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ABSTRACT 

 
Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely 

huge amount of data, it is quite natural that the demand for the computational environment to accelerates, 

and scales out big data applications increases. The important thing is, however, the behavior of big data 

applications is not clearly defined yet. Among big data applications, this paper specifically focuses on 

stream mining applications. The behavior of stream mining applications varies according to the 

characteristics of the input data. The parameters for data characterization are, however, not clearly 

defined yet, and there is no study investigating explicit relationships between the input data, and stream 

mining applications, either. Therefore, this paper picks up frequent pattern mining as one of the 

representative stream mining applications, and interprets the relationships between the characteristics of 

the input data, and behaviors of signature algorithms for frequent pattern mining. 
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1. INTRODUCTION 
 

Big data quickly comes under the spotlight in recent years. Big data is expected to collect 

gigantic amount of data from various data sources, and analyze those data across conventional 

problem domains in order to uncover new findings, or people's needs. As big data is supposed to 

handle extremely huge amount of data compared to the conventional applications, it is quite 

natural that the demand for the computational environment, which accelerates, and scales out big 

data applications, increases. The important thing here is, however, the behavior or characteristics 

of big data applications are not clearly defined yet. 

 

Big data applications can be classified into several categories depending on the characteristics of 

the applications, such as behaviors, or requirements. Among those big data applications, this 

paper specifically focuses on stream mining applications. A stream mining application is such an 

application that analyzes data, which arrive one after another in chronological order, on the fly. 

Algorithms specialized for stream mining applications are intensively studied [1-30], and Gaber 

et al. published a good review paper on these algorithms [31]. 
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High performance computing community has been investigating data intensive applications, 

which analyze huge amount of data as well. Raicu et al. pointed out that data intensive 

applications, and stream mining applications are fundamentally different from the viewpoint of 

data access patterns, and therefore the strategies for speed-up of data intensive applications, and 

stream mining applications have to be radically different [32]. Many data intensive applications 

often reuse input data, and the primary strategy of the speed-up is locating the data close to the 

target CPUs. Stream mining applications, however, rarely reuse input data, so this strategy for 

data intensive applications does not work in many cases. Modern computational environment has 

been and is evolving mainly for speed-up of benchmarks such as Linpack [33], or SPEC [34]. 

These benchmarks are relatively scalable according to the number of CPUs. Stream mining 

applications are not scalable to the contrary, and the current computational environment is not 

necessarily ideal for stream mining applications. The simplest approach is to use this template 

and insert headings and text into it as appropriate. Additionally, many researchers from machine 

learning domain, or data mining domain point out that the behavior, execution time more 

specifically, of stream mining applications varies according to the characteristics, or features of 

the input data. The problem is, however, the parameters, or the methodology for data 

characterization is not clearly defined yet, and there is no study investigating explicit 

relationships between the characteristics of the input data, and the behavior of stream mining 

applications, either. 

 

Therefore, this paper picks up frequent pattern mining as one of the representative stream mining 

applications, and interprets the relationships between the characteristics of the input data, and 

behaviors of signature algorithms for frequent pattern mining. The rest of this paper is organized 

as follows. Section 2 describes a model of stream mining algorithms in order to share the 

awareness of the problem, which this paper focuses on. Then, the section also briefly introduces 

related work. Section 3 overviews the application that this paper picks up, and illustrates the 

algorithms those are typical solutions for the application. Section 4 explains the methodology of 

the experiments, shows the results, and gives discussions over those results. Section 5 concludes 

this paper. 

 

2. RELATED WORK 
 

2.1. A Model of Stream Mining Algorithms 
 

A stream mining algorithm is an algorithm specialized for a data analysis over data streams on 

the fly. There are many variations of stream mining algorithms, however, general stream mining 

algorithms share a fundamental structure, and a data access pattern as shown in Figure 1 [35]. A 

stream mining algorithm consists of two parts, stream processing part, and query processing part. 

First, the stream processing module in stream processing part picks the target data unit, which is a 

chunk of data arrived in a limited time frame, and executes a quick analysis over the data unit. 

