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ABSTRACT 

 
The problem considered is that of finding frequent subpaths of a database of paths in a fixed undirected 

graph. This problem arises in applications such as predicting congestion in network and vehicular traffic. 

An algorithm, called AFS, based on the classic frequent itemset mining algorithm Apriori is developed, but 

with significantly improved efficiency over Apriori from exponential in transaction size to quadratic 

through exploiting the underlying graph structure. This efficiency makes AFS feasible for practical input 

path sizes. It is also proved that a natural generalization of the frequent subpaths problem is not amenable 

to any solution quicker than Apriori. 
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1. INTRODUCTION 

 
Within the general problem of mining frequent patterns from a database of transactions, an area 

of some recent interest is where the transactions occur in a structured or semi-structured set. The 

structure considered often is that of a graph because objects of interest in various applications 

can, in fact, be modeled as graphs, e.g., chemical compounds, web links, virtual communities, 

XML specifications and networks of different kinds. 

 

Finding frequent subgraphs of a database of graph transactions has been of particular interest. 

Algorithms for this problem based on Apriori (the classic frequent itemset mining algorithm due 

to Agrawal & Srikant [1]) have been given, amongst others, by Kuramochi & Karypis [13], 

Inokuchi et al. [10] and Vanetik et al. [14], while Yan & Han [15] give an algorithm which uses a 

novel encoding scheme for graphs. More recently, big graph – a graph so large it cannot fit in the 

memory (primary or secondary) of one machine – mining is emerging as an area of particular 

importance because of its application in understanding social networks. The algorithm of Jha et 

al. [11] to count triangles in a big graph whose data is streaming in on-line is typical of big graph 

mining. Kang & Faloutsos [12] describe software for big graph mining. See Cook & Holder [5] 

and Han & Kamber [9] for a survey of general graph mining techniques. 
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The problem which we consider is a particular case of the problem of finding frequent subgraphs. 

In particular, in our case all transactions are paths in a fixed undirected graph, and we are 

interested in determining those paths in that graph which occur frequently as subpaths of the 

transaction paths. This is a natural problem to consider. For example, if each path in the database 

represents the route taken by an object such as a message or vehicle, then the frequent subpaths 

represent congested sections, or hot spots. Related work includes Chen et al. [3] and Gudes & 

Pertsev [7], which both compute the paths themselves that are frequently traversed, but are based 

on hashing and pruning techniques for which the authors only present empirical evidence of 

efficiency, while our approach, based on Apriori, is entirely different and provably efficient. 

 

A simple-minded application of Apriori to finding frequent subpaths – say, by treating paths as 

itemsets – falls short because the feasibility of Apriori depends on transactions being of small 

size. However, paths in graphs arising from practical applications are not necessarily short (e.g, 

consider vehicular traffic in a city) and a straight Apriori-type solution runs into exponential 

complexity. Instead, we exploit the graph structure for a significant gain in efficiency which leads 

to a generally applicable solution, which we call AFS (Apriori for Frequent Subpaths). 

 

In Section 2 we specify both the problem and its solution by the AFS algorithm. In Section 3 we 

analyze and compare the complexities of Apriori and AFS in finding frequent subpaths to prove a 

theoretical gain in efficiency from exponential in input size of the former to low polynomial of 

the latter. Section 4 discusses experimental verification of our theoretical claims, as well as an 

application of AFS to text mining. 

 

In Section 5 we show that, interestingly, there is no possibility of similarly leveraging the graph 

structure to improve Apriori for a solution to a natural generalization of the frequent subpaths 

problem – that of finding so-called frequent strings of subpaths – because the general problem is 

equivalent in complexity to that of finding frequent itemsets. We conclude in Section 6. 

 

2. PROBLEM AND ALGORITHM 
 

2.1 Problem Statement 
 

Let G = (V,E) be an undirected graph with vertex set V and edge set E. 

 

Here are some definitions related to paths in graphs that we’ll use. A path P in G of length k from 

a vertex u to u′ is a sequence (v0, v1, . . . , vk) of vertices such that v0 = u and vk = u′ and (vi−1, vi) ∈ 

E for i = 1, 2, . . . , k. (We’ll also allow the empty sequence () to denote the empty path of 

undefined length.) A path Q in G is said to be a subpath of P, denoted Q⊳P, if Q = (w0,w1, . . . 

