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ABSTRACT 

The challenges with respect to mining frequent items over data streaming engaging variable window size 

and low memory space are addressed in this research paper. To check the varying point of context change 

in streaming transaction we have developed a window structure which will be in two levels and supports in 

fixing the window size instantly and controls the heterogeneities and assures homogeneities among 

transactions added to the window. To minimize the memory utilization, computational cost and improve the 

process scalability, this design will allow fixing the coverage or support at window level. Here in this 

document, an incremental mining of frequent item-sets from the window and a context variation analysis 

approach are being introduced. The complete technology that we are presenting in this document is named 

as Mining Frequent Item-sets using Variable Window Size fixed by Context Variation Analysis (MFI-VWS-

CVA). There are clear boundaries among frequent and infrequent item-sets in specific item-sets. In this 

design we have used window size change to represent the conceptual drift in an information stream. As it 

were, whenever there is a problem in setting window size effectively the item-set will be infrequent. The 

experiments that we have executed and documented proved that the algorithm that we have designed is 

much efficient than that of existing. 
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1. INTRODUCTION 

Association rule is an important and well researched method for finding frequent itemsets 

(patterns) among set of objects in large database [1]. Frequent itemsets indicates the closeness 

among the items that are available in datasets. There are very good range of applications that 

includes creation of association rules for market-basket analysis, in text mining grading and 

clustering of documents, text, and pages, web mining, that allows users to disclose hidden 

patterns and relationships in huge datasets. The time taken to produce the data is outstripping the 

speed of its mining in the present upcoming applications where the information is in the form of 

an enormous and continuous stream [2]. To traditional static databases this is in quiet opposite, so 

data stream mining is considerably different from traditional data mining with respect good 

number of aspects. Primarily, the amount of data embedded in its lifetime in a data stream could 
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be overwhelmingly high [3]. Along with the above it is required to create spontaneous responses 

by maintaining response time to queries on such information streams because of rigid pitfalls of 

resource [4]. The data stream mining is the area where very high level of research is taking place 

because of the above mentioned reasons and contemporary research area is the challenge of 

getting timely and appropriate association rules. Migrating from conventional data mining 

methods to the emerging high efficient methods those will accommodate to function on an open-

ended, high speed stream of data [5]. The challenges that are inevitable to all mining technologies 

because of the unique and inherent qualities of a data stream are as follows [3]. Primarily the 

conventional technology is not applicable as it is required to create model in this method database 

need to be scanned multiple number of times which is not possible because of the continuous 

quality of the stream data. The high priority was given to the scalability of the frequent itemsets 

mining in approaches like association rules, classification and clustering. This requires high level 

of data transformation from the representation to other as the algorithm is designed in such a way, 

this in turn will use resources extensively resulting in high CPU overhead. Our proposal in this 

paper is a model known as Mining Frequent itemsets using Variable Window Size fixed by 

Context Variation Analysis (MFI-VWS-CVA). This model is the resource effective and 

measurable, as it functions with limited memory requirements and limited computational 

expenses. It portrays the trade-offs between computation, data representation, I/O and heuristics. 

Context variation analysis based dynamic window based transaction storage is being used in the 

proposed algorithm and also allows TIFIM [15] to regular itemsets from the concluded window. 

2. RELATED WORK 

CPS-tree a prefix-tree structure was proposed by Syed Khairuzzaman Tanbeer [6]. Dynamic tree 

restructuring technique was used in the CPS tree in order to manage the stream data. The basic 

pitfall of this model is, it reconstructs the tree for every new arrival of the item. This used to result 

in high memory usage and a time consuming process. Weighted Sliding Window (WSW) 

algorithm was initiated by Pauray S.M. Tsai [7]. In this method weight of each transaction in each 

window will be calculated by the algorithm proposed. Here also same memory space and time are 

the major concerns; this method failed using these two economically. An apriori algorithm is 

being for candidate generation. Hue-Fu Li [8] introduced an effective bit-sequence dependent 

algorithm named as MFI-TransSW (Mining Frequent Item sets with in a Transaction Sensitive 

Sliding window). There as three phases in MFI algorithm. As there is any increase in the window 

size, there will be a subsequent increase in the memory usage of MFI-TransSW. Similarly 

whenever there is an increase in window size, the time consumption in phase 1 and phase 2 of 

MFI-TransSW to process will also increase. Yo unghee Kim [9, 16] initiated an effective 

algorithm with normalized weight over data stream called WSFI mine (Weighted Support 

