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ABSTRACT

 

The music objects are classified into Monophonic and Polyphonic. In Monophonic there is only one track 

which is the main melody that leads the song. In Polyphonic objects, there are several tracks that 

accompany the main melody. Each track is a sequence of notes played simultaneously with other tracks. 

But, the main melody captures the essence of the music and plays vital role in MIR. The MIR involves 

representation of main melody as a sequence of notes played, extraction of repeating patterns from it and 

matching of query sequence with frequent repeating sequential patterns constituting the music object. 

Repeating patterns are subsequences of notes played time and again in a main melody with possible 

variations in the notes to a tolerable extent. Similarly, the query sequence meant for retrieving a music 

object may not contain the repeating patterns of the main melody in its exact form. Hence, extraction of 

approximate patterns is essential for a MIR system. This paper proposes a novel method of finding 

approximate repeating patterns for the purpose of MIR. The effectiveness of methodology is tested and 

found satisfactory on real world data namely ‘Raga Surabhi’ an Indian Carnatic Music portal. 
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1. INTRODUCTION 
 

Sequence of data objects maintains an order among its constituents and hence they are found to 

be suitable to represent data such as DNA sequences, stock market data streams, time series 

weather/climatic conditions at one or more locations, audio signals, video signals etc. Sequential 

pattern mining is a specialized field of data mining which focuses on extracting sequential 

patterns from sequence data repositories. Sequential pattern mining [1] has separate set of 

techniques to extract repeating pattern from long sequences and frequent sequential patterns from 

a large collection of shorter sequences of fixed or variable length constituting a sequence data 

base. This paper focuses on repeating pattern extraction from a single long sequence representing 

a monophonic music object. 

The music objects are represented in three formats: 

 
1. Conventional Music Notation (CMN) ([2],[12]) represents music objects with symbols and 

time signature and it does not support automated processing as it is only human readable but not 

machine readable.   
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2. Audio file format represents general songs which can be played by CD players and iPods. 

These files are available in original format as .wav file and in compressed format as .mp3 file.  

3. Musical Instrument Digital Interface (MIDI) file format provides event messages about the 

pitch and intensity, control signals for parameters such as volume, vibrato and panning, cues and 

clock signals to set the tempo[5]. See Fig.[1] for representation of music files in three formats  

 

 
 

Fig.[1] Representation of music files 

 

The music objects represented in audio and MIDI formats are machine processable and hence 

becomes amicable for automated retrieval. A song or a piece of music with suitable 

accompaniment  are generally represented as a polyphonic music object [Fig.2a] containing 

separate tracks for various accompaniment in addition to main melody, as a MIDI file. The main 

melody [4] contains most of the information pertaining to the music object and hence demands 

special focus while processing music objects in the context of music information retrieval. The 

main melody [Fig.2b] is extracted by separating [6] the track representing it from originally 

polyphonic music object to create a monophonic music object.  

The theme of a song is inherently captured by the track representing main melody as it provides 

data regarding the sequence of notes played at various time stamps along with velocity etc. In the 

context of music information retrieval in response to Query by Humming (QBH) [7] the note 

sequence representing the main melody is totally ordered. In other words the notes are strictly 

ordered because at every time stamp no more than one note is played excluding the 

accompaniments.  

 

Fig. [2a] MIDI file with multiple tracks as polyphony 
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Fig. [2b] MIDI file with separated track as monophony as main melody 

 

This research work aims at extracting features of monophonic music objects for the purpose of 

indexing them in support of Music Information Retrieval [14]. Specifically, the authors have 

developed a frame work for representing the main melody of a monophonic music object as a 

long sequence of notes along with the time stamps and applied sequential mining techniques for 

extracting repeating patterns allowing tolerance for minor alterations in the notes played which is 

essential for dealing with real world applications. Sequential patterns with tolerance are referred 

to as approximate sequential patterns which contain one or more exactly repeating patterns that 

are joinable as they co-occur close to one another frequently. Hence, mining exactly repeating 

patterns provides seeds for formation of lengthier approximate sequential patterns with tolerance.  

