
International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

DOI : 10.5121/ijdms.2020.12202 17

STORING DATA IN A DOCUMENT-ORIENTED

DATABASE AND IMPLEMENTED FROM A

STRUCTURED NESTING LOGICAL MODEL

Y. Hiyane, A. Benmakhlouf and A. Marzouk

Computer, Networks, Mobility and Modeling Laboratory (IR2M),

Faculty of Science and Technology,

University Hassan 1st, BP 577, 26000 Settat, Morocco

ABSTRACT

Given the exponential increase in data volumes, the variety of data types, and the complexity of processing,

researchers have begun to look at another type of database model that is moving away from the classic

rules of the relational model. Among the NoSQL models proposed in a set of research works, there is the

document-oriented model. This model relies on the key-document pair. The documents are JSON or XML

type. A single key can thus retrieve all information hierarchically and nested, which would require multiple

joins in the SQL model. In this work we propose a method of storing data in a nested document-oriented

database. The latter will be obtained from a standardized conceptual model by applying the transformation

rules from the data conceptual model (DCM) to the nested document-oriented model (NDOM). A

performance study will also be carried out in this work to show NDOM model ability to process massive
data through aggregation queries.

KEYWORDS

Big data, No-Relational, Conceptual data modelling, The NoSQL logical data model, Nested document-

oriented model, Json MongoDB, Analysis axes.

1. INTRODUCTION

Nowadays, in the air of big data, the use of non-relational database management systems

continues to increase. The data models managed by the relational database management systems

are begin to show their limits of the need to increase the quantity and the diversity of data to be
processed on the one hand, and to reduce the response time to complex queries. Among the non-

relational models more and more use can be cited the document-oriented model (DOM) [1][2][3].

In a NoSQL database document-oriented, a row in a relational table is a structured document (eg,
a JSON object or an XML document), and a table is a collection of documents [4]. The difference

with relational data structuring is that a collection can contain documents of different structures

and the documents themselves can contain other nested documents (dynamic diagram) [5].
Several logical data models have been proposed by authors based on normalised data conceptual

models such as the UML class diagram. a partial-nesting logic model has been proposed by

K.Shinoù and all [6] where the partial normalised of the conceptual data model (CDM) is

maintained and the other part is denormalized by nesting. in another research work, the author has
proposed a document-oriented logical model with total and structured nesting (NDOM) [7]. This

last model is obtained by applying transition rules from the CDM to the DOM. The absence of

joins in this model will significantly reduce the response time to requests that request data from
multiple collections. But on the other hand, we will be confronted with a set of anomalies that are

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

18

due to denormalization. The major problem will be the insertion of new records in this type of
database, which is completely denormalized, while avoiding redundancies.

In this work we propose a method to allow the fast insertion of the records in a non-relational
database obtained from a document-oriented model with total nesting NDOM, using a python

script which allows multiple insertion into different databases based on Json files. An

experimental study of performance is also carried out in this work, in order to put into highlight
the capacity of the NDOM model to quickly process queries with syntheses on multi-collections

data. A comparative study of the response times is carried out in three DBMS: MongoDB, Oracle

and PostgreSQL. In this study we take as an example of application a data conceptual model of an

e-commerce organization. This model will be transformed, on the one hand into a nested
document-oriented logic model that will be implemented in MongoDB, and on the other hand

into a relational logic model that will be implemented in Oracle and PostgreSQL.

2. LOGICALMODEL OF DATA-ORIENTED DOCUMENT

The Class Model Obtained by the UML design will be used to get a non-relational logic model

that is based on document-oriented data structuring. Work has been done to define rules for

moving from the Conceptual Data Model (CDM) to the Document-Oriented Logic Model (DOM)
[6] [7]. Each class in the class-diagram becomes a collection in the DOM. The instances of each

class become documents in the collection. The attributes of each class become attributes in the

collection. The associations between the classes are also transformed in the DOM. These
transformations depend of the Cardinality's that are defined in the CDM [7]. In the table-1, we

summarize the different rules of transition from the CDM to the DOM in the two cases: the DOM

with Joins and Nested (JDOM and NDOM). For each situation of the CDM we give the different

collections created in DOM with for each of them the attributes to insert.

