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ABSTRACT 

For the data mining domain, the lack of explanation facilities seems to be a serious drawback for 

techniques based on Artificial Neural Networks, or, for that matter, any technique producing opaque 

models In particular, the ability to generate even limited explanations is absolutely crucial for user 

acceptance of such systems. Since the purpose of most data mining systems is to support decision making, 

the need for explanation facilities in these systems is apparent. The task for the data miner is thus to 

identify the complex but general relationships that are likely to carry over to production data and the 

explanation facility makes this easier. Also focused the quality of the extracted rules; i.e. how well the 

required explanation is performed. In this research some important rule extraction algorithms are 

discussed and identified the algorithmic complexity; i.e. how efficient the underlying rule extraction 

algorithm is. 

 

KEYWORDS 

Extraction Algorithms; taxonomy of rule extraction; evolution of rule extraction algorithms; scalability; 

comprehensibility.   

1. INTRODUCTION 

For the data mining domain, the lack of explanation facilities seems to be a serious drawback for 

techniques based on Artificial Neural Networks (ANNs), or, for that matter, any technique 

producing opaque models. Within the field of symbolic AI, the term explanation refers to an 

explicit structure which is used internally for reasoning and learning and externally for the 

explanation of the results to the user. Normally, the explanation facility in symbolic AI includes 

intermediate steps of the reasoning process, like trace of rules firing and proof structures. 

Generally speaking, the explanation facilities are capable of answering the “how” and “why” 

questions. The answer to a how-question is an explanation of how the result was found. A why-

question is supplied by the user during execution of the system and the answer specifies why the 

system performed a certain operation; e.g. queried the user. 

Experience from the field of expert systems has shown that an explanation capability is a vital 

function provided by symbolic AI systems. In particular, the ability to generate even limited 

explanations is absolutely crucial for user acceptance of such systems [1]. Since the purpose of 

most data mining systems is to support decision making, the need for explanation facilities in 

these systems is apparent. Nevertheless many systems (especially those using ANN techniques, 

but also ensemble methods like boosting) must be regarded as black boxes; i.e. they are opaque to 

the user. 

In [2] the authors Andrews, Diederich and Tickle highlight this deficiency of ANNs, and argue 

for rule extraction; i.e. to create more transparent representations from trained ANNs: 
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It is becoming increasingly apparent that the absence of an explanation capability in ANN 

systems limits the realizations of the full potential of such systems, and it is this precise 

deficiency that the rule extraction process seeks to reduce.  

Andrews, Diederich and Tickle also list five more reasons for the importance of being able to 

interpret trained ANNs: 

• For ANNs to be used in safety-critical problem domains, the explanation facility must be 

considered mandatory.  

• If ANNs are integrated into larger software systems without an explanation facility, the 

entire systems would be very hard to verify.  

• An explanation facility may provide an experienced user with the capability to anticipate 

or predict a set of circumstances under which the ANN is likely to generalize poorly.  

• ANNs may discover previously unknown dependencies, but without an explanation 

facility these dependencies are incomprehensibly encoded in the model.  

• Extracted rules from ANNs could be directly added to the knowledge base of a symbolic 

AI system.  

It should be noted that an explanation facility also offers a way to determine data quality, since it 

makes it possible to examine and interpret relationships found. If the discovered relationships are 

deemed doubtful when inspected by a human, they are less probable to actually add value. 

“Nonsense” relationships found would, if used on a production set, most likely produce poor 

results. The task for the data miner is thus to identify the complex but general relationships that 

are likely to carry over to production data and the explanation facility makes this easier. 

There are basically two methods that can be used to gain understanding of the relationship found 

by a trained ANN; sensitivity analysis and rule extraction. Sensitivity analysis does not produce a 

new model, but is used to gain some basic understanding of the relationship between input 

variables and the output. Rule extraction is an activity where the trained ANN is transformed into 

another, more comprehensible model, representing the same relationship. 

2. SENSITIVITY ANALYSIS 

Sensitivity analysis does not provide explicit rules, but is used to find the relative importance of 

the inputs to the output of the neural net. There are some small variations in how the analysis is 

performed, but the overall procedure is to record changes in the output following changes in 

specific input attributes. Normally, the average value for each input is chosen as the starting point 

and the changes should vary from small changes all the way up to the extreme values. If the 

difference in output is small even for large changes in a specific attribute, this attribute is 

probably not very important; i.e. the network is insensitive to that attribute. Other attributes might 

have a large effect on the output and the network is then said to be sensitive to these attributes. 

