

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

DOI : 10.5121/ijdms.2016.8102 13

ELASTIC PERFORMANCE FOR ETL+Q PROCESSING

Pedro Martins, Maryam Abbasi, Pedro Furtado

Department of Informatics, University of Coimbra, Portugal

ABSTRACT

Most data warehouse deployments are not prepared to scale automatically, although some applications

have large or increasing requirements concerning data volume, processing times, data rates, freshness and

need for fast responses. The solution is to use parallel architectures and mechanisms to speed-up data

integration and to handle fresh data efficiently. Those parallel approaches should scale automatically. In

this work, we investigate how to provide scalability and data freshness automatically, and how to manage

high-rate data efficiently in very large data warehouses. The framework proposed in this work handles

parallelization and scales of the data-warehouse when necessary. It does not only scale-out to increase the

processing capacity, but it also scales in when resources are underused. In general, data freshness is also

not guaranteed in those contexts, because data loading, transformation, and integration are heavy tasks

that are done only periodically, instead of row-by-row. The framework we propose is designed to provide

data freshness as well.

KEYWORDS

Scalability, ETL, freshness, high-rate, performance, parallel processing, distributed systems, database,

load-balance, algorithm

1. INTRODUCTION

ETL tools are special purpose software used to populate a data warehouse with up-to-date, clean

records from one or more sources. The majority of current ETL tools organize such operations as

a workflow. At the logical level, the Extraction (E) can be considered as a capture of data-flow

from the sources with more than one high-rate throughput. The Transformation (T) represents

transforming and cleansing data in order to be distributed and replicated across many processes

and ultimately, Loading (L) the data into data warehouses to be stored and queried. For

implementing these type of systems besides knowing all of these steps, the acknowledgment of

user regarding the scalability issues is essential. When defining the ETL+Q, the user must

consider the existence of data sources, where and how the data is extracted to be transformed,

loading into the data warehouse and finally the data warehouse schema; each of these steps

requires different processing capacity, resources, and data treatment. Moreover, the ETL is never

so linear and it is more complex than it seems. Most often the data volume is too large and one

single extraction node is not sufficient. Thus, more nodes must be added to extract the data and

extraction policies from the sources such as round-robin or on-demand are necessary. After

extraction, data must be re-directed and distributed across the available transformation nodes,

again since transformation involves heavy duty tasks (heavier than extraction), more than one

node should be present to assure acceptable execution/transformation times. Once again more

new data distribution policies must be added. After the data is transformed and ready to be

loaded, the load period time and a load time control must be scheduled. This means that the data

have to be held between the transformation and loading process in some buffer. Eventually,

regarding the data warehouse schema, the entire data will not fit into a single node, and if it fits, it

will not be possible to execute queries within acceptable time ranges. Thus, more than one data

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

14

warehouse node is necessary with a specific schema which allows to distribute, replicate, and

query the data within an acceptable time frame.

In this paper, we study how to provide parallel ETL+Q scalability with ingress high-data-rate in

big data warehouses. We propose a set of mechanisms and algorithms to parallelize and scale

each part of the entire ETL+Q process, which later will be included in an auto-scale (in and out)

ETL+Q framework. The presented results prove that the proposed mechanisms are able to scale

when necessary. In Section 2 we present some relevant related work in the field. Section 3

describes the architecture of the proposed system, Section 4 explains the main algorithms which

allow to scale-out when necessary. Section 5 shows the experimental results obtained when

testing the proposed system. Finally, Section 6 concludes the paper and discusses future work.

2. RELATED WORK

Works in the area of ETL scheduling includes efforts towards the optimization of the entire ETL

workflows [8] and of individual operators in terms of algebraic optimization; e.g., joins or data

sort operations. The work [4] deals with the problem of scheduling ETL workflows at the data

level and in particular scheduling protocols and software architecture for an ETL engine in order

to minimize the execution time and the allocated memory needed for a given ETL workflow. The

second aspect in ETL execution that the authors address is how to flow execution at the

operations level (blocking, non-parallels operations may exist in the flow) and how we can

improve this with pipeline parallelization [3].

