
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

 

DOI: 10.5121/ijdkp.2017.7203                                                                                                                       35 

 

SCALABLE LOCAL COMMUNITY DETECTION WITH 

MAPREDUCE FOR LARGE NETWORKS  

 
Ren Wang, Andong Wang, Talat Iqbal Syed and Osmar R. Zaïane 

 

Department of Computing Science, University of Alberta, Canada 

 
 

ABSTRACT 

 
Community detection from complex information networks draws much attention from both academia and 
industry since it has many real-world applications. However, scalability of community detection algorithms 
over very large networks has been a major challenge. Real-world graph structures are often complicated 
accompanied with extremely large sizes. In this paper, we propose a MapReduce version called 3MA that 
parallelizes a local community identification method which uses the $M$ metric. Then we adopt an 
iterative expansion approach to find all the communities in the graph. Empirical results show that for large 
networks in the order of millions of nodes, the parallel version of the algorithm outperforms the traditional 
sequential approach to detect communities using the M-measure. The result shows that for local community 
detection, when the data is too big for the original M metric-based sequential iterative expension approach 
to handle, our MapReduce version 3MA can finish in a reasonable time. 
 

KEYWORDS 

 
Social Network Analysis, Community Mining, MapReduce   

 

1. INTRODUCTION 
 
Huge amounts of data is represented in the form of Information Networks. An "Information 
Network" consists of vertices and edges to model large complex real-world systems. Each vertex 

(node) is an entity, e.g., a person, a web page, a paper, a protein, or other objects, and each edge 

indicates a relationship between two entities, e.g., friendship, hyperlinks, protein interaction, etc. 

Network Analysis unravels the hidden structure in the complex network data. Analyzing and 

extracting information from information networks can have myriad applications in academic and 

industrial domains, especially with the large amount of data generated by the Social Network. 

Besides Social Networks, Network Analysis can also be applied on other domains such as the 

World Wide Web, biological networks, co-citation networks, crime networks, etc.  

 

Many social networks exhibit the property of containing community structures [1] and based on 

this, new products and services are recommended [2]. Although there is no universally accepted 

definition of community, intuitively, a community can be considered as group of nodes that are 

densely connected while being sparsely connected to nodes in the other communities. The metrics 

to define a community have been discussed in [3], [4], [5]. Approaches to identify a community 

can be broadly classified into two categories, partitioning and hierarchical clustering. The 

partitioning method divides the network into sub-networks and identifies the communities based 

on their topological structure. A wide variety of heuristic algorithms have been developed based 

on this idea. For example, multilevel partitioning [6], k-partite graph partitioning [7], relational 

clustering [8]. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

36 

The hierarchical clustering approach finds the structure of networks as a hierarchy of 

communities in the form of a dendrogram. The communities are formed based on various 

similarity metrics, such as modularity and betweenness [9], [10], [11].  

 

Traditional community detection algorithms suffer from a drawback of having quadratic time 

complexities and memory requirements. Moreover, most existing algorithms for community 

mining detect communities using global information, that is they require access to the whole 

network in memory. The most common and widely used such approaches are Newman’s Q-

Modularity metric [10] which considers the number of edges within a community minus the 

expected number of such edges in a random network with the same nodes and the same number 

of edges globally. Given the intractability of global information for many of the large scale 

networks in real applications, the idea of exploring the network through local expansion was 

introduced [12]. These approaches are known as local community mining, as opposed to global 

community mining, and they are less sensitive to the network size. However, they only find 

communities in a targeted subset of the total network. 

 

With recent emergence of big data, analysis of information networks using conventional 

algorithms is almost impossible to be processed in a single machine. Also, parallelizing the 

existing community detection algorithms is not straight-forward. We are interested in 

parallelizing a local community mining approach, as it would not require global knowledge of the 

network, yet we want our solution to be tractable and tackle the whole large network in a 

reasonable time. 

