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ABSTRACT 
 

This paper presents a methodology that eliminates multicollinearity of the predictors variables in 

supervised classification by transforming the predictor variables into orthogonal components obtained 

from the application of Partial Least Squares (PLS) Logistic Regression. The PLS logistic regression was 

developed by Bastien, Esposito-Vinzi, and Tenenhaus [1]. We apply the techniques of supervised 

classification on data, based on the original variables and data based on the PLS components. The error 

rates are calculated and the results compared. The implementation of the methodology of classification is 

rests upon the development of computer programs written in the R language to make possible the 

calculation of PLS components and error rates of classification. The impact of this research will be 

disseminated, based on evidence that the methodology of Partial Least Squares Logistic Regression, is 

fundamental when working in a supervised classification with data of many predictors variables. 
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1. INTRODUCTION 
 

In data analysis via supervised classification [13] a classifier is constructed based on the observed 

data. The data is arranged into an  matrix  where  is the number of rows (subjects) and  

is the number of columns (variables in the study), and a column vector  that contains and 

indicator of the group to which each of the  subjects belongs to. The goal of constructing the 

classifier is to place new subjects into one of the  groups established in the given problem. 

Whenever  (the variables of the predictor matrix ) is large, is generally implied 

multicollinearity between the variables. Such multicollinearity is defined as a high linear 

dependence between the predictor variables. In this study it is demonstrated, by case studies, that 

the multicollinearity should be eliminated in order to construct a better classifier. 
 

The general rules of thumb of data analysis by supervised classification can be summarized as 

follows:  
  
    •  Given a new subject characterized by the  variables in the study. Into which of the defined 

groups ( ) does the subject should be classified?  
 

    •  The new subject should be classified into the group where the probability of belonging to 

that group is greater than the probability of belonging to the other groups.  
 

    •  Based on the matrix  and the vector  one should construct a classifier with a minimum 

error rate of classification.  
 

The lack of knowledge about the consequences of multicollinearity in the predictor matrix  

force the researchers to directly apply the techniques of supervised classification and to construct 

inefficient classifiers with a high error rate. The classifier error rate is defined as follows.  
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Definition 1.1  
 

Let  be the error rate of classification for a classifier , and  be a new subject that does not 

belong to a group . Then  is the probability  
 

                                                                                (1) 
 

That is, , is the conditional probability that the classifier locates a new subject into a group to 

which the subject does not belong to.  
 

In this work the multicollinearity problem is solved by transforming the predictor variables into 

latent variables, also called components. The components are linear combinations of predictor 

variables that have the property of being orthogonal (not correlated) and are obtained through the 

application of a method named Logistic Regression by Partial Least Squares (PLS). This method 

was introduced by Bastien, Esposito-Vinzi, and Tenenhaus [1]. 
 

This work states a method to improve the strategies for data analysis in situations where the 

subjects under consideration (e.g. people, animals, or things), should be classified correctly into 

groups according to their characteristics to find favorable or unfavorable patterns. For instance, a 

loan applicant to a bank provides personal information like income, sex, age, number of 

dependents, expenses, etc. This applicant is evaluated according to the information provided and 

is classified into potential good or bad borrower with the objective to determine whether the loan 

should be granted or not granted to the applicant. 
 

The goal of this study is to disseminate the application of Logistic Regression by Partial 

Minimum Squares, introduced by Bastien, Esposito-Vinzi, and Tenenhaus [1], to eliminate the 

problem of multicollinearity in the predictor matrix and demonstrate. by means of case study, that 

the multicollinearity should be eliminated in order to construct a better classifier function, 

characterized by a minimal error rate of classification 
 

2. MULTICOLLINEARITY 
 

The authors in [11] analyze multicollinearity in multiple regression problems and verify two 

aspects about multicollinearity: First, it is a problem that makes it difficult to precisely quantify 

the effect that exerts each predictor variable over the dependent variable. Second, it can be 

determined by the computation of the Variance Inflation Factor (VIF) and by the condition 

number ( ). The VIF is an indicator of specific multicollinearity of each predictor variable. The 

VIF is defined as:  
 

   (2) 

 

where  is the coefficient of determination for the linear regression of  with respect of the 

other predictor variables. As a rule of thumb, if , then there is strong multicollinearity. 

The condition number of the correlation matrix of the predictor variables is an indicator of the 

global multicollinearity of the predictor variables. The condition number is computed as  
 

   (3) 

 

where  and   are the minimum and maximal eigenvalue (by moduli) of the correlation 

matrix of the predictor variables. Generally, if , then there is strong multicollinearity. 