Table [1]: Musical notes for a given string 

 

 

2. METHODOLOGY  
 

This project on feature extraction from monophonic music objects is implemented in three 

phases:  

 

1. Representation of the main melody track as a note sequence
 
[6] 

2. Finding maximal exactly repeating patterns in linear time [8] 

3. Extracting approximate sequential patterns with tolerance [8] 
 

2.1 Representation of main melody as a note sequence: 
 

Monophonic [3] music objects containing the main melody is available as a sequence of MIDI 

note numbers. Each MIDI note number has a two dimensional symbolic name representing the 

name of the note and its octave for example MIDI note number 45 is named/referred to as A2 as 

they represents note A in octave 2. Similarly, the name of the MIDI note number 96 is C7 

representing note C in octave 7. Though there are 128 MIDI note numbers the human perception 

is limited to a sub range of these 128 distinct notes.  
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  Table [2]: Mapping of alphabets with MIDI note number and musical notes for given range 

 

 
 

For the purpose of indexing songs/music objects, no song spans over more than three octaves and 

hence it is possible and convenient to represent each MIDI note number by a single symbol of 
each English alphabet [A-Z…a-z ] which can represent more than four octaves. Specifically, each 

of the musical notes starting from A2 (45) to C7 (96) are represented using single symbol starting 

from A to z for simplicity as listed in Table [2]. Accordingly a music sequence “ D3 A#2 A#2 C3 

G#3 D3 A#2 A#2 D3 C3 ” with MIDI note numbers “50 46 46 48 56 50 46 46 50 48” is 

represented as “F B B D L F B B F D” to transform it into a string Table [1].  

Thus any musical note sequence that is totally ordered can be represented as a string of alphabets. 

Hence, the data structures and algorithms developed for string processing are directly applicable 

to music sequences represented as strings. 

2.2 Finding maximal exactly repeating patterns 

Once a music object or a song is represented as a sequence of alphabet in the form of a string, the 

process of locating maximal exactly repeating sub sequences at different positions of the long 

sequence proceeds in the second phase.  

The [fig. 3] depicts the suffix tree for string F B B D L F B B F D. For any non-leaf node ‘v’ the 

number of leaf nodes in the sub-tree routed at ‘v’ gives the frequency as well as indexes of the 

string formed by the concatenation of edge labels along the path to ‘v’ referred to as path label of 

‘v’.  

The suffix tree shown in [Fig. 3] contains a non-leaf node whose path label is ‘F’ as it contains 3 

leaf nodes in its sub tree. Its frequency is 3 and the indexes of suffixes are 1, 6 and 9 representing 

F B B D L F B B F D, FBBFD, FD respectively. Similarly ‘BB’ has 2 leafs and ‘FBB’ has 2 leafs 

representing their frequency and location of occurrence in the string S. 

Wiener et.al.[9] proposed an efficient algorithm for constructing a suffix tree whose time as well 

as space complexity is O(n). This research work adapts Wieners algorithm for extracting maximal 

exactly repeating patterns from a musical note sequence represented as a string. Every non-leaf 
node of the suffix tree with more than a threshold number θ of leaf nodes in its sub tree identifies 

a maximal exactly repeating pattern defined by its path label. 
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Fig.[3] The suffix tree construction for given string 

 
Suffix tree is an efficient non-linear data structure that supports efficient implementations of 

many string operations including extraction of exactly repeating maximal substrings from a long 

sequence/string ([10], [15]). A suffix tree representing a string of length n is a rooted directed tree 

with exactly n leaves numbered 1 to n representing the location/index of the suffix represented by 

label of the path ending at the leaf node. Every internal node except for the root node has two or 

more branches labeled with non empty suffixes with distinct starting character.  

A repeating pattern ‘P’ of length ‘n’ has a nearly 2
n
 sub pattern which also repeats with the 

repeating pattern ‘P’. A maximal repeating pattern is a lengthiest subsequence that repeats in a 

string frequently and none of its extensions in either direction has equal frequency with it[16].  

 

Considering a frequency threshold of 2, ‘F’ as well as ‘FBB’ are considered maximal repeating 

patterns individually as their frequency is different. While ‘FB’ is a subsequence of ‘FBB’ which 

is not considered as maximal repeating pattern as its frequency being same as that of ‘FBB’. 

 

The following algorithm is applied to identify and locate repeated occurrences of maximal 

repeating patterns in the string. Each repeating pattern ‘i’ has a strand defined by an ordered pair 

<pati, sup-seti> where, pati is the pattern that repeats and sup-seti is a list of indexes of the 

subsequences supporting the pati.  
 