 

All the solutions proposed in the literature such as [12], [3], [4], [5] are designed for sequential 

execution on a single system. To overcome this limitation, in this paper, we propose a parallel 

version of community detection algorithm using the M-metric in a data parallel way, scalable to 

analyze very large information networks in the order of millions of nodes. The parallel algorithm 

is implemented in a distributed environment using the MapReduce framework. We call our 

proposed algorithm 3MA for M Metric MapReduce Algorithm. 

 

The rest of the paper is organized as follows. Section 2 defines the problem and reviews existing 

algorithms. We give a description of our approach 3MA in Section 3 and report the experimental 

results in Section 4, followed by our conclusion in Section 5. 

 

2. PRELIMINARIES 
 
Here we give the definition of the algorithm and review the existing related work. 

 

2.1. Problem Definition 
 
An information network can be defined as an undirected and unweighted graph, G=(V,E), where 

V is the set of Vertices (Nodes) and E is the set of edges. Given an information network, the task 

is to extract a set of non-overlapping communities (with each node in a graph belonging to only 

one community) using multiple distributed systems in a data parallel way, while using local 

information. We are only focusing on local community mining as it is more accessible for 

parallelization. Global approaches would demand shared memory to access global information 

and thus could be illusive for this goal. 
 

2.2. Community Discovery Metrics 
 
The principle of local community mining is to start with a seed of well-connected nodes, possibly 

one unique initial node, and expand the reachability of these nodes to include other nodes, nodes 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

37 

that are connected to the nodes already in the community. The community continues to expand 

while a given metric is improving and stops when this metric cannot be improved. The expansion 

consists of bringing into the community new nodes directly connected to the group. At each given 

time in this iterative process, there is a group of identified nodes for which we know their 

connections. The nodes in the community that are only connected to other nodes in the 

community, are called core nodes. Nodes that are also connected to outside nodes, are known as 

border nodes. Border nodes should have more connections inside the community than outside. 

The expansion of the community consists of assessing outside nodes connected by boarder nodes 

and including them in the community if a certain metric is improved. When no new outside node 

can be integrated without deteriorating the metric, the process terminates and a community is 

declared. 

 

There are three major metrics, R-metric [12], L-metric [5] and M-metric [3], that have been 

proposed in the literature for community evaluation.  

 

Modularity R [12] is proposed for the community evaluation problem. The metric is based on the 

observation that a community would have a sharp boundary which has fewer outward 

connections and more inward connections. Boundary nodes are defined as nodes with at least one 

neighbour outside the community. It can be seen that Local Modularity R measure focuses on the 

boundary sharpness to evaluate the quality of the discovered community. The R measure is given 

as R=Bin_edge/(Bout_edge+Bin_edge) where Bout_edge is the number of edges connecting boundary nodes 

and nodes outside the community, and Bin_edge is the number of edges connecting boundary nodes 

and other nodes within the same community. 

 

Chen et al. proposed a local community measure, the L-metric along with a two-phase algorithm 

[5]. The definition for the community is based on the intuition that the nodes within the 

communities have relatively more connections among each other than with the nodes outside the 

community. The average number of connections for each node is a better measure than the 

absolute number to avoid the size factor of the communities while computing the L-metric. The 

L-metric can be defined as 

 

L=Lin/Lex with Lin=(ƩiɛD IKi)/|D| and Lex= =(ƩjɛB EKj)/|B|  where D is the community consisting of 

all nodes within the community, and B is the set of boundary nodes in the community. IKi is the 

number of edges between node i and nodes in D and EKj is the number of edges between node j 

and nodes outside the community. Only boundary nodes are considered when computing Lex 

since other nodes do not have connections outside the community. 

 

Another metric is the M-metric proposed by Luo et al. [3], which is a ratio of the number of 

connections within a community to the number of connections from the community to others. 

M=ind(D)/outd(D) where ind(D) is the number of connections between nodes that belong to the 

community D and outd(D) is the number of connections between nodes belonging to a 

community to the nodes not belonging to the same community. A community D with an M-

measure greater than 1 is called as a true community.  

 

We opted to parallelize an iterative expansion with the M-metric because it appeared less 

complicated to convert into the MapReduce framework. Using a similar strategy for other 

measures, such as the L-metric, remains an open problem. We have yet to find a way to transmute 

the L-metric into MapReduce. 
 