Once the multicollinearity is detected it should be eliminated by means of the method proposed in 

this work, Logistic Regression by Partial Least Squares (PLS).  
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2.1. DIAGNOSIS OF MULTICOLLINEARITY 
 

Fernando Tusell [10] states that there are some indicators and statistical values that help to 

diagnose multicollinearity in multiple regression. Below, we present three basic rules for 

multicollinearity diagnosis. The first one is strictly related to multiple regression, and the other 

two are related to supervised classification.   
 

• A large value for the coefficient of determination and the not significance of most of the 

parameters. In the presence of multicollinearity the estimated regression coefficients have 

a sign that is the opposite of what was expected. Moreover, its variance is also high, and 

because of that one gets the not significance of the parameters. In this case it seems that 

none of the predictor variables explains the response variable, whereas all of them, as a 

whole, do explain the response variable. The multicollinearity does not allow to clarify 

the contribution of each predictor variable.  
 

• An eigenvalue of the correlation matrix with magnitude close to zero (zero in the case of 

perfect multicollinearity). In this case, because difference between the smallest and the 

greatest eigenvalue, the condition number of the correlation matrix will be large and 

therefore the multicollinearity is evident. 
 

• A large value of the VIF for the predictor variables. If for some predictor variable 

, then the coefficient of determination for the regression of such variables 

versus the other variables is greater or equal to . This indicates dependence between 

the variables that are supposedly independent. Furthermore, it can be demonstrated that 

the VIF for each predictor variable is located in the main diagonal of the inverse of the 

correlation matrix.  
 

3. LOGISTIC REGRESSION PLS 
 

Bastien, Esposito Vinzi y Tenenhaus [1] presented an algorithm that transforms predictor 

variables (with multicollinearity) into latent variables, also called PLS components (with no 

multicollinearity). The authors of [1] illustrate their methodology by analyzing a data set named 

"Bordeaux". This data set corresponds to 34 years of observations of a French wine in terms of 

quality ( ): good, average, and poor. The predictor variables are:  , the sum of the average 

daily temperatures (in ); , the duration of sunny weather (in hours); , the number of very 

hot days; and ,the amount of rainfall (in mm). Without any multicollinearity analysis the 

investigators used the logistic regression as a classifier. They classified the data and found 7 

classification errors, therefore the estimated error rate was . Using the method of 

Logistic Regression PLS the authors transform the four predictor variables into one PLS 

component and use the logistic regression classifier. They reclassified the data and found 6 errors, 

ergo the error rate is . 

 

It has been observed that the PLS logistic regression method is efficient albeit the data that is 

analyzed have low multicollinearity. In no case the variance inflation factor (VIF) was greater 

than 10. The values of VIF for the predictor variables were: , ,  

and . The condition number was , which is lesser than 25. Thereby, the 

existence of multicollinearity is minimal or almost none. 
 

Recently, Bertrand, Meyer and Maumy-Bertrand [2] presented a library for R called plsRglm: 

PLS generalized linear models for R. The library deals with PLS Regression for the case of 

multiple regression and with PLS logistic regression for the case of supervised classification. 

They also solve the classification problem for the "Bordeaux" wine data. For that problem the 

investigators compute all the possible PLS components (four in that case) and select the optimal 
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number of components in the data in order to find the best model for classification. They did that 

by using the following criteria:   
 

• Akaike Information Criterion (AIC).  

• Bayesian Information Criterion (BIC). 

• Misclassification error rate.  
 

To select the number of components one must keep in mind that an overly simplistic model (too 

few components) produces a large approximation error (underfitting) whereas an overly complex 

model (too many components) produces a large estimation error (overfitting). 
 

3.1. SELECTION OF THE NUMBER OF COMPONENTS 
 

Three criteria are used to select the number of components PLS: Akaike Information Criterion, 

Bayesian Information Criterion and the number of bad classifications. The manner in which the 

AIC and BIC criteria work is explained in [3].   
 

1. The Akaike Information Criterion (AIC) estimates the relative distance between the 

unknown likelihood function of the data and the adjusted likelihood function of the model. 

Thus, a smaller AIC values means that the analyzed model is closer to the true model. 
 

2. The Bayesian Information Criterion (BIC) estimates the posterior probability function that a 

model under a given bayesian configuration is the true model. Hence, a smaller BIC value 

means that is more probable that the analyzed model is the true model. 
 

