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ABSTRACT 
 

Space Filling Curve (SFC) mapping-based clustering and indexing works effectively for point clouds 

management and querying. It maps both points and queries into a one-dimensional SFC space so that B+-

tree could be utilized. Based on the basic structure, this paper develops a generic HistSFC approach 

which utilizes a histogram tree recording point distribution for efficient querying. The goal is to resolve 

the issue of skewed data querying. Besides, the paper proposes an agile method to compute a continuous 

Level of Detail (cLoD), and integrates it into HistSFC to support smooth rendering of massive points. 

Results indicate that for range queries, HistSFC decreases the False Positive Rate (FPR) of selection by 

maximally 80%, compared to previous approaches. It also performs significantly faster than the state-of- 

the-art Oracle SDO_PC solution. With improved performance on visualization and k Nearest Neighbour 

(kNN) search, HistSFC can therefore be used as a new standard solution. 
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1. INTRODUCTION 
 

Point clouds become increasingly used in geomatics: for one thing, the prosperity is due to the 

advent of all kinds of sensors for data acquisition, to name a few, LiDAR, GPS and 3D cameras; 
for another, new applications such as robotics and Virtual Reality (VR) need the support of 

highly accurate spatial data. Considering the repeated scans of the same area periodically, data 

collected can be billions, even trillions (1012) of points [1]. The Dutch national digital elevation 

model (AHN2) contains 640 billion points collected by Airborne Laser Scanners (ALS). Also, it 
is pre-calculated that the Dutch national terrestrial point cloud could achieve 35 trillion points by 

adopting dense image matching on streetphotos. 
 

Large data size aside, the realm also experiences a revolution that due to various needs, 
applications are stepping to nD space. Apart from routinely concerned spatio-temporal 

dimensions, other dimensions such as Level of Detail (LoD), classification and identity constitute 

indispensable part in the data. Consequently, the incorporation of more dimensions in the data 
organization also becomes imperative. Dimension and attribute are equivalent terms. In terms of 

storage, two types of dimensions are identified. One type is called organizing dimension which is 

utilized to cluster and index the data, e.g. X/Y/Z/Time. The other is the property dimension such 

as colour, intensity and classification which is not frequently used in the SQL WHERE clause. 
Depending on applications, these two types of dimension are interchangeable. Specifying 

organizing dimensions crucial for efficient datamanagement. 

http://airccse.org/journal/ijdms/current2020.html
https://doi.org/10.5121/ijdms.2020.12302


International Journal of Database Management Systems (IJDMS) Vol.12, No.3, June 2020 

8 

As one of the common dimensions in spatial data, LoD which represents the importance of each 
point is often leveraged to balance accuracy and efficiency of applications. For visualization, 

software normally renders data at a certain LoD and if more details are required, then points with 

high LoD values would be loaded and rendered. Current 3D point cloud viewers mostly rely on 

Octree data structure to realize LoD, and each level in the Octree represents a LoD. This 
treatment has a negative effect that points pop up in blocks (Figure 1). Also it consumes large 

memory, because extra points are buffered, as blocks are selected instead of accurate query 

region. To guarantee a natural and smooth rendering process, the discrete LoD (dLoD) structure 
of Octree should be replaced by a continuous LoD (cLoD)structure. 

 

 
 

Figure 1. Block patterns introduced by the Octree structure 

 

To facilitate massive nD point clouds querying and visualization, we design and implement a 

novel HistSFC framework including data structures and advanced algorithms in this paper. It is 
based on Space Filling Curve (SFC) mapping-based indexing [1, 2] which maps both points and 

queries into a one-dimensional SFC space so that one-dimensional indexing structure such as  the 

B+-tree could be utilized. Throughout the paper, we use the term PlainSFC to represent normal 

SFC mapping-based indexing. The querying time cost of PlainSFC is O(r + rlogN + k’), where r 
is the number of SFC ranges generated for querying; N is the input size, while k’ refers to the 

output size. However, the range generation process implemented before [3, 4] is mechanical and 

does not take point distribution into account, and this will result in a large r that undermines the 
performance, when points distribute inhomogeneously in the nD space. HistSFC utilizes a 

secondary histogram tree (HistTree) index to resolve the issue. Moreover, it supports range 

queries and advanced spatial functionalities through the compound structure, and high efficiency 

has been achieved. To summarize, the research contributionsare: 
 

1. We devised and implemented an nDHistTree which applies an variable depth tree structure 

adapting to point density. It effectively decreases r and thus improves the performance. 
 

2. The main querying process of HistSFC lies in an overlap detection between HistTree nodes 

and the query window. We then identify three types of nodes according to their spatial 

relationship with the query window, i.e. outside, inside and boundary. The boundary nodes 

influence the False Positive Rate (FPR) of selection significantly, which then impacts the 
performance of a secondary filtering. We thus developed an adaptive range generation 

method to refine boundary nodes and thus optimized the whole queryingprocess. 
 

3. We put forward a generic algorithm for cLoD computation and integrated cLoD dimension 
into data organization, which is a significant improvement that benefits major Geographic 

Information system (GIS) applications. Tests indicate that with regard to visualization, 

cLoD could on the one hand produce more representative results, and on the other hand 
decrease data volume, compared todLoD. 



International Journal of Database Management Systems (IJDMS) Vol.12, No.3, June 2020 

9 

 

4. We established mathematical equations to realize realistic 3D perspective view selection. 
We additionally devised a k Nearest Neighbour (kNN) algorithm. Both functions are 

implemented based on exact match between HistTree nodes and irregular query geometries 

including nD spheres and cones, to take full advantage ofHistSFC. 
 

5. Benchmark tests demonstrate the superiority of HistSFC over PlainSFC and Oracle 

SDO_PC solution [5]. Besides, for multidimensional queries, a solution with 4 organizing 

dimensions can be preferable to a solution with 3 organizing dimensions and a 
propertydimension. 

 

The rest of the paper is organized as follows: Section 2 introduces PlainSFC and basic 

terminology used in the paper. Then, Section 3 presents HistSFC, including the foundation of 
HistTree and its interaction with different dimensions, especially cLoD. Two spatial functions 

based on HistSFC are described in Section 4. This is then followed by Section 5 which presents 

practical tests and evaluations. The last two sections review previous work and conclude. 
 