The work [6] focuses on finding approaches for the automatic code generation of ETL processes

which is aligning the modelling of ETL processes in the data warehouse with MDA (Model

Driven Architecture) by formally defining a set of QVT (Query, View, Transformation)

transformations. ETLMR [5] is an academic tool which builds the ETL processes on top of Map-

Reduce to parallelize the ETL operation on commodity computers. ETLMR does not have its own

data storage (note that the offline dimension store is only for speedup purpose) but is an ETL tool

suitable for processing large-scale data in parallel. ETLMR provides a configuration file for

declaring dimensions, facts, User Defined Functions (UDFs), and other run-time parameters.

In [7] the authors consider the problem of data flows partitioning for achieving real-time ETL.

The approach makes choices based on a variety of tradeoffs, such as freshness, recoverability, and

fault-tolerance, by considering various techniques. In this approach partitioning can be based on

round-robin (RR), hash (HS), range (RG), random, modulus, copy, and others [9].

In [2] the authors describe Liquid, a data integration stack that provides low latency data access to

support near real-time in addition to batch applications. It supports incremental processing and is

cost-efficient and highly available. The liquid has two layers: a processing layer based on a

stateful stream processing model, and a messaging layer with a highly-available publish/subscribe

system. The processing layer (i) executes ETL-like jobs for different back-end systems according

to a stateful stream processing model [1]; (ii) guarantees service levels through resource isolation;

(iii) provides low latency results, and (iv) enables incremental data processing. A messaging layer

supports the processing layer. It (i) stores high-volume data with high availability; and (ii) offers

rewind ability, i.e. the ability to access data through meta-data annotations. The two layers

communicate by writing and reading data to and from two types of feeds, stored in the messaging

layer. Related problems studied in the past include the scheduling of concurrent updates and

queries in real-time warehousing and the scheduling of operators in data streams management

systems. However, we argue that a fresher look is needed in the context of ETL technology. The

issue is no longer the scalability cost/price, but rather the complexity it adds to the system.

Previews presented recent works in the field do not address in detail how to scale each part of the

ETL+Q and do not regard the automatic scalability to make ETL scalability easy and automatic.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

15

The authors focus on mechanisms to improve scheduling algorithms and optimizing workflows

and memory usage.

In our work we assume that scalability in a number of machines and quantity of memory is not

the issue, we focus on offering scalability for each part of the ETL pipeline process, without the

nightmare of operators relocation and complex execution plans. Our main focus is on scalability

based on generic ETL process to provide the users desired performance with minimum

complexity and implementations. In addition, we also support queries execution.

3. ARCHITECTURE

In this section, we describe the main components of the proposed architecture for ETL+Q

scalability. Figure 1 shows the main components to achieve automatic scalability.

• All components from (1) to (7) are part of the Extract, Transform, Load and query

(ETL+Q) process.

• The “Automatic Scaler" (13), is the node responsible for performance monitoring and

scaling the system when it is necessary.

• The “Configuration file" (12) represents the location where all user configurations are

defined by the user.

• The “Universal Data Warehouse Manager" (11), based on the configurations provided by

the user and using the available “Configurations API" (10), sets the system to perform

according to the desired parameters and algorithms.

• The “Universal Data Warehouse Manager" (11), also sets the configuration parameters

for automatic scalability at (13) and the policies to be applied by the “Scheduler" (14).

• The “Configuration API" (10), is an access interface which allows to configure each part

of the proposed Universal Data Warehouse architecture, automatically or manually by the

user.

• Finally the “Scheduler" (14), is responsible for applying the data transfer policies

between components (e.g. control the on-demand data transfers).