,wk′ ), where (w0,w1, . . . ,wk′ ) is a contiguous subsequence of (v0, v1, . . . , vk), i.e., if, for some i 

such that 0 ≤ i ≤ i+k′ ≤ k, we have w0 = vi,w1 = vi+1, . . . ,wk′ = vi+k′ . In this case, if i = 0 then Q is 

called a prefix subpath of P; if i+k′ = k then Q is called a suffix subpath of P. For a non-empty 

path P = (v0, v1, . . . , vk), front(P) denotes the first vertex v0 and tail(P) denotes the suffix 

subpath (v1, . . . , vk). A path (or, subpath) of length k will often be called a k-path (or, k-subpath). 

 

Following are a couple of more database-related definitions to do with paths. Let P be a given set 

of paths in G. A path Q in G is said to have support support(Q) = |{P ∈ P : Q ⊳ P}|, i.e., the 
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number of paths in P of which Q is a subpath. Moreover, suppose a minimum support value 

min_sup is specified. If support(Q) ≥ min_sup, then Q is said to be a frequent subpath. 

 

The statement of the problem is now straightforward: Given a set P of paths in an undirected 

graph G, determine all frequent subpaths. 

 

See Figure 1 for an example of three paths in a grid graph. 

 

 
 

Fig. 1. A grid graph with three paths indicated by directed broken lines. If min_sup = 2 then the frequent 

subpaths are (g), (h), (i), (j), (k), (l), (g, h), (i, j) and (k, l). 

 

Remark: In database terminology, P is a database of transactions, where each transaction P is a 

path in a fixed graph G. 

 

2.2  Apriori Algorithm 
 

As our algorithm to find frequent subpaths is derived from Apriori, the classic frequent itemset 

mining algorithm due to Agrawal & Srikant [1], and as we’ll be comparing the complexities of 

the two, we’ll first specify Apriori somewhat exactly.   

 

Let  be a database of transactions, where each transaction T ∈ D  is a subset of a set of all items 

 The support of an itemset I ⊂  is support (I) = |{T ∈ D : I ⊂ T}| . If  support (I) ≥ min_sup, 

then I  is frequent. Following is pseudo-code for the Apriori algorithm to determine all frequent 

itemsets (adapted from Agrawal & Srikant [1]). 

 

Apriori 

 

L1 = { frequent 1-itemsets }; 

for ( k = 2; Lk-1 ≠ ; k ++ ) 

      { 

       Ck = join (Lk-1, Lk-1); // Generate candidates. 

       Ck = prune(Ck); // Prune candidates 

       Lk = checkSupport(Ck); // Eliminate candidate 

                                               // if support too low. 

       } 

return UkLk; // Returns all frequents itemsets. 
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We discuss next the routines in the Apriori for loop and how all three are implemented using a 

function subset (X,T) - where X is a set of itemsets and T is an itemset – which returns the subset 

Y of X consisting of those itemsets which are contained in T . We’ll discuss implementing 

subset(X, T ) itself later. 

 

Firstly, join(Lk−1,Lk−1) generates all k-itemsets of the form {i1, i2, . . . , ik}, where both {i1, i2, . . . , 

ik−1} and {i1, i2, . . . , ik−2, ik} belong to Lk−1 (note that itemsets are always assumed listed in 

lexicographic order), i.e., unions of pairs of itemsets in Lk−1 both of whose members share the 

same first k − 2 items. Secondly, prune(Ck) deletes all I ∈ Ck such that some (k − 1)-subset of I 

does not belong to Lk−1. It may be checked that both join (Lk−1,Lk−1) and prune (Ck) are 

implemented by the following routine which uses subset (Lk−1, ∗): 

 

pruneJoin 

Ck = ; 

for each itemset I = {i1, i2,…..,ik-1} ∈ Lk-1 

       for each item j ∈   such that j > ik-1 

                { 

            I’ = {i1,i2,……,ik-1, j};  

            for each ( k – 1)- subset A of I’ 

                  if (subset (Lk-1, A) = ) goto reject; 

                // Reject I’ if it has a (k – 1)-subset 

                // not belonging to Lk-1. 