2.2.1 Algorithm for finding exact repeating patterns and their strands: 
 

Input:  

 Music note sequence represented as string S, minimum frequency threshold θ and minimum 

length threshold lmin. 

Output:  Strands of exact repeating patterns <pati, sup-seti>  

 sup-seti is a set of locations of repeated occurrences of pati in S 

1. construct suffix tree for the string S 

 

2. traverse the tree from root  

i=0  
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at every non-leaf node ‘v’ 

        if the path length (v) > lmin 

                    if leaf node count(v) > θ  

                         (i=i+1, pati = prefix(v) 

                   then store the indexes of  

                    leafs into sup-seti) 
 

The above algorithm gains its efficiency as it uses suffix tree which is a compressed form of trie. 

The height of suffix tree is much less than the worst case possible height of a trie which is equal 

to the length of the string. 

2.3 Extracting approximate sequential patterns with tolerance: 

Phase2 discovers exact repeating patterns that are significant based on user specified length and 

frequency thresholds. An approximate sequential pattern is a combination of maximal repeating 

patterns that occur close to one another. Specifically an Approximate sequential Pattern (AP) can 

be expressed as a series of Exact repeating Patterns (EP) separated by allowable gap, Gi which is 

the number of differing characters occurring in between EPi and EPi+1 in the subsequences that 

support both EPi and EPi+1. 

For example, approximate pattern P= < ‘AB’, 1, ‘BCE’, 2, ‘DA’ > is a series of three exact 

patterns; ‘AB’ followed by ‘BCE’ with a gap of one mismatching characters. The subsequences 

‘…ABCBCEEFDA…’ as well as ‘ABABCEABA’ contain the pattern P and hence support it.  

The length of an approximate pattern is the sum of the lengths of exact patterns and gaps 

constituting it. The length of the pattern P is 10.   The ratio of the number of mismatching 

characters to the length of approximate pattern should be less than tolerance threshold specified 

by user. The tolerance threshold is limited in the range of 0 to 0.4; while ‘0’ tolerance imposes 

stringent matching, ‘0.4’ tolerance allows very liberal matching. 

The strand of a pattern represents the subsequences supporting the pattern in the form of list of 

indexes. The strands of multiple exact patterns (constituting an approximate pattern) are carefully 

merged to form strands of approximate patterns. 

Two strands can be merged to form a strand of a lengthier approximate pattern if they contain 
indexes close to one another on either side within a specified gap. Suppose there are two strands 

namely strandj with a pattern Pj of length lj and strandk  with a pattern Pk of length lk. Inorder to be 

mergeable  an index i in strandj should have a corresponding index m in strandk with in a distance 

of dj where dj is equal to dj=(1+2δ)*lj  where δ is error threshold[17]. If Pk occurs after Pj the 

merged pattern is <Pj, gap, Pk> otherwise, it is <Pk, gap, Pj>. The following algorithm gives 

details of merging smaller patterns to form larger approximate patterns and maintaining their 

strands.  

Step1 finds the allowable gap between two patterns based on their lengths and error tolerance δ. 

Step2 discusses the process of merging patterns and strands in the forward direction while step3 

discusses the process of merging patterns and strands in the backward direction. Step 4 

increments j to repeat first three steps for extending each strandj on both sides. The final step 

screens away infrequent strands based on index counting. The resulting strands may in turn be 

merged with other strands and the process continues until no new strands can be merged. 
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2.3.1 Algorithm for finding Approximate Patterns:  
 

Input: Original sequence S, list of t strands of exact repeating patterns strand[], min frequency 

threshold θ, error threshold δ. 

 
Output: Strands of approximate patterns 

Process:  

1. for each j=1 to t  

for each  strandj with pattern Pj  find lj =len(Pj ),  

dj =(1+2 δ)* lj 

 

2. Search forward: 

` for k=j+1 to t 

for each index i in strandj  

for each index m in strandk  

if (i+lj) ≤ m ≤ (i+dj); 

{ 

gap = m-(i+lj)  

create new strand with  pattern = <Pj, gap, Pk> 

                    insert i into the list of indexes of the new strand 

repeat 
       i = next index in the strandj 

    m = next index in the strandk              

    if (m-(i+lj)= gap); 

{ 

      append i to the list indexes       

             of new strand 

      i= next indexes in strandj 

} 

m= next index in strandk 

} 

until null. 