Figure 1: Automatic ETL+Q scalability

All these components, when set to interact together, are able to provide automatic scalability to

the ETL and to the data warehouses processes without the need for the user to concern about its

scalability or management.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

16

Paralelization approach, Figure 2, depicts the main processes needed to support total ETL+Q

scalability.

Figure 2: Total automatic ETL+Q scalability

(1) Represents the data sources from where data is extracted into the system.

(2) The data distributor(s) is responsible for forwarding or replicating the raw data to the

transformer nodes. The distribution algorithm to be used is configured and enforced in this stage.

The data distributors (2) should also be parallelizable if needed, for scalability reasons.

(3) In the transformation nodes the data is cleaned and transformed to be loaded into the data

warehouse. This might involve data lookups to in-memory or disk tables and further computation

tasks. The transformation is parallelized for scalability reasons.

4) The data buffer can be in memory, disk file (batch files) or both. In periodically configured

time frames/periods, data is distributed across the data warehouse nodes.

(5) The data switches are responsible for distributing (pop/extract) data from the “Data Buffers"

and set it for load into the data warehouse, which can be a single-node or a parallel data

warehouse depending on configured parameters (e.g. load time, query performance).

6) The data warehouse can be in a single node, or parallelized by many nodes. If it is parallelized,

the “Data Switch" nodes will manage data placement according to configurations (e.g. replication

and distribution). Each node of the data warehouse loads the data independently from the batch

files.

(7) Queries are rewritten and submitted to the data warehouse nodes for computation. The results

are then merged, computed and returned.

The main concept we propose are the individual ETL+Q scalability mechanisms of each part of

the ETL+Q pipeline. By offering a solution to scale each part independently, we provide a

solution to obtain configurable performance.

4. DECISION ALGORITHMS FOR SCALABILITY PARAMETERS

In this section, we define the scalability decision methods as well as the algorithms which allow

the framework to automatically scale-out and scale-in.

Extraction & data distributors

Scale-out depending on the number of existing sources and data generation rate and size, the

nodes that process data extraction from the sources need to scale. The addition of more

“extraction & data distributors" (2) depends on if the current number of nodes is being able to

extract and process the data with the correct frequency (e.g. every 5 minutes) and inside the limit

maximum extraction time (without delays). For instance, if the extraction frequency is specified

as every 5 minutes and extraction duration 10 seconds, every 5 minutes then the “Extraction &

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

17

Data distributor" nodes cannot spend more than 10 seconds extracting data. Otherwise, a scale-out

is needed, so the extraction size can be reduced and the extraction time improved. If the

maximum extraction duration is not configured, then the extraction process must finish before the

next extraction instant. If not processed until the next extraction instant, as defined by the

extraction frequency, a scale-out is also required, to add more extraction power. Flowchart 3

describes the algorithm used to scale-out.

Figure 3: Extraction algorithm, scale-out

Extraction & data distributors

Scale-in to save resources when possible, nodes that perform the data extraction from the sources

can be set in standby or removed. This decision is made based on the last execution times. If

previous execution times of at least two or more nodes are less than half of the maximum

extraction time (or if the maximum extraction time is not configured, the frequency), minus a

configured variation parameter (X), one of the nodes is set on standby or removed, and the other

one takes over. Flowchart 4 describes the applied algorithm to scale-in.

Figure 4: Extraction algorithm, scale-in

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

18

Transform – Scale-out The transformation process is critical, if the transformation is running

slow, data extraction at the referred rate may not be possible, and information will not be

available for loading and querying when necessary. The transformation step has an important

queue used to determine when to scale the transformation phase. If this queue reaches a limit size

(by default 50%), then it is necessary to scale, because the actual transformer node(s) is not being

able to process all the data that is arriving. The size of all queues is analysed periodically. If this

size at a specific moment is less than half of the limit size for at least two nodes, then one of those

nodes is set on standby or removed. Flowchart 5, describes the algorithm used to scale-out and

scalein.