2.3. Local Community Detection using M-metric 
 

In [3], the authors also provide an algorithm for Local Community Detection based on the Local 

Modularity, M-Metric. Given a graph G with a set of nodes, N, and a set of vertices, V, 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

38 

Algorithm 1 finds a local community of a randomly selected node from N. The community is 

identified by finding the M-gain (increase of the M-measure) of all nodes adjacent to the 

currently available nodes in the community (starting with one random node) and adding the node 

with the largest M-gain to the community that increases the overall M measure of the community. 

Algorithm 1 provides the sequence of steps to find a local community with start node in a graph. 

S denotes Shell Nodes, a set of potential nodes that can be added to the community, denoted by 

D. 
 

Algorithm 1: Local Community Detection Algorithm 

Input: 

Network G and Start Node n0 

Output: 
A local community D for n0 

 

1: Add n0 to D, add all n0's neighbors to S 

2: Set M for n0 

3: repeat  

4: for each node ni in S  

5:   Compute M'i 

6: end for   

7:  Find ni with the maximum M'i, breaking ties randomly 

8:  Add ni to D and remove it from S 

9:  Update S, M 

10: until M' < M 

11: Return D as n0's local community 
 

In Algorithm 1, in each step, a new neighbor node with the largest M is added to the community, 

breaking ties randomly. The process is continued until there are no candidate nodes that can 

increase the overall M of the current community. The local detection algorithm can be extended 

to find multiple communities in a graph by iteratively repeating the local community detection 

algorithm on the set of nodes that have not been included in any community yet. 
 

By applying Algorithm 1 iteratively to cover the whole graph, all the communities in the graph 

can be found. Algorithm 2 illustrates the steps required to extract all the communities. 

 

Algorithm 2:Local Community Detection Algorithm to extract all the communities 

Input: 
Network G and a randomly selected Start Node n0 

Output: 
A set of communities 

 

1: Apply Algorithm 1 to find a local community l0 for n0 

2: Insert neighbors of l0 into the shell node set S 

3: while |S|!= 0 do  

4: Randomly pick one node ni  S  

5:  Apply algorithm 1 to find a local community li for ni 

6: Remove nodes in S that are covered by li 

7: Update S by neighbors of li that do not belong to any found community yet 

8: end while 

9: return a set of communities 

 

 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

39 

2.4. Existing Parallel algorithms using MapReduce frameworks 
 

The literature contains some work on parallelizing community detection algorithms using the 

MapReduce framework [2], [13], [14]. Chen et al. [13] and Moon et al. [2] developed a 

MapReduce version on existing algorithms. Both papers adapt approximation techniques by 

adding the top-k nodes or removing the top-k edges from their rank list. These methods suffer 

from a drawback of a randomly selected k value and expanding the communities iteratively based 

on the selected k. Shi et al. [14] proposed a community detection solution for massive-scale 

networks with Mapreduce using a similarity metric called Q-metric to detect communities using 

the hierarchical clustering approach. The authors propose a set of degree-based pre-processing 

and post-processing techniques that would improve both accuracy and performance. Our 

approach to detect communities using the MapReduce framework is along the same lines as 

explained in [14] but using the M-Metric and without approximations. 
 

3. PARALLELIZATION OF LOCAL COMMUNITY DETECTION - THE 3MA 

ALGORITHM 
 
This section explains the algorithm to run the local community detection in a data parallel way 

and how the algorithm could be implemented using the MapReduce framework. 

 

3.1. Parallel Algorithm 

 
Sequentially identifying the out-degree of all the nodes from the graph and the computation of the 

M-measure for the community with each potential node included in the community, consume 

most of the time in the local community detection algorithm. These tasks are data independent, 

i.e., it is not required to know about the complete graph while computing the overall M-measure. 

This allows the parallelization of the data independent tasks, and design a new algorithm that 

could improve the overall running time of the algorithm. The parallel version of local community 

detection is explained in Algorithm 3. 