3. Search backward:  

 if (j=1), goto step4; 

     for k=j-1 down to 1 

     for each index i in strandj 

     for each index n in strandk 

        if((i-lk) > n ≥ (i-dj)); 

       { 

          lk=len (Pk) 

          gap=(i-(n+lk)) 

          insert new pattern = <Pk, gap, Pj> 

          insert n into the list of indexes of  new strand         

              repeat  

                i = next index in the Pj strand                    

                n= next index in k
th 

strand 

                if (i-(n+lk)= gap); 

                      { 

                      append n to the list of indexes of        
                                                        new strand  
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                      i = next index in strandj 

                        } 

                        n=next index in strandk  

        } 

until null 

4. j=j+1 

5. count the indexes of each strand and return those with at least θ frequency. 
 
 

3. EXPERIMENTATION AND RESULTS 

 
Raga Surabhi provides a collection of 185 songs belonging to various ragas of Carnatic music in 

mp3 format. Each song is represented as a note sequence during the preprocessing steps by 

converting wave files into strings. The length of the songs varies extensively resulting in a range 

of 238 to 6144 long sequences/strings. The sum of the lengths of all note sequences is 
2,28,542.We implemented [2.2.1] and[2.3.1] algorithms and found the number of repeating 

patterns with user specified minimum length of patterns {2,3,4,5} and frequency θ={2,3,4,5} and 

error threshold as gaps δ={0.1,0.2,0.3,0.4} as shown in Tables [4,5 and 6] and their graphs in 

[Fig. 4, and 5]. See annexure [1] for detailed results. 

 

Example1:  

The features identified from the song ‘Arabhimanam’ are shown in Table.[3a] 

 
Table [3a]:  Song ‘Arabhimanam’ with input length 1906, min len= 2, min freq θ= 2 and error threshold 

δ=0.3 
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Table [3b] some features of the song “Arabhimanam” 

 

 
 

The experiments were done in the following steps 

1. Songs collected from Raga Surabhi [11] which is available in .mp3 audio file format.  

2. The .mp3 files were converted into .wav audio file format.  

3. The .wav files were converted into .mid (MIDI) file format 

4. Notes belonging to octaves beyond the selected range are removed as they do not 
represent main melody and note sequence of each song (within the selected range) is 

represented as a string of characters and stored as separate file 

 

The above data preparation steps creates a folder of 185 files each consisting of a string 

representing a song. The memory requirement reduces to a great extent as we apply the data 

preparation steps as shown in the Table 3b below. 

Table [3c]: Memory size for 185 songs in various audio file formats 

 

 
 
 

The number of patterns as well as execution time decreases with an increase in minimum support 

in the form of minimum number of repetitions of a pattern/frequency. The number of repeating 

patterns increases with increase in error threshold. But the variation is not as significant as in the 
case of variation of minimum number of repetitions and minimum pattern length. However the 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015 

92 

variation of number of patterns with minimum length is not as sensitive as that of variation in 

minimum frequency is shown in Fig. [4 and 5] and input lengths for all songs are shown in Fig 

[6]. 

 

It is also observed that the execution time decreases with decrease in number of patterns 

irrespective the constraints imposed in terms of min length, min frequency and error threshold as 

shown in Table [4]. 
Table [4] 

 

 
 

Table 5: Error threshold δ=0.1 

 

Table [5a] 

 

 
 

                              
Table [5b] 

 

 
 

Table [5c] 

 

 
 

Table [5d] 
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Fig.[4] Variation in length of repeating patterns 

 

 

Table 6: Error threshold δ =0.2  

 

Table [6a] 

 

 
 

Table [6b] 

 

 
 

Table [6c] 

 

 
 

Table [6d] 
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Fig. [5] Variation of frequency (θ = min no of repetitions)  

 
 

Fig. [6] Input lengths versus songs 

 

4. CONCLUSION 
 

The ability to extract approximate sequential patterns from music objects is essential for building 

an effective/robust Music Information Retrieval System. In this paper, we have developed a 

frame work that identifies approximate repeating patterns in a given musical sequence as string. 