Figure 5: Transformation, scale-in and scale-out

Data buffer – Scale

The data buffer nodes scale-out based on the incoming memory queue size and the storage space

available to hold data. When the available memory queue becomes full, above 50% of the

configured maximum size, data starts being swapped into a disk, until the memory is empty. If

even so the data buffer memory reaches the limit size the data buffer must be scaled-out. This

means that the incoming data rate (going into memory storage) is not fast enough to swap to the

disk storage and more nodes are necessary. If the disk space becomes full above a certain

configured size, the data buffers are also set to scale-out. Flowchart 6 describes the algorithm

used to scale-out the data buffer nodes. By user request, the data buffers can also scale-in, in this

case, the system will scale if the data from any data buffer can be fitted inside another data buffer.

Figure 6: Data Buffers, scale-out

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

19

Data switch – Scale

The Data Switch nodes scale based on a configured data rate limit. If the data rate rises above the

configured limit the data switch nodes are set to scale-out. The data switches can also scale-in, in

this case, the system will allow it if the data rate is less than the configured maximum by at least 2

nodes, minus a Z configured variation, for a specific time. Flowchart 7 describes the used

algorithm to scale the data switch nodes.

Figure 7: Data switch, scale

Data Warehouse – Scale

Data warehouse scalability needs are detected after each load process or by query execution time.

The data warehouse load process has a configured limit time to be executed every time it starts. If

that limit time is exceeded, then the data warehouse must scale-out. Flowchart 8 describes the

algorithm used to scale the data warehouse when the maximum load time is exceeded.

Figure 8: Data warehouse scale

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

20

The data warehouse scalability is not only based on the load & integration speed requirements,

but also on the queries desired maximum execution time. After each query execution, if the query

time to the data warehouse is more than the configured maximum desired query execution time,

then the data warehouse is set to scale-out. The Flowchart 9 describes the algorithm used to scale

the data warehouse based on the average query execution time.

Figure 9: Data warehouse scale based on query time

Every time the data warehouse scales-out or scales in the data inside the nodes needs to be re-

balanced. The default re-balance process to scale-out is ba’sed on the phases: Replicate dimension

tables; Extract information from nodes; Load the extracted information into the new nodes. Scale-

in process is more simple, data just needs to be extracted and loaded across the available nodes as

if it is new data.

5 EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup, and experimental results to show that the

proposed system, AScale, is able to scale and load balance data and processing.

5.1 EXPERIMENTAL SETUP

In this section, we describe the used testbed. The experimental tests were performed using 12

computers, denominated as nodes, with the following characteristics: Processor Intel Core i5-

5300U Processor (3M Cache, up to 3.40 GHz); Memory 16GB DDR3; Disk: western digital 1TB

7500rpm; Ethernet connection 1Gbit/sec; Connection switch: SMC SMCOST16, 16 Ethernet

ports, 1Gbit/sec. The 12 nodes were formatted before the experimental evaluation and installed

with: Windows 7 enterprise edition 64 bits; Java JDK 8; Netbeans 8.0.2; Oracle Database 11g

Release 1 for Microsoft Windows (X64) used in each data warehouse nodes; PostgreSQL 9.4

used for lookups during the transformation process; TPC-H benchmark representing the

operational log data used at the extraction nodes. This is possible since TPC-H data is still

normalized; SSB benchmark representing the data warehouse. The SSB is the star-schema

representation of TPC-H data.

5.2 AUTOMATIC SCALABILITY

In this section, we describe the scalability tests made to the full auto-scale ETL framework. We

demonstrate the scale-out and scale-in ability of the proposed framework using the proposed

algorithms. Consider the following scenario:

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

21

• Sources are based on the TPC-H benchmark generator, which generates data at the

highest possible rate (on each node);

• The transformation process consists of transforming the TPC-H relational model into a

star-schema model, which is the SSB benchmark. This process involves heavy

computational memory, temporary storage of large amounts of data, lookups and data

transformations to assure consistency;

• The data warehouse tables schema consist on the same schema from SSB benchmark.