The quick analysis can be a preconditioning process such as a morphological analysis, or a word 

counting. Second, the stream processing module in stream processing part updates the data, 

which are cached in one or more sketches, with the latest results through the quick analysis. That 

is, the sketches keep the intermediate analysis, and the stream processing module updates the 

analysis incrementally as more data units are processed. Third, the analysis module in stream 

processing part reads the intermediate analysis from the sketches, and extracts the essence of the 

data in order to complete the quick analysis in the stream processing part. Finally, the query 
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processing part receives this essence for the further analysis, and the whole process for the target 

data unit is completed. 

 

Based on the model shown in Figure 1, we can conclude that the major responsibility of the 

stream processing part is to preprocess each data unit for the further analysis, and that the stream 

processing part has the huge impact over the latency of the whole process. The stream processing 

part also needs to finish the preconditioning of the current data unit before the next data unit 

arrives. Otherwise, the next data unit will be lost as there is no storage for buffering the incoming 

data in a stream mining algorithm. On the contrary, the query processing part takes care of the 

detailed analysis such as a frequent pattern analysis, or a hot topic extraction based on the 

intermediate data passed by the stream processing part. The output by the query processing part is 

usually pushed into a database system, and there is no such an urgent demand for an 

instantaneous response. Therefore, only the stream processing part needs to run on a real-time 

basis, and the successful analysis over all the incoming data simply relies on the speed of the 

stream processing part. 

 

 
 

Figure 1. A model of stream mining algorithms. 

 

The model in Figure 1 also indicates that the data access pattern of the stream mining algorithms 

is totally different from the data access pattern of so-called data intensive applications, which is 

intensively investigated in high performance computing community. The data access pattern in 

the data intensive applications is a write-once-read-many [32]. That is, the application refers to 

the necessary data repeatedly during the computation. Therefore, the key for the speedup of the 

application is to place the necessary data close to the computational nodes for the faster data 

accesses throughout the execution of the target application. On the contrary, in a stream mining 
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algorithm, a process refers to its data unit only once, which is a read-once-write-once style. 

Therefore, a scheduling algorithm for the data intensive applications is not simply applicable for 

the purpose of the speedup of a stream mining algorithm. 

 

2.2. A Task Graph 
 

A task graph is a kind of pattern diagrams, which represents data dependencies, control flows, 

and computational costs regarding a target implementation. A task graph is quite popular for 

scheduling algorithm researchers. In the process of the development of scheduling algorithms, the 

task graph of the target implementation works as if a benchmark, and provides the way to 

develop a scheduling algorithm in a reproducible fashion. The actual execution of the target 

implementation in the actual computational environment provides realistic measurement, 

however, the measurement varies according to the conditions such as computational load, or 

timings at the moment. This fact makes difficult to compare different scheduling algorithms in 

order to determine which scheduling algorithm is the best for the target implementation with the 

target computational environment. A task graph solves this problem, and enables fair comparison 

of scheduling algorithms through simulations. 

 

 for all training data do 

(1) fetch one data unit � 

    for all attributes for � do 
    (2-1) update the weight sum for this                      

attribute 

     (2-2) update the mean value of this 

attribute 

end for 

end for 

 
Figure 3. A pseudo code for the training stage    

of  Naïve Bayes algorithm. 

             Figure 2. An example of a task graph 

 

As shown in the previous section, the model of a stream mining algorithm has data dependencies 

both across the processes, and inside one process. Therefore, a task graph for a stream mining 

algorithm should consist of a data dependency graph, and a control flow graph [36]. Figure 2 is 

an example of a task graph of the training stage of Naïve Bayes classifier [37]. In Figure 2, the 

left figure is a data dependency graph, and the right figure is a control flow graph. Figure 3 

represents the pseudo code for the task graph shown in Figure 2. 