2. PLAINSFC 
 

SFC is a curve that passes by all basic units in a multidimensional space only once. It reserves 

spatial relationships of objects it covers and has been widely used to index spatial data [6]. 
Among all SFCs, Morton curve (also called Z-order or N-order curve) is commonly studied and 

practiced due to the simplicity of mapping functions [7, 8]. It is based on interleaving the bits 

from the coordinates. Points are then sorted according to the SFC codes to be grouped together, 

while their spatial relationship still retains. 
 

By truncating the Morton key, we can construct upper levels in the SFC hierarchy. In Figure 2, 

the four points residing in the low left box all starts with 0000, and when we truncate the last two 

bits of their keys, they could be represented by a point of which the key equals 0 in the upper 
level. That is to say, SFC contains an implicit 2d-tree, where d is the number of organizing 

dimensions. 
 

 
 

Figure 2. The conversion of a 2D query window into 1D Morton ranges 

 

For compact and non-redundant storage of real point cloud data, each point is encoded as a full 

resolution SFC key, followed by property dimensions. The SFC key consists of a combination of 
all organizing dimensions. Mostly, values of the organizing dimensions contain decimals, so all 

values are scaled up to integers for encoding. Such a full resolution key can be decoded to the 

original coordinates, which is impossible for partial resolution keys [2] without additional storage 
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of dimension values. Besides, due to uniqueness of each full resolution key, they can be used as 
the primary key in tables which is indexed more efficiently[9]. 

 

Figure 3 presents the work flow of PlainSFC. For storage, after computation of SFC keys, 

PlainSFC adopts the B+ tree structure to manage them. Oracle has implemented B+ tree in 
Index-Organized Tables (IOT) [10]. The key and other property dimensions are stored in leaf 

nodes present in normal table, while the internal structure utilizes the SFC keys to organize and 

index the storage. The main advantage of IOT is that the index and data are combined together 
instead of two separate structures. Compared with storage using normal index structures, it can 

save at least 2× space usage. The advantageous IOT technique is used to realize the B+ tree 

structure throughout the paper. 
 

 
 

Figure 3. The loading and querying procedure of PlainSFC, divided by the dash line 

 

As regard to querying, PlainSFC adopts two filters to process (Figure 3). PlainSFC first maps the 
query window from original multidimensional space into 1D SFC ranges. It then searches the 

data using the ranges. In practice, these ranges could be inserted into a SQL WHERE clause for 

selection. PlainSFC uses SFC at different levels to approach the query window, by decomposing 
the Minimum Bounding Box (MBB) of the dataset recursively. As is illustrated in Figure 2, the 

query algorithm first examines whether MBB of the dataset intersects the query window. If they 

intersect, the MBB would be decomposed into 4 quadrants and the spatial relationship between 

each quadrant and the query window would be assessed again. This process goes on recursively 
until a certain depth which is predefined. Some of the final ranges may still be neighbors which 

were divided in the refining process. Some are close to each other with small amount of outliers 

in between. These ranges will be glued in the end to reduce total number of ranges for querying, 
while introducing insignificant error. As each range corresponds to a continuous storage on disk, 

lots of jumping access to the disk can thus be avoided. 
 

During the range computing process, as Figure 4 shows, if a quadrant is totally inside the query 
geometry, the range would be exported directly without further decomposition. Near the query 

boundary, the process continues until the maximum depth defined. A large depth would cause 

huge number of ranges generated, slowing down the first filter. A small depth however results  in 

rough query result, where the error comes from coarse boundary cells (Figure 4). This is also 
unacceptable because it moves the burden to a secondary filter for an accurate answer. Such an 

optimal depth could be derived by performing benchmark tests, while other depths around the 

optimum might also be tolerable [4]. After computation of ranges, PlainSFC exports them into a 
range table and then joins it with IOT data table to select SFC keys and possibly other property 

dimensions. A secondary filtering would be conducted in a following step. For certain 

applications, the filtering may be unnecessary, e.g. visualization. 
 

The time complexity of the whole querying process is O(r + rlogN + k’), where k’ refers to the 

output size of the first filter before the final output k (k’ ≥ k). When points are distributed evenly 

in the space, the time complexity could be approximated by O(klogN + k) because B+ tree on 
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SFC keys make a continuous range querying take O(logN + ki) (note: ∑ki = k) time to 
accomplish, and the upper boundary of r is k. The individual k in the time complexity covers 

decoding, filtering and writing processes which are slow in practice. Techniques such as 

parallelization might be conducted to address the issue. Besides, in most GIS applications, the 

scale of k is limited. So, in general, if N is big enough, say 1015, the advantage of PlainSFC will 
be very significant compared with the flat table approach which takes O(N + k) time. 

Thebottleneck of the approach lies in cases where points are inhomogeneously distributed in the 

space. This happens frequently when points are in 3D or higher dimensional spaces. For instance, 
ALS points mostly locate on the ground, i.e. biased distribution in Z dimension. The 

consequence is a large r from the first filter, maybe much larger than k, as it elaborates large 

amount of vacuum ranges with no points inside. By increasing the query geometry size, the 
influence of r becomes dominant. 

 

 
 

Figure 4. Recursive partition of the MBB of data to match different query geometries, left: rectangle, right: 

sphere (adapted from [11]), normally with large SFC cells inside and small SFC cells on theboundary 

 

3. HISTSFC 
 

Part of the ranges generated by PlainSFC may actually contain no points when data distribution 
is skewed. On the one hand, this implies extra time is spent on generating empty ranges; on the 

other hand, large amount of empty ranges increases the time cost of data selection. We thus 

propose using HistTree to improve the quality of ranges and thereafter the whole querying 
performance. We build HistTree as an additional structure to represent data distribution: 
 

 It is built during data loading process or afterit. 

 It adopts a pointer-based structure (Figure5). 

 It serves to guide the generation of SFC ranges forquerying 

 It could be automatically updated when the data table ischanged. 