3. THE DATA STORAGE IN A NESTED DOCUMENT-ORIENTED DATABASE

3.1. Using Aggregate and Lookup Query

The two models, with join and nested (JDOM and NDOM) will be used for optimal insertion of

new data. These will be inserted at first in the database with join to avoid redundancies. Using an
aggregation and lookup JSON query on this normalized database, an insertion of a new document

will be done in the nested DB. This document will include the data of the class of the side several

plus a sub-document corresponding to the class of the side 1. This new document can be removed
from the normalized DB after it is inserted into the nested master collection. These different

operations can be triggered automatically using a system function that we can create in the

document-based database management system -mongodb- (see figure-1).

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

19

Figure 1.Diagram of insertion of a new document in a document-oriented DB with structured nesting.

- Function-1: the document insertion in the collection of the class of th e side several

InsertNewDoc_CClassB (x, y, ….,e){

db.CClassB.insert({

 "idB": x, //Primary Key ofClasse B

 "Att_B1": y,

"Att_B2": z,
 .

 .

"idA": e, //Foreign Key ofClasse A
 });

InsertNewDoc_CP(x);

db.CClassB.remove({"idB": a});}

- Function-2: the insertion of the same document into the nested main collection:

InsertNewDoc_CP(x){var result = db.CClassB.aggregate([{ "$match": { "idB": x } },

 {

 $lookup:
 {

from: "CClassA",

localField: "idA",

foreignField: "idA",
as: "NClassA"

 }}]);

db.CP.insert(result.toArray());
}

3.2. Using Python Script to Build Nesting Model

In this section we propose a method to build the nested model that will later be used to optimize

the response time of very complex analysis requests, the idea is to execute a python script that
takes input of Json objects. generated from the relational production database and subsequently

nested in a logical way that respects the NDOM model already explained the script will have an

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

20

intermediary role between the production database and the nested database as we can obviously
use it to insert into several databases with different structures in order to make comparisons based

on the same data

4. PERFORMANCE STUDY:

In order to demonstrate the advantages of structured nesting modelling, we will perform, in this

part, a comparative study of response times for complex analysis queries. The conceptual data

model used example to conduct this study is given in Figure-2. It is a class diagram that models
the data of an e-commerce activity [6]. The implementation of the logical document-oriented

model will be done in the Mongodb DBMS, while the relational logic model will be implemented

in the Oracle and PostgreSQL. To study the performance of each model we will execute several
types of analysis queries with grouping. these queries are given according to one, two, three and

four analysis axes. The syntax of these queries will be given in SQL under Oracle and then in

JSON under Mongodb.

Figure 2. Conceptual Data Model (Class Diagram)

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

21

Tableau-1 : Rules for switching from CDM to JDOM and NDOM

MCD JDOM NDOM

CclassA= {Id_A, Att_A1, Att_A2,..} CclassA= {Id_A, Att_A1,
 Att_A2,..}

𝐶𝐶𝑙𝑎𝑠𝑠𝐴

= {𝑖𝑑𝐴, 𝐴𝑡𝑡𝐴1 , 𝐴𝑡𝑡𝐴2 , . , 𝑖𝑑𝐵}
𝐶𝐶𝑙𝑎𝑠𝑠𝐵 = {𝑖𝑑𝐵 , 𝐴𝑡𝑡𝐵1 , 𝑎𝑡𝑡𝐵2 , . }

𝐶𝐶𝑙𝑎𝑠𝑠𝐴

= {

𝑖𝑑𝐴, 𝐴𝑡𝑡𝐴1 ,
𝐴𝑡𝑡𝐴2 ,… . . , 𝑖𝑑𝐵 ,

𝑁𝐶𝑙𝑎𝑠𝑠𝐵: {
𝑖𝑑𝐵 ,

𝐴𝑡𝑡𝐵1 , 𝑎𝑡𝑡𝐵2 , … . .
}
}

𝐶𝐶𝑙𝑎𝑠𝑠𝐵

= {𝑖𝑑𝐵 , 𝐴𝑡𝑡𝐵1 , 𝐴𝑡𝑡𝐵2 , . , 𝑖𝑑𝐴}
𝐶𝐶𝑙𝑎𝑠𝑠𝐴 = {𝑖𝑑𝐴, 𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 , . . }