3. The Misclassification error rate: After constructing the classifier, the data that was used to 

construct the classifier is classified. Then the number of misclassifications is counted. 

Whenever the number of bad classifications is minimum then it is considered that the 

analyzed model is the best one. 
 

4. CLASSIFIERS 
 

We now present seven classifiers that are usually used in supervised classification: logistic 

regression, linear discriminant analysis, quadratic discriminant analysis, -nearest neighbors with 

 and , naive Bayes, recursive partitioning, and regression trees (the latter two are 

classification trees).  
 

4.1. LOGISTIC REGRESSION:  
 

It is a regression model widely used for data analysis. In this case the response variable is binary 

and dichotome or in some cases polytome, whereas the predictor variables could be continuous or 

categorical. The logistic regression is a special case of the Generalized Linear Model (GLM), 

where the parameter estimation and hence the probability estimation is done using the maximum 

likelihood method [6].  
 

4.2. DISCRIMINANT ANALYSIS:  
 

It is a multivariate analysis technique that constructs a classifier function based on multivariate 

data that belongs well-defined classes or groups. The goal is to assign new subjects to one of 

these groups. The classifier function is then constructed as a linear combination of a set of 

independent or predictor variables. If the covariance matrix of the groups under consideration is 

homogeneous, then we apply the Linear Discriminant Analysis, otherwise we apply the quadratic 

Discriminant Analysis [12].  
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4.3. -NEAREST NEIGHBORS:  
 

The classifier function -Nearest Neighbor (KNN) is a simple classifier based on distance. A 

new subject will be classified into the most frequent class that its -nearest neighbors belong to. 

For  and  (the most used values) there is a different classifier function [8].  
 

4.4. NAIVE BAYES  
 

It is a simple but efficient algorithm that predicts the class to which a new subject belongs to. It 

based on Bayes's theorem and the term naive is used because the algorithm uses bayesian 

techniques that do not consider possible dependencies between predictor variables [7].  
 

4.5. CLASSIFICATION TREES  
 

It is a classifier that recursively splits up the interval of possible values of the predictor variables. 

The goal is to construct logical networks and to establish rules that represent the knowledge of the 

problem through a tree structure. We used Recursive Partitioning and Regression Trees (rpart) as 

established in [4]. 
 

5. CLASSIFIER ERROR RATE 
 

The classifier error rate is defined as the probability that a classifier function classify a new 

individual into a group that does not belong to (see Eq. (1)). The most commonly used classifier 

error rates are: the apparent, cross-validation leaving 1 out (cv-n), and cross-validation 10 (cv-

10).  
  

5.1. APPARENT ERROR RATE [5].  
 

Although the apparent error rate is used by many investigators, its use is not recommended 

because is overly optimistic (usually yields low values) and has a high bias. Figure 1 illustrates 

the computation of the apparent error rate. We followed the following procedure in its 

computation:   
 

1. A classifier function is constructed using all the data.  

2. The classifier function classifies the data that was used to construct the classifier.  

3. The number of misclassifications is counted.  

4. The proportions of bad classifications are computed. It is the total number of bad 

classifications divided by the sample size.  
 

 
 

Figure  1: Apparent error rate. 
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5.2. ERROR RATE BY 10-FOLD CROSS-VALIDATION  [9]. 
 

This method yields a more accurate error rate. Figure 1 illustrates the computation of this error 

rate. The following procedure was used to compute this error rate:   
 

1. The data set is split into 10 subsets.  

2. The classifier function is constructed using 9 of the 10 subsets of the sample.  

3. The subset not used to construct the classifier is classified using the classifier function.  

4. Steps 2 and 3 are repeated until all subsets are classified.  

5. The number of bad classifications is counted.  

6. The proportion of bad classifications is computed as the number of bad classifications 

divided by the sample size.  

 

 
 

Figure  2: Error rate by cross validation.  
 

5.3. ERROR RATE BY LEAVE-ONE-OUT CROSS-VALIDATION.  
 

Error rate by cross-validation leaving 1 out. This method is also known as error rate by n-fold 

cross-validation. Akin to cross-validation 10, this method yields a more accurate error rate. Figure 

2 shows the computation of the error rate by means of the following steps:   
 

1. The data set is split into  parts, where n is the sample size.  

2. The classifier function is constructed using  parts of the sample.  

3. The individual that was not considered for the classifier construction is then classified.  

4. Steps 2 and 3 are repeated until all members of the sample are classified.  

5. The number of bad classifications is counted.  

6. The proportion of bad classifications is computed as the number of bad classifications 

divided by the sample size. 
 