 It is a generic data structure that could be applied for nD pointclouds 

 
 

 
 

Figure 5. A 2D HistTree example, with threshold being 100; left: point counting, middle: pointer structure 

of HistTree, with each node storing a SFC key and number of points, right: structure of a HistTree node 
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As is shown in Figure 5, the HistTree records the point count for each SFC node at different 
level. If the count exceeds the threshold of the tree, it will be partitioned into SFC nodes in a 

lower level. From the pointer of the parent SFC node, all its children can be visited. A height 

field is used in a HistTree node to distinguish different nodes, because branch nodes at different 
levels may possess identical keys. Alternatives exist, for instance, MD-Hbase [12] employs the 

longest prefix of the binary SFC key to represent a region. For example, 1100** in 2D space 

covers cells from 110000 to 110011. It is convenient to retrieve the parent node from a child 

node by truncating the key, e.g. the parent of 1100** is 11****. However, CHAR type might be 
implemented to support such schema, which is inefficient for computation and storage compared 

to a NUMBER type which is implemented in HistSFC. A HistTree node actually represents the 

MBB of a quadrant, but it contains neither points nor pointers to points. Thus, HistTree is a 
compact structure which can be stored in a normal table. 
 

3.1. HistTreeConstruction 
 

As prior investigation, we developed and compared several options to build HistTree, including 

top-down, bottom-up and streaming approaches. 
 

The top-down approach first creates a root node to cover the whole point cloud. Then it builds 
nodes below by reading the point list once per level. The time complexity is thus O(N logN). On 

the contrary, The bottom-up approach starts creating HistTree nodes from raw points, and 

incrementally builds nodes at upper levels. It thus incurs high memory consumption, while the 

time complexity is O(N). An improved approach is to construct nodes from a middle level  (ML). 
That is, it first determines an appropriate ML where the number of points contained by most 

nodes is around the threshold. It then directly builds all HistTree nodes at that level. This  is 

followed by a checking step in which the approach picks up those overloaded ML nodes, and 
then reads the point list once more to fix them using a top-down approach. After it, the top part of 

HistTree is constructed from ML by adopting a merge-collapse procedure. The challenge of this 

approach lies in devising a robust algorithm to compute the height of ML. Considering variety 
and complexity of different datasets, manual interventions may still be needed. Moreover, the 

memory cost still scales linearly as Ngrows. 
  

 
 

Figure 6. HistIOT approach to build HistTree 
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The streaming approach HistIOT, as is shown in Figure 6, utilizes the IOT to build HistTree. 

Basically, HistIOT reads sorted keys sequentially and meanwhile computes a key PK that could 

be the parent of all traversed keys. HistIOT stops until it encounters a key that belongs to the 

sibling or parent of PK, and the number of keys traversed exceeds the threshold. Then HistIOT 
returns to the beginning of this traversal and creates child nodes of PK. Afterwards, HistIOT 

continues and starts a new traversal. When the scanning of IOT is completed, nodes are 

aggregated till the root node. HistIOT has to be implemented after data loading. The order of the 
keys is essential to HistIOT, and it thus costs O(N logN) time. But as the IOT is a part of 

HistSFC, sorting the keys is indispensable. Meanwhile, the memory usage is around a constant in 

theory. Another advantage is that once the IOT is built, HistIOT will be a fully streaming 
process. The actual performance of the algorithm is assessed in Section 5.3. 

 

3.2. cLoDComputation 
 

LoD is a critical factor which is always concerned with modelling. It is a general way to break 

down massive computation to a solvable scale. Computation can be controlled at a certain LoD 

and if more details or higher accuracy is required, points at lower levels would get involved for 
processing. LoD is also related to importance of points, and a small LoD value corresponds to 

high importance. 
 

As analysed before, a cLoD could improve users' comprehension and accuracy of spatial 
applications compared with dLoD. We then generalize previous random sampling method [3, 13] 

to compute cLoD values, by adapting conventional d-ary tree structures to continuous levels [14]. 
 

In the 1D binary tree, 2D Quadtree and 3D Octree, the value of a level is an integer. To convert 
them into cLoD, we first split integer levels into half levels, i.e. one refinement as indicated in 

Figure 7. After the refinement, the distribution of number of points still remains a geometric 

series, while the common ratio changes from 2dto 2d/2, where d is the number of organizing 

dimensions. Assume the levels have been refined itimes where i→ ∞, then the Probability 
Density Function (PDF) of a decimal level l is 
 
 

 

(1) 

 

where L is the original maximum level, and l refers to the level of LoD. The Cumulative 
Distribution Function (CDF) is: 
 

 

 

(2) 

 

by adopting a random generator U which exports values between 0 and 1, it is possible to assign 

the cLoD value to each point based on: 
 
 

 

 

(3) 
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Figure 7. Conversion from dLoD distribution to cLoD distribution 

 

In GIS applications, LoD dimension is queried and used more frequently than Z dimension. 

Queries normally cover the whole range of Z dimension as users are not keen on absolute Z 

values. On the other hand, LoD is an effective way to sample data and could have adaptive 
implementations according to different use cases, e.g. zoom in and out of a large scene. From this 

point of view, it is reasonable to manage cLoD as an organizing dimension. More importantly, 

due to the exponential distribution, cLoD could benefit from HistTree and thus it is deeply 
integrated into HistSFC. When managing a LiDAR point cloud for instance, we could encode 

cLoD together with XY dimensions in a 3D key and build a 3D HistSFC solution with Z as an 

additional property dimension. However, cLoD needs to span a similar range as XY, so that there 

is no priority on any dimension inside the key when selecting. This could be achieved by scaling 
the result from Equation (3). Since the specific computation is transparent to users, selections on 

cLoD are ought to be adjusted at backends according to the actual use. 
 

If Z or another dimension (depending on data) is still needed, and 4D queries are executed 
frequently, then a 4D-key HistSFC solution can be built. The HistTree could contribute more 

because Z values are also unevenly distributed in most cases, e.g. points align along horizontal 

surface. This effect is verified in Section 5.6 for generic purposes. 
 