𝐶𝑃

= {

𝑖𝑑𝐵 , 𝐴𝑡𝑡𝐵1 ,
𝐴𝑡𝑡𝐵2 , … . . , 𝑖𝑑𝐴,

𝑁𝐶𝑙𝑎𝑠𝑠𝐴: {
𝑖𝑑𝐴,

𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 ,… . .
}
}

𝐶𝐶𝑙𝑎𝑠𝑠𝐵 = {𝑖𝑑𝐵 , 𝐴𝑡𝑡𝐵1 , 𝐴𝑡𝑡𝐵2 , … . }
𝐶𝐶𝑙𝑎𝑠𝑠𝐴 = {𝑖𝑑𝐴, 𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 , … . . }
𝐶𝐶𝑙𝑎𝑠𝑠𝐴𝐵 = {𝑖𝑑𝐴, 𝑖𝑑𝐵 , 𝑎𝑡𝑡𝐶1 , 𝑎𝑡𝑡𝐶2}

𝐶𝐴𝐵

=

{

 𝑖𝑑𝐴, 𝑖𝑑𝐵 , 𝑎𝑡𝑡𝐶1

, 𝑎𝑡𝑡𝐶2 ,

𝑁𝐶𝑙𝑎𝑠𝑠𝐴: {
𝑖𝑑𝐴,

𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 ,… . .
} ,

𝑁𝐶𝑙𝑎𝑠𝑠𝐵: {
𝑖𝑑𝑏 , 𝐴

𝑡𝑡𝐵1 , 𝑎𝑡𝑡𝐵2 , … . .
}
}

𝐶𝐶𝑙𝑎𝑠𝑠𝐶

= {𝑖𝑑𝐶 , 𝐴𝑡𝑡𝐶1 , 𝐴𝑡𝑡𝐶2 , 𝑡𝑦𝑝𝑒… . }
𝐶𝐶𝑙𝑎𝑠𝑠𝐴

= {𝑖𝑑𝐴, 𝑖𝑑𝐶 , 𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 , … . . }
𝐶𝐶𝑙𝑎𝑠𝑠𝐵

= {𝑖𝑑𝐵 , 𝑖𝑑𝐶 , 𝐴𝑡𝑡𝐵1 , 𝑎𝑡𝑡𝐵2 , … }

𝐶𝑃

=

{

 𝑖𝑑𝐶 ,

𝑎𝑡𝑡𝐶1 ,
𝑎𝑡𝑡𝐶2 , 𝑡𝑦𝑝𝑒,

:

𝑁𝐶𝑙𝑎𝑠𝑠𝐴: {
𝑖𝑑𝐴, 𝑖𝑑𝐶,

𝐴𝑡𝑡𝐴1 , 𝑎𝑡𝑡𝐴2 ,… . .
} ,

𝑁𝐶𝑙𝑎𝑠𝑠𝐵: {
𝑖𝑑𝐵 , 𝑖𝑑𝐶 ,

𝐴𝑡𝑡𝐵1 , 𝑎𝑡𝑡𝐵2 , … . .
}
}

4.1. Query1: One Analysis Axe: Total Amount of Sales by Customer

SQL Oracle:

SELECT customers.CustomerID, customers.CustomerName, Sum(Price*Quantity) AS CA

FROM customers INNER JOIN (adress INNER JOIN (orders INNER JOIN (orderitem INNER

JOIN vendedproduct ON vendedproduct.VendedProductID=orderitem.VendedProductID) ON
orderitem.OrderNumber=orders.OrderNumber) ON orders.AdressID=adress.AdressID) ON

adress.CustomerID=customers.CustomerID GROUP BY customers.CustomerID,

customers.CustomerName;