Replication and partitioning are assured by AScale, whereas, dimension tables are

replicated and fact tables are partitioned across the data warehouse nodes.

• The E, T, and L were set to perform every 2 seconds, and cannot last more than 1 second.

Thus, the ETL process will last in the worst case 3 seconds total;

• The load process was made in batches of 100MB maximum;

• All default configurations of other components were set to use the default AScale

configurations.

Figure 10 and 11 show how the proposed auto-scale ETL framework scales to deliver the

configured ETL execution time, while the data rate increases/decreases. In the charts the X axis is

represented the data rate per second, from 10.000 to 500.000 rows per second and the Y axis is

the ETL time expressed in seconds; The system objective was set to deliver the ETL process in 3

seconds; In the charts we also represent the scale-out and scale in of each part of the framework,

by adding and removing nodes when necessary. Note that If we set a lower execution time the

framework will scale-out faster. If the execution time is higher (e.g. 3 minutes) the framework

will scale later if more performance is necessary at any module.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

22

Figure 10: Full ETL system scale-out

Figure 11: Full ETL system scale-in

Scale-out

results from Figure 10 show that, as the data-rate increases and parts of the ETL pipeline become

overloaded, by using all proposed monitoring mechanisms in each part of the AScale framework,

each individual module scales to offer more performance where necessary.

In Figure 10, we point each scaled-out module. Note that in some stages of the tests the 3 seconds

limit execution time was exceeded in 0.1, 0.2 seconds. This happened due to the high data-rate

usage of the network connecting all nodes that are not being accounted for the purposes of our

tests.

Scale-in

results from Figure 11 show the moment when the current number of nodes are no longer

necessary to assure the desired performance, and some nodes could be removed to be set as ready

node in standby and be used in other parts to assure the ETL configured time.

When comparing the moments of scale-out and scale-in, it is possible to observe that the proposed

framework scales-out much faster than it scales in. When a scale-in can be applied it is performed

at a later stage than a scale-out.

5.3 DATA EXTRACTION NODES SCALABILITY

Figure 12 shows the scheduler based extraction approach to extract data, where the "automatic

scale" (13) orders the nodes to extract data from sources (scheduler based extraction policy).

Considering "datas-ources" (1) generate high-rate data and "extraction nodes" (2) extract the

generated data when the data flow is too high a single data node cannot handle all ingress data. In

this section, we study how the extraction nodes scale to handle different data rates. The maximum

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

23

allowed extraction time was set to 1 second. Extraction frequency was set to every 3 seconds. In

Figure 13 we have in the left Y axis, the average extraction time in seconds; in the right Y axis,

the number of nodes; The X axis is the data-rate; Black line represents the extraction time; Grey

line represents the number of nodes as they scale-out. It is possible to see that every time the

extraction takes too much time (more than 1 second as configured) a new node is added (from the

ready nodes pool). After the new node added, more nodes are being used to extract data from the

same number of sources, so the extraction time improves. As we increase the data rate, the

extraction time becomes higher until it reaches more than 1 second, and another node is added.

Figure 12: Sources to extraction

Figure 13: Extraction scalability

5.4 TRANSFORMATION SCALABILITY

During the ETL process, after data is extracted, it is set for transformation. Because this process is

computationally heavy, it is necessary to scale the transformation nodes to assure that all data is

processed without delays. Each transformation node has an entrance data queue, for ingress data.

The "automatic scale" (13) monitors all queues, once it detects that a queue is full and above a

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

24

certain configured threshold it starts the scaling process. The transformation nodes scale-out

mechanisms were set to the limit queue size to trigger the scale-out mechanisms at 50MB,

approximately 380.000 rows.