 
Algorithm 3: Parallel Version of Local Community Detection Algorithm 

Input: 
Network G and a randomly selected Start Node n0 

Output: 
Local Community D for Node n0 

 

1: Add n0 to community D 

2: Compute the M-measure for n0 

3: Add all neighbors of n0 to a set of Nodes, S, called the Shell Nodes  

4: Send each potential node in S to different systems to be processed in parallel  

5: Find the node, ni, with the largest M-measure of the community and add it to the community D 

if adding ni does not decrease community's overall M-measure  

6: If ni is added, add all neighbours of ni to the set S and Goto 4  

7: Return D as n0's local community  

 

3.2. Implementation in MapReduce Framework 
 
The above parallel version of Local Community Detection algorithm using M-measure can be 

implemented in a MapReduce Framework. The MapReduce programming paradigm encompasses 

two separate and distinct tasks performed by a parallel program running on a distributed cluster. 

The first is the map task, which takes some data and converts it into data with individual elements 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

40 

broken down into key-value pairs. The map step is typically for modeling the data in a form that 

can be used by a reducer. The Map function is performed by multiple worker nodes (mappers) in 

parallel.  

 

The reduce task, which is always performed after the map task, takes the output from a map as 

input and aggregates the data sent by the mapper. The reduce step performs a summary operation, 

in which worker nodes process in parallel groups of output data per key. Any sequential aspect of 

an algorithm is executed on the reducer.  

 

There are two different stages in implementing our algorithm using the MapReduce framework. 

The first stage called the Initiation stage identifies the M-measure for the randomly selected 

initial node by computing the in-degree and out-degree in parallel. This M-measure would be M-

Measure of the community, since it contains only one node. Once the community has been 

initiated, the second stage called Induction Stage is invoked. The Induction Stage adds the 

potential nodes to the community. The Induction Stage is iterative, with each iteration adding a 

node to the community. The iteration stops once the node with the largest M gain for the 

community reduces the overall M-measure of the community. The overall block diagram is 

illustrated using Figure 1. Once the first community is identified, the Induction Stage is repeated 

for the expansion of other communities. Initiation stage is not repeated as its initial results are 

saved and exploited for subsequent invocations of the Induction Stage.  

 
 

Figure 1.  Overall Block Diagram of the parallel version of Local Community Detection using M-Metric 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

41 

 
Figure 2.  Initiation Stage - Flow through different components of the Initiation Stage including its 

Mapreduce phase 

3.2.1. Initiation Stage 

 
The initiation stage is to find the in-degree and out-degrees of the randomly selected node. This 

stage consists of a Map Phase and a Reduce Phase. The input to this stage is the graph containing 

a list of edges connecting various nodes. The flow is shown using Figure 2. Both mapping and 

reducing are done by parallel worker nodes in the cluster. 

 

Map Phase: The Map Phase takes the input in the form of a set of (key, value) pairs. The key to 

this mapper is the offset (translating to every new line in the input file) and the value is the Edge 

itself. For large networks, the input is split into multiple entities called data split and sent to 

various different systems. The map function of the Mapper iterates through all the input values in 

the data split. Each map function produces an output in the form of a (key, value) pair with key 

being a node in the edge and the value of 1. The map phase of the initiation stage is explained in 

Algorithm 4. 

 

Consider an example shown in Figure 3 with 5 vertices and 5 edges. For each pair of (key, value) 

the mapper would emit two outputs. Each vertex in an edge is emitted along with a value of 1 

which denotes the number of occurrences of a vertex in an edge. Therefore for the example in 

Figure 3, the output pairs of each map phase would be {{(1,1),(2,1)}, {(1,1),(3,1)}, {(3,1),(4,1)}, 

{(2,1),(4,1)}, {(4,1),(5,1)}}. 

 

Reduce Phase: The output of the Map Phase is sent as an input to the Reduce Phase. Each 

reducer receives a set of values for the same keys (node labels). Therefore the reducer receives a 

set of values for the same node. The aggregation of all such values gives the out-degree of the 

corresponding node. Therefore each node is given as input to a parallel node where the reducer 

would give the output as the aggregated value of their corresponding out-degrees.  