6. DATASETS 
 

Five different data sets were used in the present work. We describe such data sets below and in 

Table 1.  
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6.1 AUSTRALIAN DATA SET 
 

The Australian database contains the characteristics of 690 clients of a financial institution. The 

dependent variable is "credit card" and there are 14 predictor variables. The dependent variable 

indicates whether or not the client obtains the credit card approval. The data set is available in 

https://archive.ics.ici.edu/ml/datasets. 
 

6.2 HOUSEVOTES84 DATA SET 
 

The data set includes the votes of the members of the House of Representatives of the United 

States of America, with over 16 key votes identified by the Congressional Quarterly Almanac 

(CQA). The number of predictor variables is 16 and the response variable has two possible 

values: republican or democrat. The variable number three was eliminated because it has the same 

values. The data is available in the repository of Machine Learning Databases of University of 

California at Irvine (UCI), http://www.ics.uci.edu/ mlearn/MLRepository.html  
 

6.3 GERMAN DATA SET 
 

This data set contains 20 variables of financial information of about 1000 loan applicants, and a 

classifier variable that expresses whether the applicant is a "good" client. The data is available in 

https://archive.ics.ici.edu/ml/datasets.  
 

6.4 SONAR DATA SET 
 

A database with 208 observations. Each one with over 60 variables and 2 classes. The data is 

available in the repository of Machine Learning Databases of UCI. 

https://archive.ics.ici.edu/ml/datasets.  
 

6.5 COLON DATA SET 
 

 A data set that consists of microarray experiment results. The data contains 2000 attributes for 

two types of colon tissue: normal and tumor. The data is available in the Gene Expression Project 

webpage of Princeton University, http://microarray.princeton.edu/oncology. 
 

Table 1. Data sets description  
 

Name Subjects Predictors Classes Description 

Australian 690 14 2 Clients 

House Votes 84 232 15 2 Voters 

German 1000 20 2 Clients 

Sonar 208 60 2 Sonar signals 

Colon 62 2000 2 Microarrays 
 

7. IMPLEMENTATION AND RESULTS 
 

The application of the methodology presented in this study used data from Table 1, each of these 

data sets were processed in the following manner: 
 

1. Each data set, which are characterized by their original variables, was analyzed. Apparent 

error rate, leave-one-out cross-validation error rate (cv-n), and 10-fold cross-validation 10 

(cv-10) error rate were calculated. 
 

2. Each data set was transformed to PLS components, that were analyzed. First we 

examined the degree of multicollinearity of the predictor variables by means of the 

condition number. Second, the predictor variables were transformed to PLS 

(uncorrelated) components and the number of components used was determined by the 
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AIC, BIC and the misclassification error rate. These results are shown in Table 2. Finally, 

apparent error rate, leave-one-out cross-validation error rate (cv-n) and 10-fold cross-

validation 10 (cv-10) error rate were calculated. 
 

Table 2. Determination of the number of components PLS, each set of data 

 

Set PLS components AIC BIC wrong rated 

Australian PLS_Comp_0 950.2 954.7 307 

η = 3.59 PLS_Comp_1 479.2 488.3 98 

  PLS_Comp_2 437.3 450.9 87 

  PLS_Comp_3 432.8 451.0 90 

  PLS_Comp_4 434.0 456.7 88 

  PLS_Comp_5 436.0 463.2 86 

House 

Votes 84 
PLS_Comp_0 

322.5 326.0 108 

η = 8.58 PLS_Comp_1 106.1 113.0 20 

 PLS_Comp_2 47.1 57.4 10 

 PLS_Comp_3 33.1 46.9 6 

 PLS_Comp_4 32.7 50.0 5 

 PLS_Comp_5 34.3 55.0 5 

German PLS_Comp_0 1223.7 1228.6 300 

η = 3.12 PLS_Comp_1 985.1 995.0 236 

 PLS_Comp_2 967.8 982.5 227 

 PLS_Comp_3 965.6 985.3 224 

 PLS_Comp_4 966.7 991.2 228 

 PLS_Comp_5 968.6 998.0 233 

Sonar PLS_Comp_0 289.4 292.7 97 

η = 42.99 PLS_Comp_1 210.8 217.5 55 

 PLS_Comp_2 167.4 177.4 38 

 PLS_Comp_3 142.6 156.0 27 

 PLS_Comp_4 137.0 153.7 23 

 PLS_Comp_5 123.0 143.1 24 

Colon PLS_Comp_0 82.6 84.8 22 

η = inf. PLS_Comp_1 60.6 64.8 16 

 PLS_Comp_2 36.0 42.4 6 

 PLS_Comp_3 17.5 26.0 2 

 PLS_Comp_4 10.0 20.6 0 

 PLS_Comp_5 12.0 24.8 0 
 

Table 2 shows that House Votes 84, Australian and German datasets, have low multicollinearity, 