In Figure 14, the Y axis represents the average queue size in number of rows; in the X axis, the

data rate in rows per second; Each plotted bar represents the average transformation node queue

size (up to 4 nodes); Each measure represents the average queue size of 60 seconds run. As it

displays the moments when the queue size of the transformation nodes increase above the

configured limit size, a new transformation node is added and data is distributed to all nodes in

order to support the increasing data rate.

Figure 14: Automatic transformation scalability. 60 minutes processing per data-rate.

5.5. DATA BUFFER NODES

These nodes hold the transformed data until it is loading into the data warehouse. The data buffers

have the following configuration: Generation data-rate speed 350.000 rows per second (i.e.

transformation output data rate); Available memory storage 10.000MB (50% = 5.000MB);

Available disk storage 1TB. We consider only the data generation/producer, there is no data

”consumer”, so the buffer must hold all ingress data

Figure 15 shows: X axis represents the time; Left Y axis represents the memory size; Right Y axis

represents the disk storage size; The bars represent the memory usage; Continuous line represent

the total data size in the disk, being swapped from memory. The chart shows the buffer nodes

scaling-out. When 50% of the memory size is used, data starts being swapped into a disk.

However, if the disk cannot handle all ingress data and the memory reaches the maximum limit

size, a new node is added. After a new node added, data is distributed to both nodes. This makes

the data rate at each node less (at least half) and then the disk from the first node can empty the

memory back to 50%. After this point each time 50% of the maximum configured memory is

reached, data will swap into the disk to free the memory.

5.6. DATA WAREHOUSE SCALABILITY

In this section we test the data warehouse scalability, which can be triggered either by the load

process (because it is taking too long), or because the query execution is taking more time than

the desired response time.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

25

To test the data warehouse nodes load scalability we set the load method by using batch files of

maximum 100Mb. The maximum allowed load time was set to 60 seconds. Each time a data

warehouse node is added, we show the data size that was moved into the new node and the

required time in seconds to re-balance the data. All load and re-balance times include the

execution of Pre-load tasks (i.e. destroy all indexes and views) and Pos-load tasks (i.e. rebuild

indexes and update views). If the maximum configured load time is exceeded more than 60

seconds, the data warehouse is set to be scaled. In Figure 16 we have in left Y axis, the average

load time in seconds; right Y axis, the number of data warehouse nodes; X axis, the data batch

size in MB. The horizontal bar at Y = 60 seconds represents the maximum configured load time.

At each scale-out moment, there is a note specifying the data re-balanced size and time to perform

it. Black plotted line represents the average load time. The Grey plotted line represents the

number of data warehouse nodes. Experimental results in this chart show how the load

performance degrades as the data size increases and how it improves when a new node is added.

After a new node added performance improves below the maximum configured limit. Note that

every time a new node was added, the data warehouse required to be re-balanced (data was

evenly distributed by the nodes).

Figure 15: Data buffer swap into disk and scaling

Figure 16: Data warehouse load scalability

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

26

5.7 QUERY SCALABILITY

When running queries, if the maximum desired query execution time (i.e. configured parameter)

is exceeded, then the data warehouse is set to scale in order to offer more query execution

performance. The following workloads were considered to test AScale query scalability,

Workload 1 with 50GB total size, executing queries Q1.1, Q2.1, Q3.1, Q4.1 chosen randomly and

with the desired execution time per query of 1 minute. Workload 2 with the same properties as

workload 1 but, using 1 to 8 simultaneous sessions.

Workload 1 studies how the proposed mechanisms scales-out the data warehouse when running

queries. Workload 2 studies the scalability of the system when running queries and the number of

simultaneous sessions (e.g. number of simultaneous users) increases. Both workloads were set

with the objective of guaranteeing the maximum execution time per query of 60 seconds.