Obviously, there could be combinations of features that are very important for the network, which 

would require the sensitivity analysis to be performed on two or more attributes at the same time, 

in order to find these particular patterns. 
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It is safe to say that sensitivity analysis is a good tool to get some basic understanding of the 

underlying problem, but also that it normally is unable to produce explanations. The purpose of 

performing a sensitivity analysis is thus usually not to actually explain the relationship found. 

Instead sensitivity analysis is normally used either as a tool to find and remove unimportant input 

attributes or as a starting point for some more powerful explanation technique. 

3. RULE EXTRACTION FROM TRAINED NEURAL NETWORKS 

The knowledge acquired by an ANN during training is encoded as the architecture and the 

weights. The task of extracting explanations from the network is therefore to interpret, in a 

comprehensible form, the knowledge represented by the architecture and the weights. 

Craven and Shavlik [3] coined the term representation language for the language used to describe 

the network’s learned model. They also used the expression extraction strategy for the process of 

transforming the trained network into the new representation language. 

4. TAXONOMY OF RULE EXTRACTION APPROACHES 

In [2] the authors proposed a classification schema for rule extraction approaches. The 

presentation below intentionally follows the one given in the paper closely. In the paper, the 

method of classification is based on five dimensions: 

• The expressive power of the extracted rules; i.e. the chosen representation language.  

• The translucency of the view taken within the rule extraction technique of the underlying 

ANN units; i.e. does the technique look inside the trained neural net and utilize 

knowledge about connections and weights or is the network treated as an oracle.  

• The extent to which the underlying ANN incorporates specialized training regimes.  

• The quality of the extracted rules; i.e. how well the required explanation is performed.  

• The algorithmic complexity; i.e. how efficient the underlying rule extraction algorithm    

is.  

Representation languages typically used include (if-then) inference rules, M-of-N rules, fuzzy 

rules, decision trees and finite-state automata. In the translucency dimension there are two 

fundamentally different approaches; decompositional 

(open-box or white-box) and pedagogical (black-box). 

Decompositional approaches focus on extracting rules at the level of individual units within the 

trained ANN; i.e. the view of the underlying ANN is one of transparency. According to Andrews, 

Diederich and Tickle, a basic requirement for this category of rule extraction is that the computed 

output from each unit must be mapped into a binary outcome, corresponding to a rule consequent. 

Each unit can be interpreted as a step function, meaning that the problem is reduced to finding a 

set of incoming links whose summed weights guarantee that the unit’s bias is exceeded regardless 

of other incoming links. When such a combination of links is found, this is readily translated into 

a rule where the output of that unit is a consequent of the inputs. The rules extracted at the 

individual unit level are then aggregated to form the composite rule set for the ANN as a whole. 

Pedagogical approaches treat the trained ANN as a black box; i.e. the view of the underlying 

ANN is opaque. The core idea in the pedagogical approach is to treat the ANN as an oracle and 

view the rule extraction as a learning task, where the target concept is the function learnt by the 
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ANN. Hence the rules extracted directly map inputs to outputs. Black-box techniques typically 

use some symbolic learning algorithm, where the ANN is used to generate the training examples. 

The easiest way to understand the process is to regard black-box rule extraction as an instance of 

predictive modeling, where each input-output pattern consists of the original input vector and the 

corresponding prediction from the opaque model. From this perspective, black-box rule extraction 

becomes the task of modeling the function from the (original) input variables to the opaque model 

predictions; see Figure 1. 

The first two dimensions (i.e. expressive power and translucency) are in [2] suggested to be the 

primary classifiers of rule extraction algorithms. 

5. EVALUATION OF RULE EXTRACTION ALGORITHMS 

 

There are several criteria used for evaluating rule extraction algorithms. In [4] Craven and 

Shavlik listed five criteria: 

Comprehensibility 

The extent to which extracted representations are humanly comprehensible.  

Fidelity 

The extent to which extracted representations accurately model the networks from which they 

where extracted.  

Accuracy  

The ability of extracted representations to make accurate predictions on previously unseen cases.  