3.3. Querying 
 

The query is executed with the aid of HistTree (Figure 8). Unlike PlainSFC which adopts a fixed 
depth for recursive decomposition of nodes, HistSFC employs a flexible strategy which is 

adaptive to point density. It balances two thresholds to control the querying process. One is an 

overall FPR which refers to the expected FPR of selection without a secondary filter. The setting 

depends on applications, and visualization for example could tolerate a large FPR. The other 
threshold is the maximum number of output ranges. It is mainly determined by the hardware 

environment considering performance. Besides, it relates to r in the whole time complexity 

(Section 2). 
 



International Journal of Database Management Systems (IJDMS) Vol.12, No.3, June 2020 

15 

 
 

Figure 8. Range generation using a 3D HistTree; green nodes: within query geometry, red nodes: 

intersecting query geometry; white nodes: outside query geometry. 
 

Starting from the root node, the extent of each node could be computed using its height and SFC 

key. Then by performing overlap computation between branch nodes and the query geometry 

iteratively, the function retrieves all relevant nodes and abandons non-overlapping nodes. Part of 
the result are branch nodes which locate totally inside the query geometry. The searching process 

would stop at these nodes and export their ranges. The other part of resultant nodes are leaf nodes 

which fall on the boundary of the query geometry. As regard to this portion of nodes, two 

functions are performed: 
 

1. During the overlap computation, the intersection type of each node is recorded and stored 
in the node. The intersection type refers to the number of dimensions of the specific node 

intersecting with the query geometry (Figure9). 

2. A depth estimation function that deduces the depth that each leaf node has to reach to 
satisfy the overall predefinedFPR. 

 

 
 

Figure 9. Intersection types between HistTree nodes and the query window in 3D space 

 

The depth estimation function first estimates the number of points inside the query geometry. It 
is the sum of the number of points covered by the inner nodes and a portion of points from 

boundary leaf nodes. Such portion is determined by the intersection type of the node. The 
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subtraction of the number of points estimated from the total number of points in all retrieved 
nodes (T) is the number of extra false positive points (E). If E/T is larger than the  FPR threshold, 

then the boundary leaf nodes would be refined (Figure 9). Otherwise, ranges of all  leaf nodes 

involved would beexported. 

 
When it comes to the refinement, the depth estimation function computes the specific depth each 

boundary leaf node should be refined to, to reach the FPR threshold. The improvement of 

selection accuracy at each refinement step varies for different types of boundary nodes (Figure 
9). This is because each refinement decomposes the node into 8 children, while the number of 

children that need to be further refined depends on the intersection type of the original node. As 

is shown in Figure 9, the node of type 1 will be cut by half after the first refinement, i.e. only the 
upper 4 children will be further refined and other 4 are abandoned. The decomposition of the 

node only works along Z dimension in this case. Consequently, each refinement will improve the 

accuracy by a factor of 2. Similar principle applies to nodes of other intersection types. The 

depths computed are therefore different from eachother. 
 

It is likely that a boundary leaf node is refined to a very deep level due to high point density of 

the specific node. This can cause crucial degradation in performance, especially in high 
dimensional spaces where each decomposition generates large quantities of child nodes. To avoid 

this, the refinement algorithm adopts a breadth-first structure and also uses the threshold of 

maximum number of ranges to confine the recursion. After it, the final ranges are joint with the 
IOT data table, and then the function returns the result afterdecoding. 
 

4. ADVANCED SPATIALFUNCTIONS 
 

Apart from regular range queries, the framework could also support more advanced spatial 

functions. In this section, we describe the algorithmic foundation of two common spatial 
operations, namely perspective view selection and kNN searching, and present how they could 

benefit from the data structure. Performance tests are performed in Section 5. 
 

4.1. Perspective ViewSelection 
 

As regard to visualization of point clouds, perspective view selection is a basic operation both 

indoors and outdoors. Not only spatial dimensions, but also LoD contributes to the function, 
because perceptually, only most important points could be seen when they are distant. Besides, 

visual perception also consider eccentricity and speed of movement [15]. Eccentricity refers to 

that for objects at the same distance, the objects directly in front should be shown clearer than the 
ones locate aside. Velocity also matters because details fade away as the observer moves faster 

[16], and it is especially critical in VR. In the following realization of the 3D perspective view 

selection, we demonstrate the idea of how to integrate distance and eccentricity into the 
mathematical expressions, while reserve velocity for future research. So the general constraints 

adopted are: 

 

1. All points locate inside a 3D view frustum (Figure10). 
2. The maximum LoD value of points selected decreases as distanceincreases. 

3. When at the same distance, points on two sides have a lower maximum LoD value 

compared to those locate in the center of theview. 
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Figure 10. 3D view frustum  

 

The first constraint incurs cutting off half planes: 

 

 

 

, where ai, bi, ciand diare constants, and they can be deduced based on the view point, direction 

and maximum view distance. Constraint 2 can be achieved by 

 
 

 

 

 
(5) 

, where (u, v, w) are the coordinates of the viewing point. In order to elaborate constraint 3, the 

right part of Equation (5) is multiplied by a cos(θ) factor (Figure 10), i.e. cos(θ) = 

(dir·p)/(|dir|·|p|), where diris the normalized direction vector. Then, 
 
 

 

 

 
(6) 

 

Equation (6) represents a twisted 4D cone. Then, every point that satisfies both Equations (4) and 

(6) appears in the perspective view. Such a generic mathematical framework can be applied to 
both dLoD and cLoD implementations. But in order to create more realistic scenes as well as 

reduce processing load, we focus on the cLoD solution. Rather than individual point 

computation, the function leverages HistTree to check whether 4D nodes intersect two 4D 
geometries defined by Equation (4) and (6) respectively. 
 

HistTree nodes that are totally inside both 4D geometries will be exported directly. For the leaf 

nodes intersecting both geometries partly or containing them, a secondary filter will scan them 
and acquire accurate result. In most cases, Z dimension does not influence the result significantly 

as the vertical vision span can be as large as 120°. Only objects nearby with a large height will be 

cut by the view. Then the 3D perspective view selection can be simplified by employing a subset 
of the equations. Moreover, to ease implementation, Equation (4) can be approached by half 

planes despite minor errors introduced. 
 

