drawn but are subject to the

constraint that they would reach the node being expanded if classified by the tree. In both

cases TREPAN queries the ANN to get the class label.

• TREPAN uses information gain as the evaluation measure when selecting splitting tests.

TREPAN is publicly available, the authors report several case studies [13], and has also been

extended in different ways; for instance to return fuzzy decision trees [14]. TREPAN performs

well, both in reported studies and in the experiments conducted in this thesis. The accuracy is

normally higher than that of models generated directly from the data set; e.g. by C5.0. ANN

fidelity is naturally high, since this is the purpose of the algorithm. Regarding comprehensibility

it can be argued that decision trees automatically produce good explanation, but for more

complex and bushy trees this is questionable. TREPAN handles this by extracting the tree in a

best-first fashion and allows the user the option to stop the growth at any level; an example of

anytime extraction.

Nevertheless there is still a trade-off between accuracy and comprehensibility. Actually for some

of the extracted trees reported [15]. As well as some found during the research for this thesis, the

ease of human inspection is questionable. This is arguably partly due to the use of M-of-N rules,

which for most people are tricky to read.

TREPAN was, according to Craven and Shavlik, designed with scalability and generality in mind.

The scalability criterion naturally favors black-box approaches, since the computational

complexity for black-box methods does not depend directly on the network architecture. The

node expansion itself is of polynomial computational complexity in the sample size, the number

of features and the maximum number of values for a discrete feature. Thus, TREPAN is likely to

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

17

scale up well to larger problems, at least regarding computational complexity. Since scalability in

comprehensibility requires that growth of the tree is stopped early, the accuracy of the extracted

tree is obviously very dependent on that the evaluation function used constantly finds the best

splits first. It should be noted that TREPAN in itself does not balance accuracy against

comprehensibility, but leaves this decision to the user. The user must choose when to stop the

growth of the tree, or put in another way, which tree of several, all with different complexity, to

actually use on novel data.

Regarding generality, TREPAN does not really require the underlying model to be an ANN.

There are no reports, though, of studies where the original TREPAN program is used for rule

extraction from anything else than ANNs. In the third-party implementation later used for

experimentation in this thesis, it was, however fairly easy to convert TREPAN into a true black-

box rule extraction algorithm.

 6.3 Rule extraction using evolutionary algorithms

Dorado et al. in [9] present a novel approach to rule extraction based on evolutionary algorithms.

One should note that the two methods were developed independently1.

The algorithm suggested by Dorado et al. is a black-box method where the extraction strategy is

based on GP. The algorithm can handle different representation languages with ease, since the

choice of representation language corresponds to the choice of function and terminal sets. In the

paper, Dorado et al. give three examples, two where Boolean rules are extracted for classification

problems and one where a mathematical function, similar to, but more complex than a Box-

Jenkins model, is derived for a time series forecasting problem. The suggested approach is also

compared (with good results) to several existing techniques on well-known problems. A key

result reported by Dorado et al. is the comparison between the rule extraction algorithm and GP

applied directly on the data set. The accuracy of the rule extraction is slightly higher, supporting

the claim that the neural net in a sense is a better (more general) representation of the data than

the data set itself.

The purpose of the proposed method is to use GP for the search process. More specifically,

candidate rules (which could be Boolean rules, decision trees, regression trees etc.) are

continuously evaluated according to how well they resemble the ANN. The best rules are kept

and combined using genetic operators to raise the fitness (performance) over time. After many

iterations (generations) the most fit program (rule) is chosen as the extracted rule.

It should be noted that the fitness function is crucial for determining what to optimize, and that

the choice here is to solely optimize the fidelity of the extracted representation to the neural net.

Dorado et al. do not state the algorithm explicitly, so the description below is based on an

interpretation of their paper.

Input:

D // Training data

N // Trained neural network

F // Function set

T // Terminal set

Output:

R // Extracted representation

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

18

Algorithm: (Rule extraction using EA)

Initialize a first generation of candidate rules;

While number of generations not reached

Evaluate all candidate rules using the fitness function (fidelity);

Choose a number of candidate rules for reproduction;

Combine chosen candidate rules using genetic operators (crossover) to create offspring rules;

Replace old candidate rules with offspring rules;

The reported accuracy for the approach reported by Dorado et al. is high. Since GP is a

recognized tool for optimization problems and fidelity to the neural net is the optimization criteria

here, it is no surprise that the fidelity is high. The problem for the algorithm of Dorado et al. is

clearly comprehensibility.