 

Both a data dependency graph, and a control flow graph are directed acyclic graphs (DAGs). In a 

task graph, each node represents a meaningful part of the input code. Nodes in white are codes in 

the preceding process, and nodes in gray are codes in the successive process. The nodes with the 

same number represents the same meaningful part in the input source code, and the 

corresponding line in the pseudo code shown in Figure 3. The nodes with the same number in the 

same color indicate that the particular part of the input source code is runnable in parallel. Here, 

nodes in a control flow graph have numbers. Each number represents execution cost of the 

corresponding node. Each array in a data dependency graph indicates a data dependency. If an 

arrow comes up from node A to node B, the arrow indicates that node B relies on the data 

generated by node A. Similarly, each array in a control flow graph represents the order of the 
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execution between nodes. If an arrow comes up from node A to node B, the arrow indicates that 

node A has to be finished before node B starts. The nodes in the same level are possible to be 

executed in parallel. The nodes with the same number indicate that the particular line in the 

pseudo code is runnable in parallel. There are two major difficulties for describing stream mining 

applications with task graphs. One problem is that the concrete parallelism strongly relies on the 

characteristics of the input data. The other problem is that a cost for a node varies according to 

the input data. That is, a task graph for a stream mining application is impossible without the 

input data modeling. 

 

2.3. Related Work 
 

There are several studies on task graph generation, mainly focusing on generation of random task 

graphs. A few projects reported task graphs generated based on the actual well-known 

applications; however, those applications are from numerical applications such as Fast Fourier 

Transformation, familiar to high performance computing community for years. 

 

Task Graphs for Free (TGFF) provides pseudo-random task graphs [38, 39]. TGFF allows users 

to control several parameters, however, generates only directed acyclic graphs (DAGs) with one 

or multiple start nodes, and sink nodes. A period, and deadline is assigned to each task graph 

based on the length of the maximum path in the graph, and the user specified parameters. 

 

GGen is another random task graph generator proposed by Cordeiro et al. [40]. GGen generates 

random task graphs according to the well-known random task generation algorithms. GGen also 

provides a graph analyzer, which characterizes randomly generated task graphs, based on the 

longest path, the distribution of the out-degree, and the number of edges. 

 

Task graph generator provides both random task graphs, and task graphs extracted from the 

actual implementations such as Fast Fourier Transformation, Gaussian Elimination, and LU 

Decomposition [41]. Task graph generator also provides a random task graph generator which 

supports a variety of network topologies including star, and ring. Task graph generator also 

provides scheduling algorithms as well. 

 

Tobita et al. proposed Standard Task Graph Set (STG), evaluated several scheduling algorithms, 

and published the optimal schedules for STG [42, 43]. STG is basically a set of random task 

graphs. Tobita et al. also provided task graphs from numerical applications such as a robot 

control programs, a sparse matrix solver, and SPEC fpppp [34]. 

 

Besides the studies on task graph generation, Cordeiro et al. pointed out that randomly generated 

task graphs can create biased scheduling results, and that the biased results can mislead the 

analysis of scheduling algorithms [40]. According to the experiments by Cordeiro et al., a same 

scheduling algorithm can obtain a speedup of 3.5 times for the performance evaluation only by 

changing the random graph generation algorithm. Random task graphs contribute for evaluation 

of scheduling algorithms, however, do not perfectly cover all the domains of parallel, and 

distributed applications as Cordeiro et al. figured out in their work. Especially for stream mining 

applications, the characteristic of the application behaviors is quite different from the 

characteristic of the applications familiar to the conventional high performance computing 

community [32]. Task graphs generated from the actual stream mining applications have 

profound significance in the better optimization of stream mining applications. 
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These all projects point out the importance of fair task graphs, and seek the best solution for this 

problem. These projects, however, focus only on data dependencies, control flows, and 

computational costs of each piece of an implementation. The computational costs are often 

decided in a random manner, or based on the measurements through speculative executions. No 

project pays attention to the relationships between the variation of the computational costs, and 

the characteristics of the input data. 