4.2. kNN 
 

The basic definition of kNN search is: given a point P, find its k nearest neighbors in a 3D point 

cloud PC. kNN has been researched broadly for point clouds. Key examples include noise 

 (4) 
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removal [17], registration [18] and change detection [19]. Oracle SDO_PC provides 
SDO_PC_NN function [20] to search for nearest k points in a point cloud given a certain point in 

the 3D space. kNN algorithms based on PlainSFC have also been proposed and achieved high 

efficiency [21, 22]. In fact, HistSFC approach could also prompt kNN using customized 

approach. The process is presented in Figure 11. 
 

 
 

Figure 11. Execution path of kNN using HistSFC 

 

The output structure is a key-value container for neighbors. The key is the distance, while value 
is the neighbor point. The container adopts a binary tree structure. In every iteration, a spherical 

query is executed. Then all distance values of points in HistTree nodes which intersect the ball 

are computed and exported to the container. When the size of the container is larger than k, the 

kthkey value of the container will be the diameter for searching in the next iteration. Otherwise, 

the last key value will be the diameter. The searching process ends when the diameter starts to 

decline. We assume diameter would not be the same for consecutive iterations as the probability 
is small enough to benegligible. 
 

In the implementation, points checked in a new iteration will exclude those checked before, to 

decrease the cost of decoding which might be significant when the output is large. In the worst 
case, k HistTree nodes get involved in the searching process, so the time complexity is O(k logN 

+ k). Besides, the adaptive refinement described in Section 3.3 could be applied to improve the 

performance. 
 

5. EXPERIMENTALEVALUATION 
 

Benchmark tests are performed to examine the real cost of algorithms in the paper. Experiments 

are designed to answer the following key questions: 
 

 What is the actual cost of HistIOT (Section 3.1) to buildHistTree? 

 How much improvement has been brought by HistSFC compared toPlainSFC? 

 Is a 4D HistSFC solution preferable to a 3D HistSFC approach with an affiliated 

propertydimension? 
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 Compared with current state-of-the-art, how fast is the HistSFCapproach? 

 Is cLoD really more suitable for the visualization of massive points thandLoD? 

 

5.1. Data 
 

The testing data is part of AHN2 with XYZ coordinates, containing in total 10 billion points. Its 

minimum bounding box is [13427.64, 363052.95, -8.54; 37999.99, 415990.94, 100] in spatial 
reference system Amersfoort/RD New, EPSG:28992. To support LoD, by applying Equation (3) 

and setting L to 11 which is a level capable to hold all points in an Octree, we compute a cLoD 

value for each point as the fourth dimension. The final range of cLoD dimension is (0, 12000) 
after stretching, which is of the same orders of magnitude as X and Y dimensions. Such a design 

balances dimensions inside a Morton key so that the selectivity of each dimension does not vary 

significantly. 
 

As is mentioned, cLoD receives more frequent access than Z in most GIS applications. 

Therefore, we build 3D(-key) IOT solutions based on X, Y and cLoD organizing dimensions and 

attach Z as a property dimension. In 4D IOT solutions, XYZ and cLoD are encoded in the 
Morton key, while Z is scaled 10 times larger to increase its selectivity. Besides, Oracle SDO_PC 

solution applying a plain R-tree model will be implemented as a reference. In Oracle 12c, it 

functions the best by utilizing 2D blocks indexed by XY organizing dimensions, while Z and 

cLoD are property dimensions. This strategy is then implemented. In fact, Oracle provides an 
option to build a dLoD structure on the blocks, but for fair comparison, it isexcluded. 
 

In order to learn the scalability of different approaches, we split the data into 5 equal vertical 

slices from west to east, i.e. each contains 2 billion points. Starting from the first piece, by adding 
one more piece each time, 5 different data stores are built. Table 1 presents the storage size of 

different solutions. Raw TEXT refers to point records with 4 fields stored in TEXT files. 
 

Table 1. Storage size of 3D solutions (in GB) 

 
 

Number of points Raw TEXT files IOT SDO_PC 

2,000,000,000 61.4 46.9 86.5 

4,000,000,000 123.1 90.6 171.2 

6,000,000,000 184.9 136.6 256.8 

8,000,000,000 246.8 182.8 342.4 

10,000,000,000 308.4 231.1 428 

 

As 4D IOT solutions scale analogously to 3D IOT solutions, we only build it at the largest level, 

i.e. 10 billion points to compare with the corresponding 3D solution. The 4D IOT occupies 199.7 

GB on the disk. It can be seen from Table 1 that SDO_PC solution is 2× larger than IOT 
approaches. This is because on the one hand, during Morton encoding for IOT, all points are 

shifted to the origin, so the actual values stored are drastically decreased. On the other hand, an 

additional ID column gets involved in SDO_PC Binary Large Objects (BLOB) and no 

compression is applied, which results in large storage of the SDO_PC solution. Oracle actually 
offers secure file compression with various compression levels, but it is not applied as it may 

cause queries to slow down. 

 

5.2. Benchmarkframework 
 

The benchmark test is performed on "testbed" server: a HP DL380p Gen8 server with 2 × 8-core 
Intel Xeon processors, E5-2690 at 2.9 GHz, 138 GB of main memory, a RHEL6 operating 
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system. The disk storage is a 41 TB SATA 7200 rpm in RAID6 configuration. A C++ framework 
is developed and used for the test (Figure 12). It is built specifically to maintain communication 

cost as equal as possible for all solutions. In plain English, the queries used for benchmarking are 

as follows: 

 

 Q1: selection of all points within a XY MBB [16671.1, 370494; 16896.76,370735.45] 

 Q2: selection of all points within a XYLoD MBB [15281.52, 378658.19, 0; 18320.86, 
380248.44,9000] 

 Q3: selection of all points within a XYLoD MBB [16664.54, 370486.56, 0; 17997.76, 

372036.45,9000] 

 Q4: selection of all points within a XYZ MBB [16902.29, 365439.3, 30; 19999, 

367189.4,999] 

 Q5: selection of all points within a XYZLoD MBB [16902.29, 365439.3, 1.5, 0; 19999, 
367189.4, 999,9000] 

 Q6: selection of the nearest 30,000 points for a point [18011.7, 374867, 11500] in the 

XYLoDspace 

 Q7: perspective view selection starting from a point [15093, 370758.2, 1] in the XYZ 

space, direction is north and the maximum distance is1km 
 

 
 

Figure 12. Query execution process for benchmarking: left: PlainSFC and HistSFC; right: SDO_PC 

 

Their locations are depicted on a 2D map (Figure 13). All query regions fall in the west part and 
every data store elaborates them. In Q4 and Q5, the upper boundary of Z is 999, which indicates 

the query on Z is half open, i.e. ≥ 30 or 1.5. The output size of all queries span from 104 to 106, 

which keeps consistent with previous studies [1, 3]. For one thing, these are typical query sizes in 

GIS applications; for another, it avoids too large output so that the decoding and writing will not 

dominate the whole querying process. 