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

42 

For the above example graph shown in Figure 3, each reducer receives all the pairs mentioned 

before with the same key. Since there are 5 different nodes, maximum of 5 different reducers can 

be invoked. Each reducer now aggregates the values and gives the following output: R1:(1,2), 

R2:(2,2), R3:(3,2), R4:(4,3) and R5(5,1), where R stands for a Reducer. The sequence of steps 

inside the reducer of the Initiation Stage is explained in Algorithm 5. 

 

 
 

Figure 3.  An example of a small information network represented in the form of an undirected and 

unweighted graph 

 
Algorithm 4: Initiation Stage Mapper 

Input: 
List of (key,value) pairs 

  Key : Offset 

  Value: Edge <i-j> 

Output: 

List of (key,value) pairs 

Key : NodeID 

Value: 1 

1: for all edges <i-j> do 

2: Write <i,1> 

3: Write <j,1> 

4: end for 

 

Algorithm 5: Initiation Stage Reducer: Compute the out-degree of n0 

Input: 
Key : NodeID 

Value: 1 

Output: 

Key : NodeID 

Value: OutDegree 

1: Initialize OutDegree = 0 

2: for all <NodeID,one> do 

3:  OutDegree = OutDegree+1 

4: end for 

5: Write <NodeID,OutDegree> 

 

Driver program: After collecting the outputs from all the reducers, the Driver program would 

then identify the node with the largest out-degree. This out-degree will be used to compare the M-

gain at consecutive stages. In the above example, if the initial node, n0, selected is node with label 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

43 

1 in Figure 3, then the out-degree of node 1 would be 1 and in-degree would be 0. This node is 

now part of the community D. Consecutive addition of vertices from the graph would change the 

out-degree and in-degree of D, and thus the overall M-measure of D. 

 
3.2.2. Induction Stage 

 
The Induction Stage adds the nodes to a community. This phase consists of multiple iteration with 

each iteration adding a node to the community. The parallel component in this phase is to identify 

the overall M-measure of the community after the addition of a distinct node in parallel. 

Therefore different systems would add different nodes from a list of potential nodes and the node 

that increases the overall M-measure by a maximum margin is included in the community. Once 

there is no node available that would increase the M-measure of the community, the phase is 

terminated and the community D is provided as the input. Each iteration of this phase consists of 

a Map and a Reduce Phase. The block diagram and flow of events are explained in Figure 4. 

 
 

Figure 4.  Induction Stage - Flow through different components in the Induction stage including iterative 

MapReduce Phase 

 
Map Phase: All the mappers receive a data split from the original set of inputs. The input is in 

the form of a (key, value) pair, with key being the offset and the value being the edge from the 

input file. Apart from the data split for the map function, all the mappers receive the same input 

file containing the already existing nodes in the community. Each map function receives an edge 

with the two connecting nodes. Each node is identified as belonging to a community or belonging 
outside to community. If the edge contains both nodes belonging to a community, the map 

function does not generate any output. If only one of the nodes in the edge belongs to the existing 

community, an output value of 1 is written by the map function with a key corresponding to the 

node. If both the nodes in the current edge do not belong to the community, then two outputs are 

written with the value of -1. 

 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

44 

For the same example shown in Figure 3 with the following edge set as input, {(1-2),(1-3),(2-

4),(3-4),(4-5)} and assuming that the community D already consists of two nodes in the 

community {1,2}. With (1-2) as an edge to be processed, the map function does not produce any 

output. For edges {(1-3), (2-4)}, the output that is generated in the form of (<key>, <value>) is 

(<3>,<1 1>) and (<4>, <2 1>) respectively. The output contains 1 as part of the value since if the 

nodes (as keys) are added to the existing community, they would be added to the in-degree of the 

community. For edges such as (3-4) and (4-5), two outputs {(<3>,<4 -1>), (<4>, <3 -1>)}, 

{(<5>,<4 -1>), (<4>, <5 -1>)} are generated for each input respectively. The value of -1 indicates 

that the value would be added to the out-degree if a node is added to the communities. 