Scalability  

The ability of the method to scale to networks with large input spaces and large numbers of 

weighted connections.  

Generality 

The extent to which the method requires special training regimes or places restrictions on network 

architectures.  

Most researchers have evaluated their rule extraction methods using the first three criteria but, 

according to Craven and Shavlik, scalability and generality have often been overlooked. In the 

paper, scalability is defined in the following way: 

Scalability refers to how the running time of a rule extraction algorithm and the comprehensibility 

of its extracted models vary as a function of such factors as network, feature-set and training-set 

size. 

Craven and Shavlik argue that methods that scale well in terms of running time, but not in terms 

of comprehensibility will be of little use. The reason is obvious from the fact that the overall 

purpose of rule extraction always is to produce a comprehensible model available for human 

interpretation. If this becomes impossible for larger problems it must be considered a serious 

limitation for a proposed method. 
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It should be noted that scaling is an inherent problem, regarding both running time and 

comprehensibility, for decompositional methods. The potential size of a rule for a unit with n 

inputs each having k possible values is kn, meaning that a straightforward search for possible 

rules is normally impossible for larger networks. This, and the problem with continuous inputs, 

are normally to some extent handled by clustering inputs into disjoint ranges. Craven and Shavlik 

also highlight that the size of rule sets produced by decompositional algorithms tend to be 

proportional to the network size. 

Craven and Shavlik recommend rule extraction researchers to pursue different lines of research 

that have not been explored to a large extent, to try to overcome the problem of scalability: 

• Methods for controlling the comprehensibility vs. fidelity trade-off; i.e. the possibility to 

improve the comprehensibility of an extracted rule set by compromising on its fidelity 

and accuracy.  

• Methods for anytime rule extraction; i.e. the ability to interrupt the rule extraction at any 

time and still get a solution.  

Regarding generality, Craven and Shavlik argue that rule extraction algorithms must exhibit a 

high level of generality to have a large impact. In particular, algorithms requiring specific training 

regimes or algorithms limited to narrow architectural classes are deemed less interesting. Craven 

and Shavlik finally say that rule extraction algorithms ideally should be so general that the models 

they are trying to describe must not even be ANNs. Obviously there is also a need to explain 

complex models like ensembles or classifiers using boosting, so it is natural to extend the task of 

rule extraction to operate on these models. A rule extraction algorithm capable of coping with 

different underlying kinds of models would therefore be of high value. 

Yet another important criterion, often overlooked but recognized in [5], is consistency. A rule 

extraction algorithm is consistent if it extracts similar rules every time it is applied to a specific 

data set. According to Towell and Shavlik, consistency is important since it would be very hard to 

give any significance to a specific rule set if the extracted rules vary significantly between runs. 

Craven and Shavlik also pointed out another issue they believe to be a key to the success of rule 

extraction methods, namely software availability; i.e. researchers should make their methods 

available to potential users and fellow researchers to receive testing and evaluation. 

An interesting discussion about the purpose of rule extraction is found in [6], where Zhou argues 

that rule extraction really should be seen as two very different tasks; rule extraction using neural 

networks and rule extraction for neural networks. The first task prioritizes accuracy while the 

second focuses on fidelity. Rule extraction using neural networks thus is aimed at finding a 

comprehensible model with higher accuracy than a comprehensible model created directly from 

the data set using, for instance, a decision tree algorithm. Rule extraction for neural networks, on 

the other hand, is solely aimed at understanding the inner workings of a trained neural network. 

The claim made by Zhou is that it is never important to obtain both high fidelity and high 

accuracy; the goal is always one of them, and, consequently the other should be ignored. 

6. RELATED WORK CONCERNING RULE EXTRACTION 

Since one key contribution of this thesis is a novel method for rule extraction from opaque 

models, one very important related research area is previously presented rule extraction 

algorithms. In this section some important rule extraction algorithms are discussed. 
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Below, three specific algorithms for rule extraction are presented. The motivation for including 

RX [7] and TREPAN [8] is that they are well-known, general techniques, representing very 

different approaches.  