 

 
 

Figure 13. Query locations in the 2D scope of the test data, south west part of the Netherlands 
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In the tests, each query is executed 5 times, and the final figure for the query response time is the 

average of the middle 3 records with the lowest and highest records removed for each solution. 
The cache of both Oracle and the operating system are purged after each execution, so that what 

is measured can reflect the real time complexity instead of O(1) retrieval from the cache. 
 

5.3. Exp1: HistTreeconstruction 
 

HistIOT reads the sorted keys sequentially and when it overpasses the threshold, it will return to 

the beginning of the specific round to build HistTree nodes. In the implementation, every time 
HistIOT starts a new building session (i.e. after the last construction round), it stores every key 

scanned into a pool for fixing later. It utilizes 10,000 as the threshold to build 3D (XYLoD) 

HistTree. The size of HistTree of the five IOT stores range from 37 MB to 180 MB on the disk. 
Figure 14 shows the time cost and maximum memory consumption of HistIOT. 
 

Time cost includes reading keys from IOT and HistTree construction in memory. In Figure 14, 

the time cost rises in a linear manner smoothly. When it comes to peak memory consumption, it 

increases all the way while converges to a constant in the end. The erratic shape of the curve is 
caused by processing specific irregular data tiles which result in different capacity of pools. As 

could be deduced, the peak memory usage will stay steady if no larger irregular data tiles are 

encountered. This is the major advantage of HistIOT when processing massive points. 
 

 
 

Figure 14. Time and memory cost of HistIOT 

 

5.4. Exp2: FPR from the first queryingfilter 
 
We perform experiments to examine whether HistSFC is an improvement of PlainSFC, from two 

aspects: (1) FPR from the first filter which is hardware independent; (2) query performance, 

presented in following sections. For computation of FPR, we adopt FPR = |(k’ - k)/k|, where k’  is 
the approximate result and k is the exact answer[23]. 
 

In this experiment, Q1 to Q5 are executed based on 3D PlainSFC, 3D HistSFC, 4D PlainSFC and 

4D HistSFC solutions (Table 2). The secondary filter is turned off so that the result indicates the 
quality of SFC ranges. As mentioned in Section 3.3, HistSFC adopts two constraints to control 

the querying process: a FPR for refinement and a maximum range number threshold. PlainSFC 

employs a depth parameter indicating the depth the decomposition should reach, and also the 

maximum range number. We set the maximum range number of both approaches to 1 million, 
because by prior tuning, it is approximately an equilibrium between time cost on computing such 

number of ranges on "testbed" server and the accuracy of  selection. Then we use a fairly small 

FPR for HistSFC and a large searching depth for PlainSFC so that both solutions generate 1 
million ranges and reach the most accurate state. Table 2 shows the results. Please note that the 

FPR parameter driving the HistSFC is different from the FPR in the table which describes the 
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accuracy of the firstfilter. 
 

Table 2. FPRs of PlainSFC and HistSFC for AHN2 querying, with 1 million ranges 
 

 

Query 

Query 

window 

 Exact 

answer(k) 

3D 

PlainSFC 

3D 

HistSFC 

4D 

PlainSFC 

4D 

HistSFC 

Q1 XY Output (k’) 717,342 749,694 744,476 984,613 802,676 

FPR - 4.51% 3.78% 33.95% 9.2% 

Q2 XYLoD Output (k’) 498,286 514,772 503,162 607,855 536,087 

FPR - 3.31% 0.98% 22% 7.59% 

Q3 XYLoD Output (k’) 505,101 517,296 512,597 596,790 539,851 

FPR - 2.41% 1.48% 18.15% 6.88% 

Q4 XYZ Output (k’) 85,090 100,608,118 100,217,866 645,819 186,101 

FPR - 1.181 × 103 1.177 × 103 659% 119% 

Q5 XYZLoD Output (k’) 524,730 1,594,469 1,577,980 1,767,020 1,386,908 

FPR - 204% 201% 237% 164% 

 

For Q1, FPR of HistSFC solutions is lower than that of PlainSFC solutions, thanks to the finer 
SFC ranges adopted. However, as points distribute evenly on the XY-plane, the gap between two 

3D solutions is insignificant. Comparing Q2 and Q3, HistTree works more effective for Q2, 

when 3D solutions are employed. This is because Q2 (coastal region) elaborates more vacant 
area than Q3, which increases inhomogeneity of the data. However, the advantage of HistSFC 

caused by uneven distribution on the XY-plane diminishes using 4D solutions. The effectiveness 

of HistTree for Q2 and Q3 are both around 3 then. 3D solutions do not encode Z into SFC keys. 

Consequently, for Q4 and Q5, points with any Z value which fall into the XY or XYLoD range 
will be selected. This causes huge FPRs, especially for Q4 where the selectivity on Z is0.09%. 
 

For all cases, HistSFC solutions improves the accuracy of the first filter, compared with 

PlainSFC solutions. Besides, despite that 3D solutions are still preferable for low dimensional 
queries, 4D solutions can handle more types of queries without significant deterioration. This is 

more evident when the query elaborates dimensions not existing in the 3D organizations. 

 

5.5. Exp3: performance of 3Dsolutions 
 

In this experiment, we explore the scalability of 3D HistSFC and 3D PlainSFC by referencing the 
SDO_PC approach. The query execution time includes range computation, IOT selection using 

the ranges, decoding, secondary filtering and writing. We do not take HistTree loading time into 

account as the design of HistSFC assumes that once loaded, the HistTree would reside in 
memory for later use. After all, HistTree is originally devised as a compact structure with little 

memory cost. We set the FPR to 10% in the refinement process of HistSFC, so that it  could stop 

decomposing ranges before reaching the maximum range number threshold (i.e. 1 million) for 

the purpose ofefficiency. 
 