 

3. ALGORITHMS 
 

3.1. Frequent Pattern Mining 
 

This paper focuses on two algorithms for frequent pattern mining. Frequent pattern mining was 

originally introduced by Agrawal et al. [44], and the baseline is the mining over the store items 

purchased on a per-transaction-basis. The goal of the mining is finding out all the association 

rules between sets of items with some minimum specified confidence. One of the examples of the 

association rules is that 90% of transactions purchasing bread, and butter purchase milk as well. 

That is, the association rules those appearances are greater than the specified confidence are 

regarded as frequent patterns. In the rest of this paper, the confidence is called "support". 

 

There are many proposals for frequent pattern mining; however, this paper specifically picks up 

two algorithm; Apriori algorithm [45], and FP-growth algorithm [46]. Apriori algorithm is the 

most basic, but standard algorithm proposed by Agrawal et al.. Many frequent mining algorithms 

are also developed based on Apriori algorithm. FP-growth algorithm is another algorithm, and is 

considered as more scalable, and faster than Apriori algorithm. The rest of this section briefly 

introduces summary of each algorithm. 

 

3.2. Apriori 

 
Figure 4 gives Apriori algorithm, and there are several assumptions as follows. The items in each 

transaction are sorted in alphabetical order. We call the number of items in an itemset its “size”, 

and call an itemset of size � a �-�������. Items in an itemset are in alphabetical order again. We 

call an itemset with minimum support a "large itemset". 

The first pass of Apriori algorithm counts item occurrences in order to determine the �	
�� 1-

�������� ((1) in Figure 4). A subsequent pass consists of two phases. Suppose we are in �-�ℎ 

pass. First, the �	
�� �������� ���� found in the (� − 1)-�ℎ pass are used for generating the 

candidate itemsets �� (potentially large itemsets), using the 	�
��
���� function, which we 

describe later in this section ((2) in Figure 4). Next, the database is scanned, and the support of 

candidates in �� is counted ((3) and (4) in Figure 4). These two phrases prepare for the �	
�� 

�������� �� ((5) in Figure 4), and the subsequent pass is repeated until �� becomes empty. The 

	�
��
���� function takes ����, and returns a superset of the set of all the �	
�� �-��������. 

The 	�
��
���� function consists of the join step (Figure 5), and the prune step (Figure 6). 

The distinctive part of Apriori algorithm is the 	�
��
���� function. The 	�
��
���� function 

reduces the size of candidate sets, and this reduction contributes for speed-up of the mining. The 

	�
��
���� function is designed based on Apriori heuristic [45]; if any length � pattern is not 

frequent in the database, its length � + 1 super-pattern can never be frequent. 
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  Figure 6. The pseudo-code for the 

  prune step of apriorigen function. 

Figure 4. The pseudo-code for Apriori algorithm. 

 

 
Figure 5. The pseudo-code for the join step of apriorigen function. 

 

3.3. FP-growth 
 

FP-growth algorithm is proposed by Han et al. [46], and they point out Apriori algorithm suffers 

from the cost for handling huge candidate sets, or repeated scanning database with prolific 

frequent patterns, long patterns, or quite low support. Han et al. advocated the bottleneck exists in 

candidate set generation, and proposed frequent pattern tree (FP-tree). Here, we see the 

construction process of FP-tree, utilizing the example shown on Table 1. In this example, we set 

the support as "three times", instead of appearance ratio in order to simplify the explanation. The 

FP-tree developed from this example is shown in Figure 7. 
 

Table 1. The input example for FP-growth algorithm. 

 

TID item series frequent items (for reference) 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n f, c, a, m, p 
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Figure 7. An example of FP-tree. 

 

First, the first data scan is conducted for generating the list of frequent items. The obtained list 

looks like as follows. 

< (f: 4), (c: 4), (a: 3), (b: 3), (m: 3), (p: 3) > 

Here, (&: () represents item & appears ( times in the database. Notice the list is ordered in 

frequency descending order. The ordering is important as each path of a tree follows this 

ordering. The rightmost column on Table 1 represents the frequent items in each transaction. 