6.1 Rule Extraction(RX) 

With the RX algorithm [7], Lu, Setino and Liu present a decompositional rule extraction 

algorithm producing Boolean rules from feed-forward ANNs. The description below is a slight 

simplification of the presented method; for more details see the original paper. Lu, Setino and Liu 

use an approach consisting of three steps to create classification rules: 

1. Network training: A three-layer ANN is trained using standard techniques; e.g. back 

propagation. The coding used for the classes is localist; i.e. there is one output unit per class. To 

facilitate the following pruning, it is desirable to have many weights with values so small that 

they can be set to zero. This is accomplished by adding a penalty function to the error function; 

for details see the original paper.  

2. Network pruning: The fully connected network of step 1 is pruned to produce a much smaller 

net without raising the classification error “too much”. More specifically, links with small 

weights are iteratively removed and the smaller network is retrained until the accuracy on the 

training set falls below an acceptable level.  

3. Rule Extraction: Rules are extracted from the pruned network. The rules generated are of the 

form if (a1 θ v1) and (a2 θ v2)… and (an θ vn) then Cj where ai’s are the attributes of an input 

instance, vi’s are constants, Cj is one of the class labels and θ is a relational operator.  

The process for the actual rule extraction is given in pseudocode below: 

Input:    

D // Training data  

N //Pruned neural network 

Output:    

R // Extracted rules 

 

Algorithm (RX): 

 

Cluster hidden nodes activation values; Generate rules that describe the output values in terms of 

the discretized hidden activation values; Generate rules that describe the discretized hidden output 

values in terms of input values; Combine the two sets of rules; It should be noted that continuous 

inputs must first be discretized, here by dividing their range into subintervals. Normally, 

continuous inputs are then coded using thermometer coding. The RX algorithm relies heavily on 

the success of the pruning since, if a node has n input links, there could be as many as 2n distinct 

input patterns. Another problem is the fact that the activation value of a hidden node could be 

anywhere in the range [-1, 1], (assuming a hyperbolic tangent activation function), depending on 

the input instance. For a large training set this makes the activation function almost continuous. 

The RX algorithm handles this by discretizing the activation values of hidden nodes into a 

“manageable” number of discrete values. A small set of discrete activation values makes it 

possible to determine the dependencies between hidden node and output node values, as well as 

the dependencies between input and hidden node values. From these dependencies, rules can be 

generated; in the RX algorithm this is done by using the X2R rule generator [10]. 

Although the RX algorithm is often cited, and even sometimes used as an example of typical rule 

extraction; see e.g. [11], it is not widely used in practice. The source code is not publicly 
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available, which makes it hard to correctly evaluate the performance. It is obvious that RX most 

likely will fail regarding scalability. The case study reported in the original paper uses a fairly 

small data set (1000 instances with initially 7 attributes each) and the pruning is very successful; 

only 17 of 386 links remain after the pruning, while the accuracy is still over 90%. Although most 

criteria regarding rule quality (comprehensibility, accuracy and fidelity) seem to be well met, this 

is very hard to judge from just one problem. 

Regarding generality, RX is tightly bound to feed-forward ANNs. The demands for repeated 

training during the pruning phase, a tailored error function and the many “tricks” to get inputs, 

outputs and activation values into suitable formats also make RX a very specialized algorithm. It 

should, in addition, be noted that RX extracts rules from one network only. If, as often is the case, 

the predictive model consists of an ensemble of networks, RX would have to extract from a less 

accurate model. This is a disadvantage compared to pedagogical methods, which would operate 

directly on the actual predictive model. 

A rule extraction technique based on RX is CaST (Cluster and See Through) [12]. The main idea 

of CaST is to apply a clustering technique similar to the one used by RX, but to the activation 

values of the input nodes; i.e. to the input values directly. This alteration in reality makes CaST a 

black-box rule extraction algorithm because the extracted rules now describe outputs in terms of 

inputs. Naturally, this makes it possible for CaST to extract rules from any opaque model, not just 

single feed-forward ANNs. In the study reported in [12], CaST is evaluated against NeuroRule 

(RX) and C5.0 on three data sets. The main result is that CaST and NeuroRule have almost 

identical accuracy on two problems, but the rules found by CaST are significantly more compact. 

On the third problem (Soybean) NeuroRule fails to extract rules since the pruning is not effective 

enough. CaST on the other hand, produces a fairly complex rule set having higher accuracy than 

C5.0. 