Figure 15 shows the performance of the three solutions for Q1 and Q2 respectively. Generally 

speaking, all solutions scale constantly with input size. For both queries, HistSFC takes the least 
time for querying, and it is followed by PlainSFC and SDO_PC. Specifically, in Q1, HistSFC 

spends around 800 to 1000ms for range computation, 950ms for IOT selection, 900ms for 

secondary selection (i.e. decoding + filtering) and 2000ms for writing. PlainSFC spends about 
1450ms for range computation, which is mostly the extra time cost compared to HistSFC. This is 

mainly due to more ranges generated by PlainSFC. HistSFC produced 445,153 ranges, almost 

half of that of PlainSFC. The high time cost of SDO_PC is majorly owing to the long process to 
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unpack the blocks to retrieve actual coordinates. In Q2, the relative gap between HistSFC and 
PlainSFC becomes larger, which is caused by the lower FPR and less ranges of HistSFC. 

Additionally, SDO_PC degrades significantly because in Q2, the XY region grows, so more 

blocks are unpacked. Besides, all blocks retrieved incorporate the whole cLoD range as SDO_PC 

solution utilizes 2D blocks. Thus, large amount of false positive points decrease the performance. 
This can be improved by employing a 3D blocking approach, which we can compare to, once 

SDO_PC fully supportsit. 

 

 
 

Figure 15. Performance of 3D solutions on Q1 (left) and Q2 (right) 

 

5.6. Exp4: 3D HistSFC vs 4DHistSFC 
 

The scalability of 4D approaches also remains steady for different queries, which is omitted for 

conciseness. This experiment compares the efficiency of 3D and 4D SFC solutions based on the 
largest store, i.e. entire sample. As opposed to the claim that Z is queried less frequently in GIS 

applications than other dimensions, this experiment involves Z to explore generic querying 

performance. 
 

As Figure 16 presents, in general, HistSFC has superiority over PlainSFC, attributed to the low 

FPR. In particular, the largest gap happens in Q5, where 3D HistSFC is 1.42× faster than 3D 
PlainSFC. Current kNN implementation relies HistTree for querying, so PlainSFC is absent in 

Q6. With regard to Q4, most Z values fluctuating at 0, while points above 30m occupies only 

0.08% of all points inside the XY range. So the linear scanning to filter Z after XY selection 

using the B+ tree dominates the whole time cost. Unlike Q4, Q5 uses 1.5 as the lower boundary 
of Z, which is close to the ground. So the FPR caused by Z is greatly reduced. Q4 indicates that 

3D solutions may not always perform better than 4D solutions in terms of efficiency. 

 

 
 

Figure 16. Response time of 3D and 4D SFC approaches 
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3D HistSFC reaches its best performance in Q6, i.e. kNN searching. It should be noted that the 
the 3D space refers to XYLoD, to cater to the data organization of 3D HistSFC. In fact, XYZ 

kNN is executed more frequently. To realize it, current 3D HistSFC should apply XY NN 

searching and meanwhile compute the 3D Euclidean distance with Z involved. In the worst case, 

it will conduct full table scan. However, this is not the case for 4D HistSFC which can cast 4D 
nodes into any 3D spaces without losing relevant dimensional information. So from the 

perspective of generality, 4D HistSFC holds the superiority. 
 

To sum up, if 4D queries are the routine, then a 4D HistSFC should be the choice as it provides 
more generic access to the data without much performance degradation. In all other cases, a 3D 

HistSFC is more applicable for 3D or higher dimensional queries. 
 

5.7. Exp5: dLoD vs cLoD 

 

Q7 realizes a 3D perspective view selection. Through it, we demonstrate how cLoD could 
prompt visualization of massive points. The query is executed using all stores of 3D HistSFC. 

The refinement process is turned on for the sake of performance. It turns out that all 3D HistSFC 

stores take around 1900 ± 200ms to accomplish Q7. 
 

Figure 17 presents the visualization of the view based on the dLoD structure and cLoD structure. 

The dLoD structure is not a strict Octree, as it is realized by selecting all 3D HistTree leaf nodes 

that intersect the view and LoD frustums and exporting them directly. Nevertheless, it still 

reflects the sharp boundary issue. The figure clearly shows the natural and smooth visual 
perception realized by cLoD. The output size drops from 500,446 points to 100,441 points, 

which also reduces I/O cost for visualization. 

 

 
 

Figure 17. Visualization using different LoD schemes, left: dLoD scene manually split into two parts, with 

in total 500,446 points; right: cLoD scene with 100,441 points 
 

 

6. RELATEDWORK 
 

Efficient solutions for generic nD points querying have been proposed and implemented in 
computer science [24-27]. Among them, Pyramid-Technique [25] and iMinMax(θ) [27] scheme 

are two of the most referenced. In high dimensional spaces, the Pyramid-Technique avoids 

excessive access to data pages by partitioning data into pieces which cater to the shape of hyper- 
cubes. The approach maps each nD point into a one-dimensional space according to the pyramid 

the point belongs to and its height in the pyramid. All the resultant one-dimensional keys are then 

managed by a B+-tree structure to be indexed. The Pyramid-Technique is initially devised for 

hyper-cube shaped queries. Thus, when the query shape is non-hyper-cube such as a long 

rectangle, the efficiency will decrease significantly. The iMinMax(θ) is another technique to map 

nD points into 1D keys. It also uses B+-tree for indexing. For an nD point (x1, x2,… xn), the 



International Journal of Database Management Systems (IJDMS) Vol.12, No.3, June 2020 

25 

approach first locates the minimum or maximum dimensional value, xmin or xmax, and the 

corresponding dimension Dmin or Dmax. Then it computes the 1D key by using either Dmin + xmin  or 

Dmax + xmax. In this way, a point is first mapped to a partition (n partitions in total) based on the 

dimension component in the key. Then it is ordered within the dimension according to the 

extreme dimensional value. When querying, iMinMax(θ) decomposes the nD query window into 

n sub-query windows for selection. The time complexity also grows linearly as n increases [26]. 
 