Next, we start generating a tree with putting the root of a tree, labeled with "null". The second 

data scan is conducted for generating the FP-tree. The scan of the first transaction constructs the 

first branch of the tree: 

 < (f: 1), (c: 1), (a: 1), (m: 1), (p: 1) > 

Notice the frequent items in the transaction are ordered in the same order to the list of frequent 

items. For the second transaction, as its frequent item list < ), (, 	, *, � > shares a common 

prefix < ), (, 	 > with the existing path < ), (, 	, �, � >, we simply increment the counts of the 

common prefix, and create a new node (b: 1) as a child of (a: 2). Another new node (m: 1) is 

created as a child of (b: 1). For the third transaction, its frequent item list < ), * > shares only 

< ) > with f-prefix subtree. Therefore, we increment the count of node < ) >, and create a new 

node (b: 1) as a child of this node (f: 3). The scan for the fourth transaction introduces a 

completely new branch as follows, because no node is shared with existing prefix trees. 

< ((: 1), (*: 1), (�: 1) > 

The frequent items in the last transaction perfectly overlaps with the frequent items in the first 

transaction. Therefore, we simply increment the counts in the path < ), (, 	, �, � >. Figure 7 is a 

complete FP-tree developed from this example. In the left part of Figure 7, there is an item header 

table, and this table contains head of node-links. This header table is utilized for tree traversal 

when extracting all the frequent patterns. 
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4. EXPERIMENTS 
 

4.1. Setup 
 

The purpose of this paper is to interpret the relationships between the characteristics of the input 

data, and behaviors of frequent pattern mining algorithms such as Apriori algorithm, and FP-

growth algorithm. This section explains the methodology for the experiments. 

 

We utilize the implementations of Apriori algorithm [47], and FP-growth algorithm [48] in C, 

which are distributed by Borgelt. We compiled, and run the programs as they are for fairness. No 

optimization is applied. In order to observe changes of the behaviors of these programs, three 

kinds of data are prepared as input. The overall feature of each data is summarized as Table 2. 

The details of each data are as follows. 

 
Table 2. Summary of the input data. 

 

 number of transactions (A) number of distinct items (B) (B) / (A) 

census 48,842 135 0.0028    

papertitle 2,104,240 925,151 0.440      

shoppers 26,496,646 836 0.000032 

 

Table 3. Number of found sets. 

 

support [%] census papertitle shoppers 

1.25 134,780 49 426 

2.5 49,648 21 69 

5.0 15,928 8 12 

10.0 4,415 3 1 

20.0 904 0 0 

40.0 117 0 - 

 

� census: This is national population census data, and the data are distributed with Apriori 

algorithm implementation [47], and FP-growth implementation [48] by Borgelt as test data. 

As shown on Table 2, the ratio of the number of distinct items to the number of transactions 

is moderate among the three input data, and the ratio is 0.28%. We also see the number of 

transactions in census is the smallest. 

� papertitle: This is the data set for KDD Cup 2013 Author-Paper Identification Challenge 

(Track 1), and available at Kaggle contest site [49]. We extract paper titles from Paper.csv, 
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and create the list of titles. As shown on Table 2, the ratio of the number of distinct items to 

the number of transactions is extremely high compared to the other two data sets, and the 

ratio is 44.0%. We also see the number of transactions is moderately high. 

� shoppers: This is the data set for Acquire Valued Shoppers Challenge, and available at 

Kaggle contest site as well [50]. For the experiment, we extract categories of purchased 

items from each transaction data in transactions.csv, and create the list of purchased item 

category. As shown on Table 2, the ratio of the number of distinct items to the number of 

transactions is extremely small compared to the other two data sets, and the ratio is 

0.0032%. We also see the number of transactions is huge, and the biggest 

From the viewpoint of the application, the meaning of frequent mining over census is finding out 

typical portraits of the nation. Similarly, frequent mining over papertitle derives popular sets of 

words (not phrases) in paper titles, and frequent mining over shoppers extracts frequent 

combinations of item categories in the purchased items. 

Table 3 shows the number of found sets for each data set when support increases from 1.25% to 

40.0%. Both Apriori algorithm, and FP-growth algorithm found the same number of sets for the 

same support. In case of shoppers with support of 40.0%, both Apriori algorithm, and FP-growth 

algorithm could not list the candidate items, and quit the executions; therefore, the experiment 

could not gather meaningful data. 