6.2 TREPAN 

TREPAN [8] is a pedagogical rule extraction algorithm for classification problems producing 

decision trees. Each internal node in the extracted tree represents a splitting criterion and each 

leaf represents a predicted class. TREPAN uses M-of-N expressions for its splits. M-of-N 

expressions are Boolean expressions in disjunctive normal form, with N conjuncts and the 

requirement that at least M of these should be true for the entire expression to be true. 

TREPAN is a black-box method since it focuses exclusively on the input-output relationship, 

instead of looking inside the neural net. In a way, TREPAN uses the network as an oracle; i.e. its 

results are regarded as ground truth. TREPAN grows trees in a best-first fashion, since the node 

with the greatest potential to increase the fidelity of the extracted tree is expanded first. 

The TREPAN algorithm is given in pseudocode below: 

 

Input:   

D // Training data 

N // Trained neural network 

Output:   

DT // Extracted decision tree 

 

Algorithm (TREPAN): 

 

Initialize the tree as a leaf node;  



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, No.3, May 2014 

16 

While stopping criteria not met. 

 

Pick the most promising leaf node to expand Draw a sample of instances; 

 

Use the network to label the instances;  

Select splitting test for the node; 

For each possible outcome of the test make a new leaf node; 

The task of TREPAN is, according to Craven and Shavlik, to induce the function represented by 

the trained ANN; i.e. fidelity is the basis of the score function. 

 Craven and Shavlik [4] describe TREPAN as similar to conventional decision tree algorithms 

such as C4.5 with some basic differences. Below is a summary of the main properties of 

TREPAN: 

• TREPAN uses the ANN to label all instances. This also means that TREPAN can use the 

ANN to label new instances and thus learn from arbitrarily large samples.  

• In order to decide which node to expand next, TREPAN uses an evaluation function to 

rank all of the leaves in the current tree. The evaluation function used for node N is: f (N) 

= reach (N) - (1 − fidelity (N)) where reach (N) is the estimated fraction of instances that 

reach node N and fidelity (N) is the estimated fidelity of the tree to the network for those 

instances.  

• TREPAN gets a sample of instances from two sources to find the logical test with which 

to partition the instances that reach the node and to determine the class labels for the 

leaves. First, it uses the ANN’s training examples that reach the node. Second, TREPAN 

constructs a model (using the training examples) of the underlying distribution and uses 

this model to draw instances. These instances are randomly drawn but are subject to the 

constraint that they would reach the node being expanded if classified by the tree. In both 

cases TREPAN queries the ANN to get the class label.  

• TREPAN uses information gain as the evaluation measure when selecting splitting tests.  

TREPAN is publicly available, the authors report several case studies [13], and has also been 

extended in different ways; for instance to return fuzzy decision trees [14]. TREPAN performs 

well, both in reported studies and in the experiments conducted in this thesis. The accuracy is 

normally higher than that of models generated directly from the data set; e.g. by C5.0. ANN 

fidelity is naturally high, since this is the purpose of the algorithm. Regarding comprehensibility 

it can be argued that decision trees automatically produce good explanation, but for more 

complex and bushy trees this is questionable. TREPAN handles this by extracting the tree in a 

best-first fashion and allows the user the option to stop the growth at any level; an example of 

anytime extraction. 

Nevertheless there is still a trade-off between accuracy and comprehensibility. Actually for some 

of the extracted trees reported [15]. As well as some found during the research for this thesis, the 

ease of human inspection is questionable. This is arguably partly due to the use of M-of-N rules, 

which for most people are tricky to read. 

TREPAN was, according to Craven and Shavlik, designed with scalability and generality in mind. 

The scalability criterion naturally favors black-box approaches, since the computational 

complexity for black-box methods does not depend directly on the network architecture. The 

node expansion itself is of polynomial computational complexity in the sample size, the number 

of features and the maximum number of values for a discrete feature. Thus, TREPAN is likely to 
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scale up well to larger problems, at least regarding computational complexity. Since scalability in 

comprehensibility requires that growth of the tree is stopped early, the accuracy of the extracted 

tree is obviously very dependent on that the evaluation function used constantly finds the best 

splits first. It should be noted that TREPAN in itself does not balance accuracy against 

comprehensibility, but leaves this decision to the user. The user must choose when to stop the 

growth of the tree, or put in another way, which tree of several, all with different complexity, to 

actually use on novel data. 