 
Algorithm 6: Induction Stage Mapper 

Input: 
List of (key,value) pairs 

  Key : Offset 

  Value: Edge <i-j> 

Community D 

Output: 
Key : Potential NodeID 

Value : <Corresponding Edge:Flag> 

 

1:  for all Input Edges <i-j> do 

2:  if i in D and j not in D then 

3:   Set Flag := 1 

4:   Write <j, i:Flag> 

5:  else if j in D and i not in D then 

6:  Set Flag := 1 

7:  Write <i, j:1> 

8: else if i not in D and j not in D then 

9:  Set Flag := -1 

10:  Write <i, j:Flag> 

11:  Write <j, i:Flag> 

12: end if  

13: end for 

 

Reduce Phase: All the values corresponding to the same key are sent to a single reducer for 

further processing. All reducers receive a common file that contains the information about the 

current in-degree and out-degree used to compute the M-measure for the community. In a given 

reducer, the reduce function aggregates the number of 1's and -1's and adds to the in-degree and 

out-degree of the community respectively to compute the new M-measure, M'. If the in-degree of 

any node nr is 0, then the M-measure is not calculated since nr is not a neighbor of at least one of 

the nodes in community D. In the above example, it is evident from the outputs that Node 5 has 

an in-degree of 0 and an out-degree of 1 and thus Node 5 is eliminated from the list of potential 

nodes. If M' > M, the output is written with the node and the new value of M'. 

 

At the Driver: After the completion of the reduce phase, the Driver identifies the maximum gain 

of the M-metric and adds the corresponding node to the community D. The process is repeated 

until there is no more edge that could increase the overall M-measure of the community. 

 

Using the same approach, a set of local communities could also be identified by iteratively calling 

the Initiation and Induction Stage. Each set of Initiation and Induction Stage would identify a new 

local community and add it to the list of communities. A random node will be selected during the 

Initiation Stage among the set of nodes that do not belong to any community.  



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

45 

Algorithm 7: Induction Stage Reducer: Compute M gain of shell nodes 

 

Input: 
List of (key,value) pairs 

Key : Potential NodeID 

Value : <Corresponding Edge:Flag> 

InDegree and OutDegree of Community D 

 

Output: 
Key : Node ni 

Value : M' (Overall M-measure after include of Node ni) 

 

1:  Initialize localInDegree := InDegree, localOutDegree := OutDegree 

2: for all <nodeID, Flag> do 

3: if Flag = 1 then 

4:  localInDegree := localInDegree + 1 

5: else if Flag = -1 then 

6:  localOutDegree := localOutDegree+1; 

7: end if 

8: end for 

9: if indegree != 0 then 

10: Compute Mgain 

11: Emit <nodeID, Mgain > 

12: end if 

  

4. EXPERIMENT 
 
Experiments were conducted to test the scalability and accuracy of the MapReduce version of 

Local Community Detection algorithm using the M-Metric. 

 

4.1. Experimental Setup 

 
Experiments to test the scalability were conducted on Amazon's Elastic Map Reduce (EMR) 

framework (V 3.6.0) with hadoop's V2.4 implementation of the MapReduce framework using 

Amazon EC2's instances. The master node running the driver program is c3.xlarge with 7.5G of 

main memory and 4 cores of vCPU. The worker nodes running the mapper and reducer are 

m1.large instances with 7.5G of main memory and 2 vCPUs per instance. The running time of the 

sequential algorithm are also run on the same c3.xlarge instance. 

 

4.2. Datasets 

 
Two different groups of datasets were used for the experiments. The first set included a group of 

3 synthetic datasets generated using the LFR network generator [15]. Each dataset was a 

simulated network with known ground truth to compare the accuracy of the parallel version. The 

number of nodes and edges with the number of communities are shown in Table 1. The 

accuracies of the synthetic datasets with different network sizes are reported in Section 4.3. 

 

The datasets that are used to report the improvement of execution time using our parallel version 

of the algorithm are large real datasets [16]. The real datasets consist of the Orkut Social Network 

with more than 3 million nodes and more than 100 million edges, and Friendster with about 65 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

46 

million nodes and almost 2 billion edges. The exact size and characteristics of the real networks 

are given in Table 2. 