JSON Mongodb:

db.OrderItemIMB.aggregate([{$group: {'_id':{Client:"$ORDER.ADRESS.CUSTOMERS"},

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

22

total: {$sum:
{$multiply:["$VENDEDPRODUCT.Price"

,"$Quantity"]}}}}])

Figure 3. Response time of the query-1 in the three DBMS for different number of processed line

4.2. Query2: Two Analysis Axes: Total Sales by Customer and Year

SQL Oracle :

selectCustomers.CustomerID, Customers.CustomerName, EXTRACT(year from

Orders.DateOrder) as ANN, SUM(Price*quantity) as CA

FROM (((CUSTOMERS INNER join ADRESS on
CUSTOMERS.CUSTOMERID=ADRESS.CUSTOMERID) inner join ORDERS on

ADRESS.ADRESSID=ORDERS.ADRESSID)

inner join ORDERITEM on ORDERITEM.ORDERNUMBER=ORDERS.ORDERNUMBER)
inner join VENDEDPRODUCT on vendedproduct.vendedproductid =

ORDERITEM.VENDEDPRODUCTID

group by Customers.CustomerID, Customers.CustomerName, EXTRACT(year from
Orders.DateOrder);

JSON Mongodb:

db.OrderItemIMB.aggregate([{ $group: { _id:{Client:"$ORDER.ADRESS.CUSTOMERS",

ANN:"$ORDER.ANN"} , total: { $sum: {$multiply:["$VENDEDPRODUCT.Price"

,"$Quantity"]}}}}])

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

18

Figure 5. Response time of the query-2 in the three DBMS for different number of processed lines

4.3. Query3: Three Analysis Axes: Total Sales by Customer, Product Type and

Year

SQL Oracle

SELECT Customers.CustomerID, Customers.CustomerName, Extract(year from DateOrder) AS

ANN, Products.type,
Sum(Quantity*Price) AS CA FROM Products INNER JOIN (VendedProduct INNER JOIN

(((Customers INNER JOIN Adress ON Customers.CustomerID = Adress.CustomerID)

INNER JOIN Orders ON Adress.AdressID = Orders.AdressID) INNER JOIN OrderItem ON

Orders.OrderNumber = OrderItem.OrderNumber) ON VendedProduct.VendedProductID =
OrderItem.VendedProductID) ON Products.ProductID = VendedProduct.ProductID

GROUP BY Customers.CustomerID, Customers.CustomerName, Extract(year from DateOrder),

Products.type;

JSON Mongodb :

db.OrderItemIMB.aggregate([{ $group: { _id:{Client:"$ORDER.ADRESS.CUSTOMERS",

TYPE:"$VENDEDPRODUCT.PRODUCT.type",ANN:"$ORDER.ANN"} ,

total: { $sum: {$multiply:["$VENDEDPRODUCT.Price" ,"$Quantity"]}}}}])

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

19

Figure 5. Response time of the query-3 in the three DBMS for different number of processed lines

4.4. Query4: Four Analysis Axes: Total Sales By Merchant, Customer, Product

Type And Year

SQL Oracle

SELECT Merchants.MerchantID, Merchants.MerchantName, Customers.CustomerID,

Customers.CustomerName, Extract(year from DateOrder) AS ANN, Products.type,
Sum(Price*Quantity) AS CA FROM Merchants INNER JOIN

(Products INNER JOIN(VendedProduct INNER JOIN (Customers INNER JOIN (Adress INNER

JOIN (Orders INNER JOIN OrderItem ON Orders.OrderNumber = OrderItem.OrderNumber)

ON Adress.AdressID = Orders.AdressID) ON Customers.CustomerID = Adress.CustomerID) ON
VendedProduct.VendedProductID = OrderItem.VendedProductID)

ON Products.ProductID = VendedProduct.ProductID) ON Merchants.MerchantID =

VendedProduct.MerchantID
GROUP BY Merchants.MerchantID, Merchants.MerchantName, Customers.CustomerID,

Customers.CustomerName, Extract(year from DateOrder), Products.type;