We have adapted an algorithm, which finds approximate patterns in a DNA sequence, in our 

paper. Our algorithm is based on the notion of aggregating a pattern’s support set into strands, to 

achieve efficient computation and compact representation.  By combining a suffix-tree-based 

initial strand mining and iterative strand growth, we adopt a local search optimization technique 

to reduce time complexity.  
 

5. FUTURE WORK 
 

The proposed approach converts the music objects into strings in the most compressed form 

requiring minimum memory space. Feature extraction in terms of approximate sequential patterns 

helps in development of effective Content Based Music Information Retrieval Systems which is 

equally applicable to any type of music. 
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Annexure [1] 

 

Dataset: RAGA SURABHI 
Test 

No 

Min Len Min Rep Error 

Threshold 

Execution Time No. RP 

1 2 2 0.0 4:34 17111 

2 2 2 0.1 4:32 17124 

3 2 2 0.2 4:08 17213 

4 2 2 0.3 4:13 17250 

5 2 2 0.4 * * 

6 2 3 0.0 3:23 12166 

7 2 3 0.1 3:33 12168 

8 2 3 0.2 3:16 12172 

9 2 3 0.3 3:20 12178 

10 2 3 0.4 * * 

11 2 4 0.0 2:57 9504 

12 2 4 0.1 3.01 9505 

13 2 4 0.2 2:54 9056 

14 2 4 0.3 3:00 9058 

15 2 4 0.4 * * 

16 2 5 0.0 2:49 7723 

17 2 5 0.1 2:42 7723 

18 2 5 0.2 2:40 7723 

19 2 5 0.3 2:47 7723 

20 2 5 0.4 * * 

21 3 2 0.0 4:20 17022 

22 3 2 0.1 4:20 17035 

23 3 2 0.2 4:05 17123 

24 3 2 0.3 4:08 17158 

25 3 2 0.4 * * 

26 3 3 0.0 3:24 11953 

27 3 3 0.1 3:29 11955 

28 3 3 0.2 3:21 11959 

29 3 3 0.3 3:17 11965 

30 3 3 0.4 * * 

31 3 4 0.0 2:46 9243 

32 3 4 0.1 2:54 9244 

33 3 4 0.2 2:52 9245 

34 3 4 0.3 2:56 9247 

35 3 4 0.4 * * 

36 3 5 0.0 2:38 7422 

37 3 5 0.1 2:38 7422 

38 3 5 0.2 2:36 7422 

39 3 5 0.3 2:40 7422 

40 3 5 0.4 * * 

41 4 2 0.0 4:15 16797 

42 4 2 0.1 4:19 16810 

43 4 2 0.2 4:00 16898 

44 4 2 0.3 4:03 16932 

45 4 2 0.4 * * 

46 4 3 0.0 3:08 11844 

47 4 3 0.1 3:29 11846 

48 4 3 0.2 3:11 11850 

49 4 3 0.3 3:28 11856 

50 4 3 0.4 * * 
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51 4 4 0.0 2:36 9037 

52 4 4 0.1 2:42 9038 

53 4 4 0.2 2:50 9039 

54 4 4 0.3 2:51 9041 

55 4 4 0.4 * * 

56 4 5 0.0 2:33 7285 

57 4 5 0.1 2:30 7285 

58 4 5 0.2 2:33 7285 

59 4 5 0.3 2:36 7285 

60 4 5 0.4 * * 

61 5 2 0.0 3:58 15793 

62 5 2 0.1 3:59 15806 

63 5 2 0.2 4:17 15890 

64 5 2 0.3 3:53 15923 

65 5 2 0.4 * * 

66 5 3 0.0 2:56 10457 

67 5 3 0.1 3:08 10459 

68 5 3 0.2 2:54 10463 

69 5 3 0.3 2:58 10468 

70 5 3 0.4 * * 

71 5 4 0.0 2:27 7622 

72 5 4 0.1 2:20 7623 

73 5 4 0.2 2:21 7624 

74 5 4 0.3 2:25 7626 

75 5 4 0.4 2:25 7628 

76 5 5 0.0 2:02 5780 

77 5 5 0.1 2:07 5780 

78 5 5 0.2 2:14 5780 

79 5 5 0.3 2:12 5780 

80 5 5 0.4 2:19 5781 

*The result not obtained due to more approximation (error threshold= δ). 

 