Figure 17: Data warehouse scalability, workload 1

Query scalability Workload 1

Figure 17 shows the experimental results for workload 1. Y axis shows the average execution

time in seconds and X axis the data size per node and the current number of nodes. The horizontal

line over 60 seconds represents the desired query execution time. At each scale-out, we identify

the total workload time and data re-balance time (i.e. extract data, load into nodes, rebuild indexes

and views). The plotted line represents the average query time execution. Every time the average

query time is not inferior to the maximum configured query execution time, one extra node is

added. In each scale-out, the re-balance time represents the necessary time to extract data from

nodes and distribute it across all nodes (we also include indexes and views update time). Once the

average query time reaches under the configured desired execution time, the framework stops

scaling the data warehouse nodes.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

27

Query scalability Workload 2

Figure 18 shows the experimental results for workload 2. Total data was 50GB. Left Y axis shows

the average query execution time in seconds and right Y-axis, the average data re-balance time in

seconds (i.e. extract from nodes, load into the new node, rebuild indexes and views). The x-axis

shows the number of sessions, the data size per node and the number of nodes. The horizontal line

over 60 seconds represents the desired query execution time. The last result does not respect the

desired execution time because of the limited hardware resources for our tests, 12 nodes. The

results show that while the number of simultaneous sessions increases the system scales the

number of nodes in order to provide more performance. The query average execution time

follows the configured parameters. We also plot the data rebalance time. Every time a new node

is added data must be balanced by all data warehouse nodes, this includes, extract data from the

existent nodes, load into the new node, and finally re-create all indexes and views (since indexes

and views updates are done in parallel for all nodes, we update all indexes and views in the data

warehouse simultaneously).

Figure 18: Data warehouse scalability, workload 2

6 CONCLUSIONS & FUTURE WORK

In this work we propose mechanisms and algorithms to achieve automatic scalability for complex

ETL+Q, offering the possibility to the users to think solely in the conceptual ETL+Q models and

implementations for a single server.

The tests demonstrate that the proposed techniques are able to scale-out automatically when more

resources are required. Future work includes the comparison with other state-of-the-art tools and

the development of drag and drops interface to make AScale available to the public.

International Journal of Database Management Systems (IJDMS) Vol.8, No.1, February 2016

28

REFERENCES

[1] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating scale out and fault

tolerance in stream processing using operator state management. In Proceedings of the 2013 ACM

SIGMOD international conference on Management of data, pages 725–736. ACM, 2013.

[2] R. C. Fernandez, P. Pietzuch, J. Koshy, J. Kreps, D. Lin, N. Narkhede, J. Rao, C. Riccomini, and G.

Wang. Liquid: Unifying nearline and offline big data integration. In Biennial Conference on

Innovative Data Systems Research (CIDR), Asilomar, CA, USA, 01/2015 2015. ACM, ACM.

[3] R. Halasipuram, P. M. Deshpande, and S. Padmanabhan. Determining essential statistics for cost

based optimization of an etl workflow. In EDBT, pages 307–318, 2014.

[4] A. Karagiannis, P. Vassiliadis, and A. Simitsis. Scheduling strategies for efficient etl execution.

Information Systems, 38(6):927–945, 2013.

[5] X. Liu. Data warehousing technologies for large-scale and right-time data. PhD thesis, dissertation,

Faculty of Engineering and Science at Aalborg University, Denmark, 2012.

[6] L. Mun ̃oz, J.-N. Maz ́on, and J. Trujillo. Automatic generation of etl processes from conceptual

models. In Proceedings of the ACM twelfth international workshop on Data warehousing and OLAP,

pages 33–40. ACM, 2009.

[7] A. Simitsis, C. Gupta, S. Wang, and U. Dayal. Partitioning real-time etl workflows, 2010.

[8] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos. Optimizing etl workflows for fault-

tolerance. In Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 385–396.

IEEE, 2010.

[9] P. Vassiliadis and A. Simitsis. Near real time etl. In New Trends in Data Warehousing and Data

Analysis, pages 1–31. Springer, 2009.