Frequent Item sets mining). From the database in one scan this WSFI-mine algorithm can mine 

all frequent item sets. HUPMS (High Utility Pattern Mining in Stream data) was recommended 

by Chowdhury Farhan Ahmed [10]. This is a different algorithm for sliding window based high 

utility pattern mining over data stream. For interactive mining only this algorithm is suitable. In 

the paper that was presented by Jing Guo [11], they have discussed about how to mine regular 

patterns across multiple data streams. Here for analysis they have considered real time news paper 

data. In multiple streams it is vital to identify collaborative frequent patterns and comparative 

frequent patterns. Prevention of misuse of sensitive data in a stream was addressed by Anushree 

Gowtham Ringe [12] in their work. They initiate a new technique for guarding the privacy of data 

stream.  Fan Guidan [13] proposed a model which is conceptually similar to our model. Matrix in 

sliding window over data streams plays major role in this model. In order to store, this algorithms 

uses two 0-1 matrices and 2-itemsets, further applies relative operation of the two matrices to 

extract frequent itemsets. 
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3. MINING FREQUENT ITEMSETS OVER DATA STREAMS WITH CONTEXT 

AWARE VARIABLE SIZE WINDOWS 

If streaming data is input to mining strategies such as frequent itemsets mining, the traditional 

approaches are not suitable, since those are mainly works by the multiple passes through entire 

dataset. Henceforth the mining strategies opted for streaming data considers the tuples of the 

streaming transactions as windows and these windows are used as input to the mining algorithms. 

The significant issue here in this model is fixing the window size. In the case of data streams with 

transitional and temporal state transactions, the transitional and temporal state identifications can 

be used to fix the window size. In the other cases that are not having any transitional and temporal 

state identities for streaming transactions, fixing window size is a big constraint to achieve quality 

factors such as results accuracy, process scalability. In this regard here we propose a novel 

context variation based dynamic window size fixing approach to mine frequent itemsets over data 

streams. The proposed frequent itemsets mining strategy is centric to following qualities targeted. 

• The window size should be optimal and dynamic. 

• The window size should fix dynamically between minimal and maximal size given as 

thresholds. 

• The size of the window should be within the range of minimal and maximal size and 

should fix based on the context variation observed in input transaction from the data 

stream. 

In regard to implementing the proposed model, the only significant constraint related to the 

streaming data is that the context change of the transactions should be in an order. 

The minimal memory utilization and less computational cost are two main quality metrics 

expected from this proposal. The exploration of the proposed window fixing strategy is follows: 

Let ds be the DataStream, and stream transactions as horizontal partitions of the transactions, let 

each partition having one transaction. Let n be the total count of the attributes used to form the 

transactions by ds . Let seta be the attributes set that contains attributes

1 2 1{ , ,....... , ,...... }i i na a a a a+ , which are used to form the transactions. Let 

1 2 3 1 ( 1){ , , ...., , ,.... , ,......}
i i i m i m

t t t t t t t+ + + +
be the transactions streaming in the same sequence. Let 

minws be the minimum window size and maxws be the maximal window size. Let tranw be the 

transaction window and ccaw be the context change analysis window. Let ( )ccas w be the size of

ccaw . The initial values to min max,ws ws  and ( )ccas w  will be set during the pre-processing step. 

The transactions of count minws from the given data stream ds will be moved initially to tranw , 

then following transactions of count ( )ccas w will be moved to ccaw . Then context variation 

analysis (CVA) process will be initialized. The exploration of the CVA process is follows: 

The attributes involved to generate the transactions moved into tranw will be collected as ( )tranal w

, and attributes involved to form the transactions found in ccaw will also be collected as ( )ccaal w . 

Then the similarity score of these two attribute lists ( ), ( )tran ccaal w al w will be found as follows 

(Eq1), which is derived from jaccard similarity measuring approach.  

 
( )

( ) ( )

( ) ( )trans cca

tran cca
w w

trans cca

al w al w
ss

al w al w
↔ =

I

U
… (Eq1) 

If similarity score ( )tran ccaw w
ss ↔ is greater than the given similarity score threshold ssτ then the 

transactions of ccaw will be moved to tranw  (see Eq2). 

tran tran ccaw w w= U … (Eq2) 
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If size of the 
tranw is greater than or equals to 

maxws then the 
tranw will be finalized and initiates 

process of mining frequent itemsets from the transactions of 
tranw , else the further streaming 

transactions of size ( )ccas w  will moved to 
ccaw and continues CVA process. 

Once the
tranw  is finalized and mining of frequent itemsets is initiated, then 

tranw and 
ccaw will be 

cleared and continues the process explored to prepare the window 
tranw will be continued for 

further transactions streaming from data stream ds .  