4.2. Results 

 
Figure 8 compares the execution times in seconds of Apriori algorithm, and FP-growth algorithm 

for each support with census data. Figure 9 shows the details of the execution times of Apriori 

algorithm for each support. Similarly, Figure 10 shows the details of the execution times of FP-

growth algorithm for each support. Figure 11 shows the frequency graph of the found pattern 

length for each support. Here, both algorithms found the same patterns; the frequency shown in 

this graph is common to both Apriori algorithm, and FP-growth algorithm.  

This census input data has the characteristics as follows. 

 

Figure 8. Comparison of durations between Apriori and FP-growth (census). 
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Figure 9. Details of Apriori (census). 

 

 
 

Figure 10. Details of FP-growth (census). 

 

 
 

Figure 11. Pattern length (census). 
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� The number of transactions is the smallest among the three cases (Table 2). 

� The ratio of the number of transactions, and distinct items is moderate (Table 2). 

� The number of found sets is extremely high, and the highest (Table 3). 

One point of view is that FP-growth is expected to be superior to Apriori for census as the 

number of found sets is the highest among all the three data sets. The huge number of found sets 

will cause the huge number of candidate sets, and Apriori will cost more on scanning the large 

database of the candidate sets. The other point of view is that Apriori is expected to be superior to 

FP-growth for census as the number of transactions is the smallest among all the three. The 

moderate number of the ratio of the number of transactions, and distinct items with huge number 

of found items implies the moderate length of the found patterns. This characteristics does not 

backs up either Apriori, or FP-growth. Separate from the characteristics of census, the lower 

support generally results in more found sets. This general assumption implicates that FP-growth 

will be superior to Apriori in the lower support, and the overall execution time will increase 

according to the reduction of the support. 

Figure 8 shows that FP-growth overcomes Apriori only when the support is 2.5%, 5%, and 10%, 

and that Apriori is superior to FP-growth in 1.25%, 20%, and 40%. As general observation, 

Apriori increases its execution time according to the reduction of support value. FP-growth also 

similar tendency in a big picture, however, the execution times when the support is greater than 

2.5% are almost in the similar range. Additionally, the biggest difference from our expectation is 

that Apriori is faster than FP-growth when the support is 2.5%, which is the smallest. 

Figure 9, and Figure 10 indicate the reason why FP-growth is not clearly superior to Apriori with 

census data set. Figure 9 shows the breakdown of the execution times with Apriori, and illustrates 

that the overhead stays almost constant, and the main body of the program increases 

exponentially as the support value decreases. Contrarily, in FP-growth, the overhead occupies the 

major part of the execution times when the support is 2.5%, 5%, 10%, 20%, or 40%. Only when 

the support is 1.25%, the ratio of the main body of the algorithm clearly increases in the whole 

execution time. In fact, FP-growth is always faster than Apriori, or almost similar if we focus 

only on the durations for the main part of the algorithm. The observation for census indicates that 

the overhead of FP-growth is too huge for overcoming Apriori with this size of input data. 

Figure 11 shows that the length of the found set is mostly centering on 12 when the support is 

2.5%, 5%, 10%, 20%, and 40%. The figure also illustrates that the length of the found set is 

scattered from 2 to 12 when the support is 1.25%, and that the average length of the found sets is 

supposed to be shorter than the other cases when the support is 1.25%. As a conclusion of census 

case study, the size of data is too small, and the length of the found pattern is too short for 

providing benefits for FP-growth to overcome Apriori, even with the huge number of found sets. 

Figure 12 compares the execution times in seconds of Apriori algorithm, and FP-growth 

algorithm for each support with papertitle data. Figure 13 shows the details of the execution times 

of Apriori algorithm for each support. Similarly, Figure 14 shows the details of the execution 

times of FP-growth algorithm for each support. Figure 15 shows the frequency graph of the found 

pattern length for each support. Again, both algorithms found the same patterns; the frequency 

shown in this graph is common to both Apriori algorithm, and FP-growth algorithm. 
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Figure 12. Comparison of durations between Apriori and FP-growth (papertitle). 