Regarding time scalability, the proposed method is likely to perform well. Although GP is rather

computationally intensive, this applies even more for the original training of the neural net,

making it unlikely that the rule extraction would be the bottle-neck. The computational

complexity of a GP approach is dependent on parameters like the number of programs in each

generation, and to a lesser degree, the size of each program. This could potentially be a difficulty

for very complex problems, where large generations and/or programs are needed. This is

obviously an issue that should be looked in to.

How well comprehensibility scales up is a totally different matter. Since Dorado et al. do not try

to enforce short rules, complex data sets with many variables will inevitably produce long and

complicated rules.

The generality of the proposed approach is very high and is actually the most appealing property

of the method. Dorado et al. apply the rule extraction on both feed-forward and recurrent

networks and extract rules for both classification and regression. It is also obvious that, even if

the authors do not explicitly point this out, the algorithm does not require the underlying model to

be a neural net.

3. CONCLUSIONS

The main contribution of this paper was to show the benefit of using test set data instances,

together with predictions from the opaque model, when performing rule extraction. The technique

evaluated means that the same novel data instances used for actual prediction also are used by the

rule extraction algorithm. As demonstrated in the experiments, rules extracted using only oracle

data were significantly more accurate than both rules extracted by the same rule extraction

algorithm (using training data only) and standard decision tree algorithms. The overall

implication is that rules extracted in this way will have higher accuracy on the test set; thus

explaining the predictions made on the novel data better than rules extracted in the standard way;

i.e. using training data only.

ACKNOWLEDGEMENTS

I would like to all our lab coordinators and Sirt University who helped in all to succeed this

research paper.

REFERENCES

[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,

pp120-122.

[2] R. Andrews, J. Diederich and A. B. Tickle, A survey and critique of techniques for extracting rules

from trained artificial neural networks, Knowledge-Based Systems, 8(6).

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014

19

[3] M. Craven and J. Shavlik, Using Neural Networks for Data Mining. Future Generation Computer

Systems: Special Issue on Data Mining, pp.211-229.

[4] M. Craven and J. Shavlik, Rule Extraction: Where Do We Go from Here?, University of Wisconsin

Machine Learning Research Group working Paper 99-1.

[5] G. Towell and J. Shavlik, The extraction of refined rules from knowledge based neural networks,

Machine Learning, 13(1):71-101M. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

[6] Z.-H. Zhou, Rule Extraction: Using Neural Networks or For Neural Networks?, Journal of Computer

Science & Technology, 19(2):249-253, 2004.

[7] H. Lu, R. Setino and H. Liu, Neurorule: A connectionist approach to data mining, Proceedings of the

International Very Large Databases Conference, pp. 478-489, 1995. Article in a conference

proceedings:

[8] M. Craven and J. Shavlik, Extracting Tree-Structured Representations of Trained Networks,

Advances in Neural Information Processing Systems,8:24-30.

 [9] J. Dorado, J. R. Rabunãl, A. Santos, A. Pazos and D. Rivero, Automatic Recurrent and Feed-Forward

ANN Rule and Expression Extraction with Genetic Programming, Proceedings 7th International

Conference onParallel Problem Solving from Nature, Granada,

[10]. H. Liu, X2R: A fast rule generator, Proceedings of IEEE International Conference on Systems, Man

and Cybernetics, Vancouver.

[11]. M. Dunham, Data Mining – Introductory and Advanced Topics, Prentice Hall, 2003.

[12]. T. Löfström, U. Johansson, and L. Niklasson, Rule Extraction by Seeing Through the Model, 11th

International Conference on Neural Information Processing, Calcutta, India, pp. 555-560, 2004.

[13]. M. Craven, Extracting Comprehensive Models from Trained Neural Networks, Ph.D. Thesis,

University of Wisconsin-Madiso.

[14]. M. Faifer, C. Janikow, and K. Krawiec, Extracting Fuzzy Symbolic Representation from Artificial

Neural Networks, Proceedings 18th International Conference of the North American Fuzzy

Information Processing Society, New York, NY, pp. 600-604.

[15]. M. Craven and J. Shavlik, Understanding time-series networks: A case study in rule extraction,

International Journal of Neural Systems, 8(4):373-384.

Author

Tiruveedula GopiKrishna

Lecturer,

Faculty of Arts and Science

Sirt University,

Department of Computer Science,

Hoon,Aljufra,

Libya