The above said process continues till transactions found from data stream ds . The mining 

frequent itemsets from the finalized window will be done by using TIFIM [15], which is a tree 

based incremental frequent itemsets mining approach that we devised in our earlier research paper 

(see sec 3.3). 

3.1 Algorithmic exploration of the Fixing Variable Window Size by Context 

Variation Analysis 

Inputs:  

• Data stream ds  

• Minimal transaction window size minws  

• Maximal transaction window size maxws  

• Similarity score threshold ssτ  

• Size of the context change analysis window ( )ccas w  

                                           

1. Begin 

2. For each transaction { }t t ds∀ ∈  Begin 

3. If min(| | )tranw ws<  tranw t←  

4. Else Begin 

5. ccaw t←  

6. If (| | ( ))cca ccaw s w≥   

7.  ( , )tran ccass CVA w w←  

8. if ( )ss ssτ≥ Begin 

9. ( )tran tran ccaw w w← U  

10. If max(| | )tranw ws≥  Begin 

11. Finalize window tranw  

12. Initiate ( )tranTIFIM w  

13. set tranw φ← // empty tranw  

14. set ccaw φ← //empty ccaw  

15. End of 10 

16. End of 8 

17. Else Begin 

18. Finalize window tranw  

19. Initiate ( )tranTIFIM w  

20. set tranw φ← // empty tranw  

21. set tran ccaw w← //move transactions of window ccaw to new window tranw  
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22. set 
ccaw φ← //empty 

ccaw  

23. End of 17 

24. End of 4 

25. End of 2 

26. End of 1                                                                                                       

 

3.2 Algorithmic exploration of the Context Variation Analysis 

1. ( , )tran ccaCVA w w  Begin 

2. Set tranfs φ← // initiate field set tranfs of transaction window tranw empty 

3. Foreach transaction { }trant t w∀ ∈ Begin 

4. tran tranfs fs t← U  

5. End of 3 

6. Set ccafs φ← // initiate field set ccafs of transaction window ccaw empty 

7. Foreach transaction { }ccat t w∀ ∈ Begin 

8. cca ccafs fs t← U  

9. End of 7 

10. tran cca

tran cca

fs fs
ss

fs fs
=

I

U
//measuring similarity score of tranw and ccaw  

11. Return ss  

12. End of 1 

 

3.3 Tree (Bush) Based Incremental Frequent Itemsets Mining (TIFIM) 

 
3.3.1 Finding Frequent Itemsets 

The primary representation of the transactions of data stream ds is as described above. An 

asynchronous parallel process runs to find frequent itemsets in incremental manner. 

A bush represents itemsets with two attribute pair such that these attributes belongs to tranfs and 

transactions contain that pair. The coverage to measure the frequency of the itemsets can be 

considered and set in the context of window tranw size. The coverage of two attribute itemsets can 

be the count of number of Childs in a bush represented by each pair of attributes. 

An asynchronous parallel process called frequent itemsets finder (FIF) performs as follow: 

Initially picks the bushes with coverage more than given coverage threshold cov . 

Prepare new bushes from each two bushes by union the roots and intersects the Childs, and 

retains it if new bush coverage is greater or equal to cov else discards. 

This continues until no new bush formed. 

3.3.2 The pruning process 

A bush ib said to be sub-bush to bush 
jb if 

i jb br r⊆ and ( ) ( )cov cov
i jb b≤ . Since sub-bush ib

represented by
jb , then bush ib can be pruned from the bush-set B . 

3.4 Find frequent items 

At an event of time, frequent itemsets can be found as follows 

The roots of the bushes with coverage more than given cov can be claimed as frequent itemsets. 

A bush ‘ ib ’ coverage can be find as follows 
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If a bush 
jb found to be such that 

i jb b⊆ and coverage value of 
jb is higher than any other bush 

kb such that i kb b⊆ , then the coverage of ib said to be ( ) ( )cov cov
j ib b+ . 