JSON Mongodb

db.OrderItemIMB.aggregate([{ $group: {

_id:{Merchant:"$VENDEDPRODUCT.MERCHANT",
Client:"$ORDER.ADRESS.CUSTOMERS",TYPE:"$VENDEDPRODUCT.PRODUCT.type",

ANN:"$ORDER.ANN"} , total: { $sum: {$multiply:["$VENDEDPRODUCT.Price"

,"$Quantity"]}}}}])

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

20

Figure 6. Response time of the query-4 in the three DBMS for different number of processed lines

4.5. Results Analysis

By analysing these four graphs (3-6), we clearly see that the response time in the MongoDB
database is still very low compared to the response time required to execute the same queries in

the Oracle and PostgreSQL databases. For example, for a four-axis analysis query the response

time to process 29,960 lines decreases by -87.83% compared to the Oracle data base and by -
95.85% compared the PostgreSQL data base.

Figure 7.Response time according to analysis axes (10 M)

In figure-7 below we represent the execution time of the four types of analysis query in the three

DBMSs and for a number of treated lines of 12800. We note that in the case of logic modelling

with structured nesting, the number of analysis axes does not influence the response time of the

1 axe 2 axes 3 axes 4 axes

Postgres 451.8 544.8 1773.6 2417.4

Oracle 306.7 382 1492.8 1778.5

MongoDb 8.96E+00 7.86E+00 9.81E+00 1.04E+00

0.00E+00
2.00E+00
4.00E+00
6.00E+00
8.00E+00
1.00E+01
1.20E+01

0
500

1000
1500
2000
2500
3000

Ti
m

e
(s

ec
)

Execution time of the four types of analysis
requests

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

21

queries. The complexity of the analysis queries not increases the response time in the case of the
nested model implemented in Mongodb.

The significant optimization in the execution of requests and the response time already presented
in the figures (3-6)is due to the advantages of the Nosql Model as well as the process of

structuring data in a nested wayused in the NDOM model, we can explain this enormous

optimization by the absence of joins inthe proposed model however in the normalized relational
model the joins are the main factor responsiblethe increase in response time of complex requests

also that's why we note that the response time increases exponentially for the Standardized

Relational Model illustrated in our experiments by Oracle and Postgresqlso we can conclude that

with the increase in the number of data handled and the complexity of axes used in the requests
implies an increase in response timein a proportional manner however this is not the case for the

nosql model illustrated by Mongodbin our experiments it is very clear that the response time in

Mongodb is not influenced by the complexity of the requests nor by the amount of data handled
for future work we will focus on the introduction of indexes in the NDOM model, an idea which

will be able to optimize response time even morewe use MongoDB, Oracle, Postgresql as

database and Python, JSON as technical tools to Power databases also we have proposed a

method whichallows the automatic transformation of a class diagram to the NDOM Model while
respecting passing rules

5. CONCLUSION

In this study we have proposed a practical method to feed a database implemented from a

document-oriented model with structured total nesting. The problem of the strong redundancy

present in this model is overcome by the use of a document-oriented database with join. The latter

represents an intermediate data base allowing to easily insert new data because of its
normalization. This new data is passed to the nested database using a system function that we can

create in the Mongodb database management system. This function will encapsulate a JSON

request for aggregation and search which will extract the new data, which are inserted beforehand
in the standardized DB, then complete them with all the attached data, then insert them into the

nested DB, and finally delete them from normalized database.

In this work we also did a performance study of the nested document-oriented model NDOM by

comparing the response times of a set of synthesis queries with clustering in both relational and

no-relational document-oriented models. The conceptual data model (CDM) used to conduct this

study models the data of an e-commerce activity. The implementation of the document-oriented
logic model is carried out in the Mongodb DBMS while the relational logic model is

implemented in Oracle and PostgreSQL RDBMS. This study clearly demonstrated the advantage

of NDOM. Indeed, the response time of the different analysis requests is much smaller than the
one used to answer the same requests and on the same amounts of data in the case of an MR

implemented in Oracle or PostgreSQL.

Another more remarkable result in this study is that in the NDOM the degree of complexity
(number of joins) of the query does not have much impact on the response time. On the other

hand, in relational model, the response time increases strongly with the number of joins.