 

              add I’ to Ck; 

              reject: 

            } 

   return Ck; // Returns prune(join(Lk-1, Lk-1)).           

 

Finally, checkSupport (Ck) counts the support of each itemset currently in Ck to eliminate those 

that are not frequent. It is straightforwardly implemented with the help of subset (Ck, *): 

checkSupport 

Lk = ; 

for each I ∈ Ck 

      I.count = 0; 

for each transaction T ∈ D 

      { 

       CT = subset (Ck, T); 

       for each I ∈ CT 

       I.count++; 

       } 

for each I ∈ Ck 

      if (I.count ≥ min_sup) add I to Lk ;  

return Lk; // Returns members of Ck with support 

                // at least min_sup. 
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Therefore, when implementing Apriori the calls to join and prune in the for loop are replaced by 

a single call to pruneJoin, while checkSupport is implemented as above. 

 

The function subset(X, T ) is implemented by first storing the itemsets of X in a trie (prefix tree 

as in Fredkin [6]) on the “alphabet” of items ordered lexicographically, each itemset treated 

as an ordered string. Agrawal & Srikant[1] actually use a particular implementation called a hash 

tree as developed by Coffman Jr. & Eve [4], where pointers to children are stored in a hash table 

keyed on items at each internal node (the use of a hash tree in this case instead of a simple trie is 

justified by the typically large size of ). See Figure 2 for an example. 

 

 
 

Fig.2. A hash tree  storing a set of six 4-itemsets X = {{a,b,c,d}, {a,b,d,g}, {a,d,e,f}, {b,c,e,f}, {b,d,f,h}, 

{c,e,g,k}}, where each leaf can store at most two itemsets (only the suffix of an itemset following the 

prefix defined by the path to the leaf is stored). 

 

The function subset(X,T) is then executed by calling doSubset(root( ), T) using the recursive 

routine below:  

 

doSubset(node, I) 

{ 

Y = ; 

if (node is leaf) add checkItemsets(node, I) to Y ; 

// Function checkItemsets(node, I) returns those 

// itemsets stored at node that are contained in I. 

 else if (I = ); // Nothing is added to Y. 

 else for each ( i ∈ I ) 
      if (node.ch(i) exists) 

      add i * doSubset(node.ch(i), { j ∈ I : j > i }) to Y;  

     // For each item i ∈ I recurse on the corresponding 

     // child of node. We denote by i * Z the union of i  

     // with each itemset in Z. 

 

return Y; 

}   
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For example, in Figure 2, doSubset(root, {a, b, c, d, e, f}) makes three recursive calls to 

doSubset with parameters (n1, {b, c, d, e, f }), (n2, {c, d, e, f }) and (n3, {d, e, f}), respectively. 

The first of these in turn calls doSubset with parameters (n4, {c, d, e, f}) and (n5, {e, f}), while 

the second and third add {b, c, e, f} and nothing, respectively, to the answer Y , etc. 

 

Though various technical improvements in implementing Apriori have been suggested – see Han 

& Kamber [9] for a discussion – we’ll not consider them here, but use as our reference the basic 

implementation described above. 

 

2.3 AFS: Apriori for Frequent Subpaths 
 

We present our algorithm AFS (Apriori for Frequent Subpaths) in as similar a manner as possible 

to that for Apriori in the previous section so that it’s easy to see exactly how the added structure 

in the setting of AFS helps make it more efficient. 

 

AFS 

L0 = {frequent 0-subpaths}; 

for ( k = 1; Lk-1 ≠ ; k++ ) 

      { 

       Ck = AFSextend (Lk-1); // Generate candidates. 

       Ck = AFSprune ( Ck ); // Prune candidates. 

       Lk = AFScheckSupport (Ck ); 

       // Eliminate candidate if support too low. 

      } 

 return UkLk; // Returns all frequents subpaths.  