3.4.1 An algorithmic representation of the caching processes 

Input: At an event of time a window iw with transaction it received 

For each transaction it : 

Let set of attributes 

1 2 3

1 2 3

1 2 3

{( , , ,......... )

( , , ,......... )

( , , ,......... ) }

i

i i

i set

a a a a

a a a a t

a a a a A

∀

∈ ∧

⊆

 

For each pair of attributes{( , ) ( , ) }m n m n ia a a a t∀ ∈ , if found a bush { ( , )  }i m nb a a as root∃  then 

add transaction 
it as node to bush

ib , else prepare a bush such that 

{ ( , )  t   }i m n ib a a as roo t as node∃ ∧  

3.4.2 An algorithmic approach of FIF 

The bush set B prepared by caching process is said to be input to FIF 

For each bush { }i ib b B∀ ∈ perform the following: 

For each bush ( : 1, 2,3....... ) )i c i cb c n b B+ +∃ = ∧ ∈  

Forms a bush 
( ) ( ){ }
i i c i i c

b b B+ +∃ ∉U U
 by Union the roots of the ‘

ib ’and ‘
i cb +

’ (
( ) ( )i i cb b

r r
+

U ) and 

intersects nodes of ib and i cb + (
( ) ( )i i cb bts ts

+
I ). 

4. EMPIRICAL ANALYSIS OF THE FIXING VARIABLE WINDOW SIZE BY 

CONTEXT VARIATION ANALYSIS 

4.1 Dataset characteristics 

Multiple sets of data streamed to perform the experiments, and the characteristics of these 

streaming data are as follows: 

• To achieve the sparseness in streaming transactions, the range of fields considered as 

75,100, 125 and 150, the max transaction length set in the range of 12 to 18, the min 

transaction range set to 5 and the total number of transactions has taken in the range of 

1000 to 10000. 

• To achieve the denseness in streaming transactions, the range of fields considered as 20, 

30, 40 and 50, the max transaction length set in the range of 10 to 15, the min transaction 

range set to 5 and the total number of transactions has taken in the range of 1000 to 

10000. 

4.2 Experimental results 

We compare our algorithm with frequent itemsets mining model for data streams devised in [13], 

which is a matrix based frequent itemsets mining (MFIM) algorithm for data streams. The 

implementation of our MFI-VWS-CVA and model MFIM done by using java 7 and set of flat 

files as streaming data sources. The streaming environment is emulated using java RMI and 

parallel process involved in proposed MFI-VWS-CVA is achieved by using java multi threading 

concept. The three parameters of each synthetic dataset are the total number of transactions, the 

average length, and divergence count of items, respectively.  Each transaction of a dataset is 

scanned only once in our experiments to simulate the environment of data streams. In regard to 
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measure the computational cost and scalability, the algorithms run under divergent coverage 

values in the range of 10% to 90%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: NFI-VWS-CVA advantage over MFIM in Memory usage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MFI-VWS-CVA advantage over MFIM in terms of execution time. 

Figure 1 and 2 shows the comparison of the Memory usage, execution time under divergent 

coverage values range given from 10% to 40% respectively. The Figure 3 explores the scalability 

of MFI-VWS-CVA over MFIM under divergent streaming data sizes respectively, In Figure 1 

and 2, the horizontal axis is the coverage given and the vertical axis is the memory in unit of 

mega bytes and time in unit of seconds respectively. In Figure 3, the horizontal axis is the 
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streaming data size given in unit of transactions and the vertical axis is the execution time in unit 

of seconds and percentage of elapsed time in unit of seconds respectively. As the coverage value 

decreases  the average increment in memory usage for matrix based FIM and MFI-VWS-CVA 

are 2.29 and 0.7 respectively (see Figure 1) and average execution time increment for matrix 

based FIM and MFI-VWS-CVA are 83.2 and 27.9 respectively (see Figure 2). The results 

obtained here clearly indicating that the performance of MFI-VWS-CVA is miles ahead than the 

matrix based FIM. The performance of MFI-VWS-CVA is scalable as matrix based FIM is taking 

average of 14.16% elapsed time under uniform increment of streaming data size with 1500 

transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: MFI-VWS-CVA advantage over MFIM about Scalability under divergent streaming 

data size. 

5. CONCLUSION 

We explored a novel approach for mining the frequent itemsets from a data stream. We have 

implemented an efficient tree based incremental frequent itemsets mining model [15] in our 

earlier research paper, further here we developed an approach for mining frequent itemsets using 

variable window size by context variation analysis (MFI-VWS-CVA) over data streams. Due to 

the factor of fixing window size dynamically by concept variation analysis, the said model is 

identified as optimal and scalable. A parallel process that determines frequent itemsets from the 

concept of cached bush structures, which is our earlier proposal [15], performs frequent itemsets 

mining over data streams. We extended this incremental frequent itemset mining algorithm by 

introducing windowing the streaming transaction with variable window size technique in regard 

to achieve efficient memory usage and execution time. The experiment results confirm that the 

MFI-VWS-CVA is scalable under divergent streaming data size and coverage values. In future 

this model can be extended to perform utility based frequent itemset mining over data streams. 
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