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

22

REFERENCES

[1] Benmakhlouf. A, 2018, “NOSQL Implementation of a Conceptual Data Model: UML Class Diagram

to a Document-Oriented Model.”, “International Journal of Database Management Systems

(IJDMS)”.

[2] Chaudhuri, S., Dayal, U., 1997. An overview of data warehousing and olap technology. SIGMOD

Record, 26, ACM, pp. 65–74.

[3] Colliat, G., 1996. Olap, relational, and multidimensional database systems. SIGMOD Record, 25(3),

ACM, pp. 64–69.

[4] Cuzzocrea, A., Bellatreche, L., Song, I.-Y., 2013. Data warehousing and olap over big data: Current

challenges and future research directions. 16th Int. Workshop on Data Warehousing and OLAP

(DOLAP), ACM, pp. 67–70.

[5] Dede, E., Govindaraju, M., Gunter, D., Canon, R. S., Ramakrishnan, L., 2013. Performance

evaluation of a mongodb and hadoop platform for

[6] scientific data analysis. 4th Workshop on Scientific Cloud Computing, ACM, pp. 13–20.

[7] Dehdouh, K., Boussaid, O., Bentayeb, F., 2014. Columnar nosql star schema benchmark. Model and

Data Engineering, LNCS 8748, Springer, pp. 281–288.

[8] Golfarelli, M., Maio, D., and Rizzi, S., 1998. The dimensional fact model: A conceptual model for

data warehouses. Int. Journal of Cooperative Information Systems, 7, pp. 215–247.

[9] Gray, J., Bosworth, A., Layman, A., Pirahesh, H., 1996. Data Cube: A Relational Aggregation

Operator Generalizing Group-By, Cross-Tab, and Sub-Total. Int. Conf. on Data Engineering (ICDE),

IEEE Computer Society, pp. 152-159.

[10] Han, D., Stroulia, E., 2012. A three-dimensional data model in hbase for large time-series dataset

analysis.

[11] Vajk, T., Feher, P., Fekete, K., Charaf, H., 2013. Denormalizing data into schema-free databases. 4th

Int. Conf. on Cognitive Infocommunications (CogInfoCom), IEEE, pp. 747–752.

[12] Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N., 2000. ARKTOS: A Tool For Data

Cleaning and Transformation in Data Warehouse Environments. IEEE Data Engineering Bulletin,

23(4), pp. 42-47.

[13] TPC-DS, 2014. Transaction Processing Performance Council, Decision Support benchmark, version
1.3.0, http://www.tpc.org/tpcds/.

[14] Wrembel, R., 2009. A survey of managing the evolution of data warehouses. Int. Journal of Data

Warehousing and Mining (ijDWM), 5(2), IGI Publishing, pp. 24–56.

[15] A B M Moniruzzaman and Syed Akhter Hossain, 2013, "NoSQL Database: New Era of Databases for

Big-data Analytics - Classification, Characteristics and Comparison,". International Journal of

Database Theory and Application.

[16] Veronika Abramova, Jorge Bernardino and Pedro Furtado, 2014, "Experimental Evaluation Of

NOSQL DataBase", International Journal of Database Management Systems (IJDMS) Vol.6, No.3,

June 2014

International Journal of Database Management Systems (IJDMS) Vol.12, No.2, April 2020

23

[17] Y.Hiyane, A.Benmakhlouf, A.Marzouk, 2018, "Storing data in NOSQL data warehouses."

Proceeding of International Conference on Control, Automation and Diagnosis, IEEE Publications.

[18] Christine Niyizamwiyitira and Lars Lundberg, "Performance Evaluation Of SQL and NOSQL
DataBase Management Systems in a Cluster", International Journal of Database Management

Systems (IJDMS) Vol.9, No.6, June 2017

AUTHOR

Hiyane Youssef Doctoral researcher at the Faculty of Science and Technology of

Settat Hassan First University. 2018. “Storing data in NOSQL data warehouses:

Document-Oriented Model “ proceedings ICCAD_18: Paper70.