 

 
Figure 13. Details of Apriori (papertitle). 

 

 
Figure 14. Details of FP-growth (papertitle). 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.1, January 2015 

64 

 

Figure 15. Pattern length (papertitle). 

 

This papertitle input data has the characteristics as follows. 

� The number of transactions is moderate (Table 2). 

� The ratio of the number of transactions, and distinct items is the highest (Table 2). 

� The number of found sets is the smallest (Table 3). 

For papertitle case, one point of view is that Apriori is expected to be superior to FP-growth as 

the number of found sets is the smallest among all the three data sets. The smallest number of 

found sets will results in the small number of candidate sets, and scanning database by Apriori is 

expected to be faster than the overhead of construction, and scan of FP-tree by FP-growth. The 

other point of view is that FP-growth is expected to be superior to Apriori as the number of 

transactions is moderate, and the larger than census data. The biggest number of the ratio of the 

number of transactions, and distinct items with the smallest number of found items implies that 

the smaller length of the found patterns. This characteristics backs up either Apriori as well. 

Separate from the characteristics of papertitle, again, the lower support generally results in more 

found sets. This general assumption implicates that FP-growth will be superior to Apriori in the 

lower support, and the overall execution time will increase according to the reduction of the 

support. 

 

Figure 12 shows that the execution times of Apriori, and FP-growth are almost constant, and that 

Apriori is always superior to FP-growth. In practice, the execution time of Apriori decreases 

slightly as the support decreases, and the execution time of FP-growth increases slightly as the 

support decreases. The difference of Apriori, and FP-growth, however, conclusive. 

Figure 13, and Figure 14 illustrate the breakdowns of execution times for each algorithm, and 

these figures also explain why Apriori is clearly superior to FP-growth for papertitle data. Figure 

13 illustrates that the main part of Apriori is almost ignorable, and the overhead occupies almost 

all the part of the execution time. The situation is quite similar to FP-growth. Figure 14 shows 

that the overhead of FP-growth constitutes the substantial part of the execution time, and the 

main body of FP-growth is extremely small in the overall execution times. When we focus on the 

actual numbers of main parts of the algorithms in the execution times, the numbers clearly 
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indicate that the main body of FP-growth consumes more time than the main body of Apriori. 

The observation here concludes not only FP-tree construction, but also FP-tree scan costs more 

than the candidate generation by Apriori for papertitle data set. 

Figure 15 also explains the reason why Apriori always overcomes FP-growth with papertitle data 

set. The pattern length is always two, or three, which is extremely short. As the conclusion of 

papertitle case study, no matter how the number of transactions is large, the number of found set 

is too small, and the pattern is too short for FP-growth to perform effectively than Apriori. 

Figure 16 compares the execution times in seconds of Apriori algorithm, and FP-growth 

algorithm for each support with shoppers data. Figure 17 shows the details of the execution times 

of Apriori algorithm for each support. Similarly, Figure 18 shows the details of the execution 

times of FP-growth algorithm for each support. Figure 19 shows the frequency graph of the found 

pattern length for each support. Again, both algorithms found the same patterns; the frequency 

shown in this graph is common to both Apriori algorithm, and FP-growth algorithm. 

 

Figure 16. Comparison of durations between Apriori and FP-growth (shoppers). 

 

 
 

Figure 17. Details of Apriori (shoppers). 
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Figure 18. Details of FP-growth (shoppers). 

 

 
 

Figure 19. Pattern length (shoppers). 

 

This shoppers input data has the characteristics as follows. 

� The number of transactions is huge, and the biggest (Table 2). 

� The ratio of the number of transactions, and distinct items is the smallest (Table 2). 

� The number of found sets is moderate (Table 3). 