Regarding generality, TREPAN does not really require the underlying model to be an ANN. 

There are no reports, though, of studies where the original TREPAN program is used for rule 

extraction from anything else than ANNs. In the third-party implementation later used for 

experimentation in this thesis, it was, however fairly easy to convert TREPAN into a true black-

box rule extraction algorithm. 

 6.3 Rule extraction using evolutionary algorithms 

Dorado et al. in [9] present a novel approach to rule extraction based on evolutionary algorithms. 

One should note that the two methods were developed independently1. 

The algorithm suggested by Dorado et al. is a black-box method where the extraction strategy is 

based on GP. The algorithm can handle different representation languages with ease, since the 

choice of representation language corresponds to the choice of function and terminal sets. In the 

paper, Dorado et al. give three examples, two where Boolean rules are extracted for classification 

problems and one where a mathematical function, similar to, but more complex than a Box-

Jenkins model, is derived for a time series forecasting problem. The suggested approach is also 

compared (with good results) to several existing techniques on well-known problems. A key 

result reported by Dorado et al. is the comparison between the rule extraction algorithm and GP 

applied directly on the data set. The accuracy of the rule extraction is slightly higher, supporting 

the claim that the neural net in a sense is a better (more general) representation of the data than 

the data set itself. 

The purpose of the proposed method is to use GP for the search process. More specifically, 

candidate rules (which could be Boolean rules, decision trees, regression trees etc.) are 

continuously evaluated according to how well they resemble the ANN. The best rules are kept 

and combined using genetic operators to raise the fitness (performance) over time. After many 

iterations (generations) the most fit program (rule) is chosen as the extracted rule. 

It should be noted that the fitness function is crucial for determining what to optimize, and that 

the choice here is to solely optimize the fidelity of the extracted representation to the neural net. 

Dorado et al. do not state the algorithm explicitly, so the description below is based on an 

interpretation of their paper. 

Input: 

D // Training data 

N // Trained neural network 

 

F // Function set 

T // Terminal set 

 

Output: 

R // Extracted representation 
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Algorithm: (Rule extraction using EA) 

Initialize a first generation of candidate rules;  

While number of generations not reached 

Evaluate all candidate rules using the fitness function (fidelity);  

Choose a number of candidate rules for reproduction; 

Combine chosen candidate rules using genetic operators (crossover) to create offspring rules; 

Replace old candidate rules with offspring rules; 

The reported accuracy for the approach reported by Dorado et al. is high. Since GP is a 

recognized tool for optimization problems and fidelity to the neural net is the optimization criteria 

here, it is no surprise that the fidelity is high. The problem for the algorithm of Dorado et al. is 

clearly comprehensibility.  

Regarding time scalability, the proposed method is likely to perform well. Although GP is rather 

computationally intensive, this applies even more for the original training of the neural net, 

making it unlikely that the rule extraction would be the bottle-neck. The computational 

complexity of a GP approach is dependent on parameters like the number of programs in each 

generation, and to a lesser degree, the size of each program. This could potentially be a difficulty 

for very complex problems, where large generations and/or programs are needed. This is 

obviously an issue that should be looked in to. 

How well comprehensibility scales up is a totally different matter. Since Dorado et al. do not try 

to enforce short rules, complex data sets with many variables will inevitably produce long and 

complicated rules. 

The generality of the proposed approach is very high and is actually the most appealing property 

of the method. Dorado et al. apply the rule extraction on both feed-forward and recurrent 

networks and extract rules for both classification and regression. It is also obvious that, even if 

the authors do not explicitly point this out, the algorithm does not require the underlying model to 

be a neural net. 

3. CONCLUSIONS 

The main contribution of this paper was to show the benefit of using test set data instances, 

together with predictions from the opaque model, when performing rule extraction. The technique 

evaluated means that the same novel data instances used for actual prediction also are used by the 

rule extraction algorithm. As demonstrated in the experiments, rules extracted using only oracle 

data were significantly more accurate than both rules extracted by the same rule extraction 

algorithm (using training data only) and standard decision tree algorithms. The overall 

implication is that rules extracted in this way will have higher accuracy on the test set; thus 

explaining the predictions made on the novel data better than rules extracted in the standard way; 

i.e. using training data only. 
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