 

The gain from the graph structure is first seen in generating candidates: we obtain Ck by simply 

extending each path in Lk-1). This is justified as it may be seen that the set of k-paths obtained by 

so extending paths in Lk-1 indeed contains Lk. Pruning is simpler as well because, after extending a 

path P in Lk-1 to a k-path P’, the only ( k – 1 )-subpath of P’ whose membership in Lk-1  need be 

checked is its suffix k – 1-subpath. The reason is that P’ has only two k – 1-subpaths: one prefix  

( P itself ) and the other suffix.  

 

E.g., in Figure 1, (g,h) ∈  L1 would generate four extensions for inclusion in C2: (g, h, i), (g, h, b), 

(g, h, g) and (g, h, n). Moreover, in the prune step, e.g., for (g, h, i), only (h, i) has to be checked 

if it belongs to L1. 

 

Both AFSextend(Lk−1) and AFSprune(Ck) are implemented by the routine AFSpruneExtend 

below, which should be compared with the earlier pruneJoin routine for Apriori. 

AFSpruneExtend uses the function subpaths(X, P), where X is a set of paths and T is a path, 

which returns the subset Y of X consisting of those paths which are subpaths of T (function 

subpaths(X, P), whose implementation we’ll detail momentarily, is, of course, the counterpart of 

the earlier subset(X, T )). 
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AFSpruneExtend 

Ck =   
for each path P = ( v0, v1, ….., vk-1 ) ∈ Lk-1 

       for each vertex v ∈ V adjacent to vk-1 

           { 

            P’ = ( v0, v1, ….., vk-1, v ); 

            if (subpaths( Lk-1, ( v1,…., vk-1, v ) = )  

            goto reject; 

           // Reject P’ if its suffix ( k – 1 )-subpath 

           // does not belong to Lk-1 

          

          add P’ to Ck; 

          reject: 

          }     

    return Ck; // Returns ASFprune(ASFextend (Lk-1)). 

 

The routine AFScheckSupport is a near copy of its Apriori counterpart checkSupport. 

  

AFScheckSupport 

Lk =  

for each Q ∈ Ck 

       Q.count = 0; 

for each path P ∈ P 
      { 

       Cp = subpaths(Ck, P); 

       for each Q ∈ Cp 

            Q.Count++; 

     } 

for each Q ∈ Ck 

      if (Q.count ≥ min_sup) add Q to Lk; 

return Lk; // Returns members of Ck with support 

                // at least min_sup.   

 

Therefore, when implementing AFS the calls to AFSextend and AFSprune in the for loop are 

replaced by a single call to AFSpruneExtend, while AFScheckSupport is implemented as above. 

 

It’s in implementing subpaths(X, P) that we leverage the graph setting of AFS to huge gain over 

subset(X, T ) (we’ll see the actual calculations in the next section). Paths in X are stored in a 

hash tree as well, exactly as for subset(X, T ). It’s straightforward to use this tree of paths to 

determine which are prefix subpaths of P. Therefore, noting that a path in X is a subpath of P if 

an only if it is a prefix subpath of some suffix subpath of P, subpaths(X, P) is implemented by 

calling doSubpaths(root( ), (wo, w1,…. wk)), where P = (wo, w1,…., wk). 
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doSubpaths(node, {w0,w1,….wk}) 

{ 

Y = ; 

for ( i = 0; i ≤ k; i++) 

   add doPrefixSubpaths(node, (wi, wi+1,….., wk)) 

   to Y; 

  // Iteratively calls doPrefixSubpaths(node,Q) // on each suffix of Q of P = (w0,w1,…,wk). 

 

return Y 

} 

 

Compare the following with doSubset. 

 

doPrefixSubpaths(node,Q) 

{ 

Y = ; 

if (node is leaf) add checkPrefixPaths(node,Q) to Y ; 

// Function checkPrefixPaths(node,Q) returns those 

// paths stored at node that are prefix subpaths of P. 