For shoppers case, one point of view is that FP-growth is expected to be superior to Apriori as the 

number of transactions is huge, and larger than census, or papertitle. The cost for the database 

scan should be critical when the number of transaction is extremely large. Additionally, Apriori 

will scan the data repeatedly, the damage for the database scan, therefore, should be serious. The 

other point of view is that Apriori does not suffer from the database scan so much as the number 

of found sets for shoppers is moderate. The moderate number of found sets implicates that there 

are not so many candidates for such a huge number of transactions, and which means that the 

construction, and scanning cost of FP-tree of FP-growth is possible to damage the performance of 

FP-growth. One more thing is that the ratio of the number of transactions, and distinct items is the 

smallest among the three data sets, even though the number of found sets is moderate. This fact 
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suggests that the average length of the found patterns might be moderate. As only the small 

number of distinct items consist of transactions of shoppers, the average length of the found 

patterns should be long to some extent in order to produce moderate number of found sets. This 

point, however, does not determine whether Apriori, or FP-growth is superior to the other. 

Separate from the characteristics of shoppers, again, the lower support generally results in more 

found sets. This general assumption implicates that FP-growth will be superior to Apriori in the 

lower support, and the overall execution time will increase according to the reduction of the 

support. 

Figure 16 shows that both Apriori, and FP-growth tend to increase the execution time as support 

decreases. The execution time of Apriori with support of 20% is slightly larger than the execution 

time with support of 10%, however, this small exception does not change the overall 

characteristics. The figure also illustrates that Apriori is always superior to FP-growth regardless 

of support values. 

Figure 17, and Figure 18 illustrate the breakdowns of execution times for each algorithm. Similar 

to papertitle case, both of the figures illustrate that the overhead of the execution occupies 

substantial part of the whole execution times, and the main body of the algorithms is quite small. 

When we focus on the actual numbers of main parts of the algorithms in the execution times, the 

main part of FP-growth apparently consumes more time than the main part of Apriori. FP-

growth, again, pays expensive cost for both FP-tree construction, and FP-tree scan, and resulted 

in the worse performance than Apriori. 

Figure 19 plots the length of found sets, and explains the reason why Apriori is always superior 

to FP-growth in shoppers case again. The pattern length lies between two and four, and which is 

short. The figure, and the fact that the moderate number of found sets imply the number of 

candidates is small. Table 3 also reminds us of the fact that both Apriori and FP-growth quit the 

job because there is no candidate for shoppers with support of 40.0%. These considerations 

conclude that FP-growth could not exert its advantages for the extremely small number of 

candidates even with the huge, and the biggest number of transactions. 

4.3. Discussion 

The overall results clearly indicate that simple one measure such as the total number of 

transactions, or the total number of distinct items does not contribute for algorithm selection. 

Actually, Apriori algorithm is considered to be hard to scale, however, Apriori algorithm was 

faster than FP-growth algorithm in papertitle case, and shoppers case, even though these two 

cases handle huge number of transactions compared to census case. Apparently, the 

characteristics of the input data should be determined in order to select appropriate algorithm. 

As the first step of the characterization of the input data, we focused on the number of 

transactions, the number of distinct items, and the ratio of these two numbers. The results showed 

that these three parameters do contribute for the characterization; however, we need a few more 

parameters for the better characterization as we saw in the previous section. Of course, the length 

of the found sets is also the important parameter. The problem is, however, those parameters such 

as the length of the found sets, or distributions of data, are hard to be anticipated before the target 

data are processed actually. We need to find a good way to parameterize these characteristics. 
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5. CONCLUSIONS 

 
Big data quickly comes under the spotlight in recent years, and increases its importance both in 

socially, and scientifically. Among big data applications, this paper specifically focused on 

frequent mining, and gave the first step to interpret the relationships between the characteristics 

of the input data, and behaviors of signature algorithms for frequent pattern mining. The 

experiments, and discussions backed up that the characteristics of the input data have certain 

impact on both the performance, and the selection of the algorithm to be utilized. This paper also 

picked up some parameters for characterizing the input data, and showed these parameters are 

meaningful, however, revealed some items to be investigated for the better characterization of the 

input data as well. 
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