Pyramid-Technique and iMinMax(θ) both separate index and data storage. Also, the keys are 

computed only for the indexing, while original records have to be traced through pointers stored 

together with keys. On the other hand, the SFC key in PlainSFC contains all the information of  a 
point, and the information can be retrieved from the key by decoding. Consequently, PlainSFC 

saves significant amount of storage. Moreover, PlainSFC does not need mapping from the index 

to the original data for selection, which is more efficient. The second advantage concerns 
approximate selection. For visualization, the result from the first filter of PlainSFC is sufficient. 

However, neither Pyramid-Technique nor iMinMax(θ) takes spatial coherence into account for 

data management. Hence, the rough selection may return points which are distant from the query 
window. This may confuse the user when points are visualized. Due to the same reason, 

Pyramid-Technique nor iMinMax(θ) also incur high FPR for low dimensional queries. Block 

based approaches such as X-tree [28] and SR-tree [29] support spatial coherence, but they suffer 

from long block unpacking process for querying. This is a problem indicated in[1]. 
 

Querying skewed point clouds has also been addressed to some extent [2, 8], previously. The 

solution proposed in [8] first decomposes the 3D point cloud into blocks according to Hilbert 
curve [30, 31], and inside each block points are grouped into a BLOB. All blocks have a same 

capacity (similar to the threshold of HistTree) and thus, the block span is adaptive to the point 

density. When querying, it utilizes an Octree to retrieve the blocks that overlap with the 3D query 

window, and then conducts a secondary filtering to get final result. That is, the efficiency of the 
solution is directly related to the block capacity. HistSFC however could continue a refining 

process from leaf nodes, which improves flexibility and efficiency. Another study [2] targets at 

spatial objects with nonzero extents, and it handles skewed data issue based on the centroids of 
objects. It utilizes the CDF to transform original skewed data into uniformly distributed data, and 

then uses a PlainSFC for management and querying. However, the transformation is an 

expensive operation and thus inapplicable to large scale point clouds. The research of learned 
index structure [32] indicates that range index models such as B tree are CDFs which take a key 

as input and predicts position in a sorted array. Histograms can also be used as CDF, as a 

replacement of B tree according to the work. However, our paper proposes and verifies that they 

could be combined into a compound indexing structure and achieve higher efficiency. Besides, as 
a common technique to deal with non-uniform data distribution, histograms are largely used in 

major DBMSs for querying (statistics collection) because they incur little run-time overhead and 

produce low-error estimates with compact storage [23]. In particular, Oracle Spatial and Graph 
has developed state-of-the-art solutions to build spatial histograms for query optimization 

purposes [33], where HistTree can be integrated seamlessly. 

 
With regard to cLoD, Cura [13] indicates that an ideal LoD should be homogeneous in space, 

insensitive to density variations, regular, efficient and deterministic. The study puts forward an 

implicit LoD scheme (MidOc) that uses the order of points to form a cLoD, i.e. by buffering 

different amount of points, users are at different LoD levels. For generic purposes, MidOc only 
considers geometry and picks up points closest to centres of Octree cells to constitute different 

layers of the LoD. Inside each level, points can be ordered following various strategies. Based on 

this work, an indoor cLoD which elaborates semantic information is also developed [34]. The 
work specifically concentrates on indoor navigation and points of accessible objects such as 

doors and windows get a higher place in the ranking. Zheng et al. [35] also develop a priority 
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ordering index which is actually the cLoD value for visualization of big datasets. The tests show 
that the approach is more efficient at determining representative points than random sampling. 

To realize gradual rendering of scenes in VR, Schutz et al. [36] first sample points in dLoD 

chunks into a vector array using spacing information. Then inside GPU, points are filtered 

according to the view frustum and target spacing in VR. However, the approach suffers from 
limited memory size of GPU. In comparison with method above, the advantage of our cLoD lies 

in rapid computation, generic usage and applicability to arbitrarily large point clouds. 
 

7. CONCLUSIONS AND FUTUREWORK 
 

This paper introduces HistSFC, an optimization for previous PlainSFC for querying. It harnesses 
HistTree to produce SFC ranges with low FPR and thus improves querying  efficiency. This 

advantage is especially remarkable when points are unevenly distributed in 3D or higher 

dimensional spaces where multiple irregular dimensions exist. In addition, we propose a method 
to fast compute cLoD and then integrate it into the data organization to serve queries. This is a 

query optimization from the perspective of spatial cognition. With such data structure, 3D 

perspective view selection and 3D kNN functions are realized and they achieve high efficiency. 
Visualization experience has been improved in terms of both quality and quantity (i.e., less 

points) using cLoD. We also explore the impact of dimensionality of the SFC key on the 

performance of HistSFC. We therefore assert that the data organization should cater to the 

dimensionality of applications. If 4 dimensions are queried frequently, not necessarily at the 
same time, then a 4D HistSFC is preferable to a "3D + 1D" solution as the 4D model is generic to 

any lower dimensional queries with acceptable performancedegradation. 
 

Limitations still exist, we therefore list the following as future work: 
 

 Execute a more comprehensive yet strict benchmark test, e.g. more query types, larger data 

size and more solutions such as Oracle SDO_PC with a hybrid model stored in IOT. 

 Study systematically on deciding the threshold of leaf nodes in HistTree as well as tuning 

the maximum number of ranges forquerying. 

 Explore the generality of HistSFC by elaborating different dimensions from other data 

sources, e.g. time and identity dimensions from trajectorypoints. 

 Develop a sound Oracle solution for HistSFC to reduce communication, and realize 
HistTree in the queryoptimizer. 

 Adapt HistSFC to distributed computing platforms to resolve real big dataissue. 

 Improve the method of cLoD computation by considering specific needs, e.g. incorporate 

semantic information and velocity for visualization inVR. 

 Upgrade the data organization of HistSFC to facilitate data streaming in a server-client 

architecture, e.g. state-of-the-art blockingstrategy. 

 In terms of storage, investigate compression techniques that does not cause significant 
deceleration of querying, e.g. LAZ format and Oracle secure filecompression. 
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