 
Table 1.  Synthetic Datasets. 

 
Network Nodes Edges Communities 

Dataset 1 1,000 15,534 33 

Dataset 2 1,200 20,290 39 

Dataset 3 900 12,376 31 

 
 

Table 2.  Real Datasets. 

 

Network Nodes Edges Size of Data 

Orkut 3,072,441 117,185,083 2.2GB 

Friendster 65,608,366 1,806,067,135 32GB 

 

4.3. Results and Analysis 

 
The first set of experiments were conducted to compare the accuracy of the sequential local 

community detection algorithm with the MapReduce version to detect communities locally using 

the same M-metric. The accuracy is compared in terms of Adjusted Rand Index [17] for all the 

communities that have been identified in each dataset. The ARI is a common measure of the 

similarity between two data clusterings (or community mining results) that is adjusted for the 

chance grouping of elements, which is equivalent to the adjusted mutual information from 

information theory also used to compare clusterings. The validation indices comparing the 

sequential and parallel algorithms are illustrated in Figure 5. The reported results in Figure 5 are 

averages of 10 runs of the algorithm on each dataset for each algorithm. The accuracies are very 

good for all three datasets and for both algorithms. It is seen from the graph that the accuracy of 

the parallel version is very similar to that of the sequential algorithm with only marginal 

differences. There were a total of 34 communities found by each algorithm for all the runs with 

random initial nodes. The difference in the accuracy is due to the randomness in selecting a node 

to find a local community. The variations were minimal and indicated by the standard deviation 

as error bars on the graph. 
 

 
 

Figure 5.  Comparison of Accuracy - Sequential vs Parallel version 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

47 

The other set of experiments were conducted to study the scalability and the improvements in 

execution time of the parallel algorithm. The sequential algorithm finds a community after 

traversing through each of the edges to the neighbors of the current community to compute their 

in-degrees and out-degrees. This independent computation being sequential consumes significant 

time resource which has been eliminated in the parallel version. Also, for very large networks, it 

is not possible to run the community detection algorithm due to the constraints in memory which 

can be addressed using our parallel algorithm.  

 

Figure 6 shows the improvements in execution time with the increasing number of available 

parallel systems. As the number of parallel systems increase, the parallel algorithm takes 

advantage of the available systems and computes the in-degree and out-degree in parallel. 

Increasing the number of parallel systems would not improve the results linearly due to the fact 

that the number of parallel systems that can be completely utilized by the MapReduce version of 

the algorithm depends upon the number of vertices in a graph for which the degree (in and out) 

measure is computed, i.e., the total number of reducers that can be called in parallel. 

 

Similar experiments were conducted on the Friendster dataset shown in Table 2. Due of the 

tremendous size of the data, the sequential algorithm was not able to complete the process for 

lack of memory. Indeed the program crashed due to an OutOfMemory Error. Nevertheless, our 

parallel MapReduce-based algorithm was able to complete the task. However, at the time of 

writing, we were unable to run our algorithm multiple times to report an average. As expected, 

one run of our algorithm on the Friendster dataset with more than 65 million nodes and about 2 

billion edges takes more than 5 hours.  

 

 
 

Figure 6.  Improvements of execution time with increase in parallel system for the parallel algorithm on 

Orkut Dataset. 

 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

48 

 
 

Figure 7.  Improvement of parallel algorithm over the sequential one with increasing parallel systems on 

Orkut Dataset 

 

5. CONCLUSION 
 
To summarize, a parallel version of the local community detection algorithm using the M-metric, 

3MA, was introduced and implemented using the MapReduce framework. For very large 

networks, the parallel version improves the time to extract local communities from the network 

and the same has been proved empirically with experiments on real very large datasets. The 

communities that are formed using both the sequential and parallel versions are also similar and 

were shown using experiments on generated synthetic datasets with known ground truth. One of 

the aspect that should be investigated in the future is the possibility to develop similar 

MapReduce strategies to identify local communities in an information network but using other 

more recent metrics such as the L-metric [4] and the T-metric [18], that are more robust measures 

to detect a local community and evaluate the relative quality of a community by considering the 

number of internal and external triads (3-node cliques) the community contains.  