 

else if ( Q = () ); // Nothing is added to Y. 

else 

      if  (node.ch(first(Q)) exists) 

      add first(Q) * 

             doPrefixSubpaths(node.ch(first(Q)), 

                                                 tail(Q)) to Y; 

// Descend from node along the path labeled by 

// successive vertices of Q. We denote by v * Z the 

// concatenation of v with each path in Z. 

return Y; 

} 

 

For example, suppose the hash tree in Figure 2 represents a set of paths instead of itemsets. Then, 

the call doSubpaths(node, (a, b, c, d, e, f)) spawns six iterations of the call doPrefixSubpaths with 

parameters (node, (a, b, c, d, e, f)), (node, (b, c, d, e, f)), . . . , (node, (f)), respectively. Each of the 

doPrefixSubpaths calls descends recursively from the root down a single path of E.g., the one 

with parameters (node, (a, b, c, d, e, f)) descends to n4 to finally call doPrefixSubpaths(n4, (c, d, 

e, f)), which adds (a, b, c, d) to the answer Y . 
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3. ANALYSIS : AFS VS. APRIORI 
 

Consider Apriori first. The recursion in doSubset(node, I) yields a Fibonacci-type recurrence in 

running time of t(k) = t(k − 1) + t(k − 2) + . . . t(1), if I = {i1, i2, . . . , ik}, implying a time bound 

function of order exponential in the size of I, which we indicate by O(exp(|I|)) (We ignore the 

cost of calls to checkItemsets(node, I).) The size of the hash tree rooted at node is an obvious 

upper time bound as well on doSubset(node, I). 

 

Therefore, similar bounds apply to subset(X,T) as well. In particular, subset(Ck,T) and 

subset(Lk,T), used to implement Apriori, are bounded in running time by O(min(exp(|T |), size_ 

ht(Ck))) and O(min(exp(|T |), size_ht(Lk))), respectively, where size ht(X) denotes the size of the 

hash tree storing X. 

 

It follows that the total time cost incurred by calls to pruneJoin from Apriori is 

 

(the expectation that on the average there will be  items greater than the last one in an 

itemset justifies the  factor) and by those to checkSupport is 

 

Next, consider AFS. The routine doPrefixSubpaths(node,Q) is bounded by time linear in |Q| as 

the recursion descends from node along a path labeled by successive vertices of Q. The height 

height of the hash tree rooted at node is a bound as well. Consequently, doSubpaths(node, P) 

takes time O(min(|P|, height)+min(|P| − 1, height) +. . .+ min(1, height)) = O(min(|P|
2
, |P|height) ). 

 

Therefore, subpaths(Ck, P) runs in time bounded by O( min(|P|
2
, |P|height_ht(Ck)) ), and 

subpaths(Lk, P) in time bounded by O( min(|P|
2
, |P|height_ht(Lk)) ), where height_ht(X) denotes 

the height of the hash tree storing X, which represents a gain in efficiency over the corresponding 

Apriori routine subset(X,T) from exponential to quadratic. 

 

We have, therefore, that the total time cost incurred by calls to AFSextendJoin from AFS is 

 

(We assume that on the average each vertex has O(1) neighbors) and those to AFScheckSupport 
is  
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Clearly, Apriori is vulnerable to exponential time worst-case behavior. In fact, it’s evident from 

the complexity expressions for pruneJoin and checkSupport that the feasibility of applying 

Apriori lies in assuming that (a) the size of individual transactions in the database is O(1), and (b) 

the size of Ck decreases rapidly with k. Fortunately, both assumptions are justified in various 

practical scenarios, e.g., market basket analysis. 

 

In case of AFS though (a) is not a reasonable assumption: transactions in the database, i.e., paths 

in a graph, may not be short, or O(1), in length. In practical applications, e.g., vehicles traveling 

in a network of roads, paths taken may even be of size comparable to that of the graph itself. 

However, we see from the last two expressions above that, even then, AFS has a worst-case 

behavior quadratic in the total length of the input paths, making it practically applicable. 

 

4. EXPERIMENTAL VERIFICATION AND AN APPLICATION 

 
The theoretical advantage of AFS can be tested practically by generating random sets of paths in 

large graphs, and then finding frequent subpaths using both Apriori (ignoring the graph structure 

and treating paths as itemsets of vertices) and AFS. 