since the values of the condition numbers are 6.75, 8.58 and 3.12, respectively, which are all less 

than 25. Regarding the number of PLS components we observe that the whole Australian data set 

needs only 2 components from 14 predictor variables, the House Votes 84 dataset needs 3 

components PLS from 15 predictive variables, and the German data set needs 2 PLS components 

from 20 predictor variables. Sonar and Colon datasets have high multicollinearity because their 
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condition numbers are 42.99 and infinity, respectively (both greater than 25). Only 4 PLS 

components were used for Sonar dataset from 2000 predictor variables. Also, only 4 components 

were used for Colon dataset from 60 predictor variables. 
 

 Tables 3, 4, 5, 6 and 7, show the apparent error rates, leave-one-out cross-validation (cv-n) error 

rates, and 10-fold cross-validation (cv-10) error rates. These errors were calculated for the 

original data based on predictor variables and for processed data based on PLS components. In 

general, we note the following: 
 

1. Apparent error rate is always lower than leave-one-out cross-validation and 10-fold cross-

validation error rates, for both, original data and PLS components. 
  

2. For data with low multicollinearity in their predictive variables, such as the Australian, 

House Votes 84, and German datasets, the calculation of the three types of error rates 

yielded almost the same value. The difference is that the error rates from transformed 

data were calculated considering a minimum number of PLS components: 2 components 

for 14 predictors of Australian, 3 components for 15 predictors of House Votes 84, and 2 

components for 20 predictors of German. 
  

3. For data with high multicollinearity in their predictive variables, such as Sonar and Colon 

datasets, the calculation of the three types of error rates yielded lesser values  for 

processed data using PLS components compared with the error rates for the original data. 

The difference is that the error rates from transformed data were calculated considering a 

minimum number of PLS components: 4 components for 60 predictors of Sonar dataset 

and 4 components for 2000 predictors of Colon dataset. 
  

4. Minimum error rate identifies the best classifier, which is not unique and depends on the 

data. The error rates that should be used to evaluate a classifier are 10-fold cross 

validation (cv-10) and leave-one-out cross-validation (cv-n), in that order. For the 

Australian dataset, the best classifier is logistic regression with original data and LDA 

with processed data; for House Votes 84 dataset the best classifiers are LDA and Rpart, 

with original data and logistic regression with processed data; for the German dataset the 

best classifier is LDA with original data and logistic regression with processed data; for 

Sonar dataset, the best classifier is knn-3 with original data and knn-3 and logistic 

regression with processed data. The best classifier for original Colon dataset, is logistic 

regression and for the processed data, the best classifiers are logistic regression and LDA. 
 

Table 3. Australian dataset error rates 
 

Method 
Original data (14 Predictors) 2-component PLS 

apparent CV-n CV-10 apparent CV-n CV-10 

Reg. Logistic

s 
12.46 13.91 13.77 12.61 12.60 12.46 

LDA 13.91 14.20 14.06 11.59 11.59 12,32 

Qda 18.84 20.00 20.29 14.20 14.20 14.78 

knn-3 16.38 32.75 32.61 9.86 14.93 13.77 

knn-5 22.03 31.16 31.16 10.29 14.49 13.48 

Naive Bayes 20.00 20.29 21.16 13.91 13.91 13.91 

Rpart 11.74 12.17 14.35 12.03 13.48 12.75 

  

 
 



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.8, No.3, May 2018 

24 

Table 4. House Votes 84 dataset error rates 
 

METHOD 
Original data (15 Predictor) 3-component PLS 

apparent CV-n CV-10 apparent CV-n CV-10 

Reg. Logisti

cs 
2.16 6.47 6.90 2.59 2.59 2.59 

LDA 3.02 3.02 3.02 3.02 3.02 3.02 

Qda 3.45 NA NA 3.45 3.45 3.45 

knn-3 6.03 7.76 7.76 1.72 3.02 3.88 

knn-5 7.76 8.62 8.62 2.59 3.45 3.45 

Naive 

Bayes 
5.17 5.17 7.33 6.47 6.90 6.90 

Rpart 3.02 3.02 3.02 3.45 3.88 6.47 

   
Table 5.  German dataset error rates 

 