 

REFERENCES 
 

[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5, 

pp120-122. 

 

[2] Gizem, Aksahya & Ayese, Ozcan  (2009)  Coomunications & Networks,  Network Books,  ABC    

Publishers. 

 

[3] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai, (2011) “Adaptive algorithms for detecting 

community structure in dynamic social networks”, 30th IEEE International Conference on Computer 

Communications, Joint Conference of the IEEE Computer and Communications Societies, Shanghai, 

China,  pp. 2282–2290.  

 

[4] S. Moon, J.-G. Lee, and M. Kang, (2014) “Scalable community detection from networks by 

computing edge betweenness on mapreduce”,  International Conference on Big Data and Smart 

Computing ,  pp. 145–148. 

 

[5] F. Luo, J. Z. Wang, and E. Promislow, (2006) “Exploring local community structures in large 

networks,” in Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web 

Intelligence,  Washington, DC, USA: IEEE Computer Society, pp. 233–239. 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.7, No.2, March 2017 

49 

[6] J. Chen, O. Zaiane, and R. Goebel, (2009) “Detecting communities in large networks by iterative 

local expansion”, International Conference on  Computational Aspects of Social Networks,  CASON 

’09,  pp. 105–112. 

 

[7] J. Chen, O. Zaïane, and R. Goebel, (2009) “Local community identification in social networks”, 

International Conference on Advances in Social Network Analysis and Mining, IEEE ASONAM’09, 

pp. 237–242. 

 

[8] G. Karypis, V. Kumar, and V. Kumar, (1998) “Multilevel k-way partitioning scheme for irregular 

graphs,” Journal of Parallel and Distributed Computing, vol. 48, pp. 96–129. 

 

[9] B. Long, X. Wu, Z. M. Zhang, and P. S. Yu, (2006) “Unsupervised learning on k-partite graphs,” in 

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining,  KDD ’06. New York, NY, USA: ACM,  pp. 317–326. 

 

[10] B. Long, Z. M. Zhang, and P. S. Yu, (2007) “A probabilistic framework for relational clustering,” in 

Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining, KDD ’07. New York, NY, USA: ACM, 2007, pp. 470–479. 

 

[11] M. Girvan and M. E. Newman, (2002) “Community structure in social and biological networks,” 

Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826. 

 

[12] M. E. Newman, “Fast algorithm for detecting community structure in networks,” Physical review E, 

vol. 69, no. 6, p. 066133, 2004. 

 

[13] M. E. Newman and M. Girvan, (2004) “Finding and evaluating community structure in networks,” 

Physical review E, vol. 69, no. 2, p. 026113. 

 

[14] A. Clauset, (2005) “Finding local community structure in networks,” Physical review E, vol. 72, no. 

2, p. 026132. 

 

[15] Y. Chen, C. Huang, and K. Zhai, (2009) “Scalable community detection algorithm with mapreduce,” 

in Communication ACM, vol. 53, pp. 359–366. 

 

[16] J. Shi, W. Xue, W. Wang, Y. Zhang, B. Yang, and J. Li, (2013) “Scalable community detection in 

massive social networks using mapreduce”, IBM Journal of Research and Development, vol. 57, no. 

3/4, pp. 12–1 

 

[17] A. Lancichinetti and S. Fortunato,(2009) “Benchmarks for testing community detection algorithms on 

directed and weighted graphs with overlapping communities”, Physical Review E, vol. 80, no. 1, p. 

016118, 2009. 

 

[18] J. Yang and J. Leskovec, (2012) “Defining and evaluating network communities based on ground-

truth,” in Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,  New York, NY, 

USA: ACM, pp. 3:1–3:8.  

 

[19] L. Hubert and P. Arabie, (1985) “Comparing partitions,” Journal of classification, vol. 2, no. 1, pp. 

193–218. 

 

[20] J. Fagnan, O. Zaiane, and D. Barbosa,  (2014) “Using triads to identify local community structure in 

social networks,” in IEEE/ACM International Conference on Social Networks Analysis and Mining 

(ASONAM). 

 