 

Ali [2], in fact, does exactly this following a preliminary description of AFS in an earlier 

conference paper (Guha [8]). He generates random sets of paths in grid graphs of maximum 

dimension 5 × 20 and complete graphs with a maximum of 25 nodes, applying both Apriori and 

AFS to find frequent subpaths. His results demonstrate clearly the nearly combinatorial explosion 

in running time of the former algorithm versus the far slower growth rate of the latter. 

 

 
 

Fig. 3. Paths in a graph of words. 

 

Ali also shows a nice application of AFS to text mining, in particular, mining frequent phrase 

patterns in the Arabic Quranic text corpus. The idea is explained in Figure 3: the common phrase 

ate a bowl of of the two word paths I ate a bowl of rice and He ate a bowl of noodles is found as a 

subpath of both. Ali then uses these frequent phrases to index and cluster Quranic verses. 

 

5. A GENERALIZATION AND ITS HARDNESS 
 

The intersection of a set of paths in an undirected graph G is not necessarily a path, but a union of 

paths. We’ll call such an intersection a string of subpaths, or, simply, string. Therefore, a natural 

generalization of the frequent subpaths problem considered in the previous section is as follows: 

Given a set P of paths in an undirected graph G, determine all frequent strings of subpaths. 

 

For example, in Figure 1, (g, h) ∪ (i, j) and (k,l) are the two maximal frequent strings. Observe 

that knowing all frequent strings evidently implies knowing all frequent subpaths. However, the 

converse is not true –e.g., it’s not possible to deduce from the fact that (g,h) ∪ (i,j) is a frequent 
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string. Therefore, the problem of finding frequent strings is at least as hard as that of finding 

frequent subpaths. 

 

Surely, an Apriori-type algorithm may be implemented to find all frequent strings, but, 

interestingly, no improvement in efficiency over Apriori (as in AFS) can be expected because, as 

we’ll see momentarily, the problem of finding frequent itemsets is equivalent to that of finding 

frequent strings. Firstly, we’ll reduce the first problem to the second in time linear in the size of 

the input. 

 

Let D be a database of transactions, each transaction T being a subset of the set of all items . 

Let G be the complete graph on the set of vertices V = . Represent each transaction T ∈ D. 
where T = {i1,i2,…..,ik}, by the path PT = (i1,i2,….., ik), the items in T being in lexicographic order. 

It may be seen that, given the set of paths P = { PT : T ∈ D}, the set of frequent strings 

corresponds exactly to the set of frequent itemsets for the database D, which completes the 

reduction claimed and proves that finding frequent strings is atleast as hard as finding frequent 

itemsets. 

 

 
Fig. 4. The database of two transactions {beer, eggs, milk, soap} and {eggs, milk, rice, soap} 

over the set of items  = {beer, eggs, milk, rice, soap} is represented by two corresponding paths 

in the complete graph on . 

 

E.g., for the database of Figure 4, if min sup = 2, then the one maximal frequent itemset is {eggs, 

milk, soap} and the corresponding one maximal frequent string is (eggs, milk) ∪ (soap). 

 

We omit details of the fairly straightforward reduction in the opposite direction. The equivalence 

of the two problems means that there is no hope of leveraging the graph structure to find a more 

efficient variation of Apriori to determine frequent strings. However, this should not be an issue 

in practical applications where it is enough to simply identify the congested subpaths. 

 

6. CONCLUSION 

 
We have developed the AFS algorithm to find frequent subpaths which, though derived from 

Apriori, exploits the underlying graph structure for a gain in efficiency that makes it applicable to 

practical input sizes for this particular problem. We believe that similar improvements may be 

found for related problems, e.g., finding frequent subtrees of a collection of trees. The 

development of a general framework in which to place the problem of finding frequent 

substructures of a collection of structures belonging to a family with certain given inheritance 

properties (e.g., a subgraph of a path is a union of paths) would be significant as well. 

 

Given the emergence of big graph mining, it would be useful to be able to find frequent subpaths 

from streaming input data a la Jha et al. [11] who count triangles of an input graph. 
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