METHOD 
Original data (20 Predictor) 2-component PLS 

apparent CV-n CV-10 apparent CV-n CV-10 

Reg. Logistic

s 
23.40 25.00 24.90 22.70 22.90 22.80 

LDA 2310 24.20 24.50 22.70 22.80 22.90 

Qda 22.00 26.90 26.70 2230 22,60 2310 

knn-3 19.20 37.40 37.70 15.70 26.80 27.60 

knn-5 25.10 35.10 35.40 18.50 25.60 26.00 

Naive Bayes 24.50 25.50 26.30 2250 2250 23.00 

Rpart 21.80 26.90 26.50 21.20 21.90 25.60 

  

Table 6. Sonar dataset error rates 

 

METHOD 
Original data (60 Predictor) 4-component PLS 

apparent CV-n CV-10 Apparent CV-n CV-10 

Reg. Logistic

s 
0.00 27.40 26.92 11.06 12.50 12.98 

LDA 9.62 24.52 25.48 13.46 13.94 14.42 

Qda 0.00 24.04 25.48 14.90 15.38 15.38 

knn-3 11.06 18.75 20.67 8.17 12.50 12.98 

knn-5 13.46 17.31 21.15 9.13 12.02 13.94 

Naive Bayes 26.92 32.69 32.69 15.38 17.31 18.75 

Rpart 12.50 33.17 29.33 9.62 1635 17.79 
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Table 7. Colon dataset error rates 
 

METHOD 
Original data (2000 Predictor) 4-component PLS 

Apparent CV-n CV-10 apparent CV-n CV-10 

Reg. Logistic

s 
0.00 51.61 4.84 0.00 4.84 3.23 

LDA 3.23 22.58 19.35 1.61 1.61 3.23 

Qda 3.23 NA 6.45 1.61 4.84 6.45 

knn-3 8.06 14.52 14.52 6.45 9.68 12.90 

knn-5 12.90 16.13 16.13 6.45 9.68 9.68 

Naive Bayes 29.03 40.32 64.52 1.61 6.45 8.06 

Rpart 8.06 41.94 79.03 9.68 20.97 25.81 

  

8. CONCLUSIONS 
 

1. In each dataset, the choice of the number of PLS components is independent of the degree of 

multicollinearity of the predictor variables. The Australian dataset has condition number 

and 2 PLS components were selected. The House Votes 84 dataset has condition 

number and 3 PLS components were selected. The German dataset has condition 

number and 2 PLS components were selected. The Sonar dataset has condition 

number  and 4 PLS components were selected. The Colon dataset has condition 

number and 4 PLS components were selected. 
 

2. BIC was the most frequent selection criterion of the number of PLS components in each 

dataset. The misclassification error rate criterion was used only for selecting the number of 

PLS components for the Sonar dataset. The selection criteria of the number of components, 

i.e. AIC, BIC, and misclassification error rate, for the Colon dataset agreed.  
 

3. The dimensionality of each dataset was drastically reduced by use of transformation 

components PLS. Australian dropped 14 variables to 2 components PLS, House Votes 84 

dropped from 15 variables to 3 components PLS, German dropped from 20 variables to 2 

PLS components, Sonar was reduced from 60 variables to 4 PLS components and in Colon 

dropped from 2000 variables to 4 components PLS. 
 

4. Apparent error rates of each of the classifiers, for all data sets, are on average slightly lower 

when using PLS components compared to the apparent error rates when using the original 

predictor variables. 
 

5. 10-fold cross-validation (cv-10) of each one of the classifiers, for all data sets, are on average 

slightly higher compared with the leave-one-out cross-validation error rates, in both cases, 

using original variables and using PLS components. 
 

6. 10-fold cross-validation (cv-10) and leave-one-out cross-validation error rates for all data sets 

using PLS components are generally lower than the equivalent error rates when using all the 

predictor variables. Here stands the benefit of working with PLS components, to achieve a 

significant decrease in the rate of error in all the classifiers. 
 

7. There is not an ideal classifier with minimal error rate for any set of data. Analyzing 10-fold 

cross-validation error rates for each dataset, we found that the best classifier for Australian 

dataset is discriminant linear, for House Votes 84 and German datasets the best classifier is 

logistic regression, for Sonar dataset the best classifiers are logistic regression and knn-3, and 

for colon dataset the best classifiers are logistic regression and linear discriminant. 
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