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ABSTRACT : 

 

Graph databases (GDB) have recently been arisen to overcome the limits of traditional databases for 

storing and managing data with graph-like structure. Today, they represent a requirementfor many 

applications that manage graph-like data,like social networks.Most of the techniques, applied to optimize 

queries in graph databases, have been used in traditional databases, distribution systems,… or they are 

inspired from graph theory. However, their reuse in graph databases should take care of the main 

characteristics of graph databases, such as dynamic structure, highly interconnected data, and ability to 

efficiently access data relationships. In this paper, we survey the query optimization techniques in graph 

databases. In particular,we focus on the features they have introduced to improve querying graph-like data. 
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1 INTRODUCTION 
 

The last decade is characterized by an explosion in applications managing data with graph-like 

structuresuch as social networks, telecommunication networks, linked webpages, ….These 

applications manage billions of interconnected data, which construct the graph structure. User 

queries in these applications are more interested on the relationships between data rather than on 

the nodes of the graph. As example of such queries we cite: For Facebook user, find its friends 

(neighbors) that have studied with him in the same college and that have worked in hospital; find 

the calls of a person in a telecommunication network; find the peoples buying a specific product 

or mining relationships between customers in a marketing study,….Theproliferationof these 

applications and the requirement to access complex data relationships have imposed the re-arise 

of graph databases (GDB) to be the most efficient systems forstoring and queryinggraph data. The 

attempts of implementing graph databases have been introduced more than 20 years ago[1], [2] 

but the ability of traditional database systems, especially relational databases and XML 

(eXtensible Markup Language), to manage small data graph, over the past time, has carried over 

thesuccess of these attempts. Today, traditional databases are enable to store large graphs and 

querying their complex relationships, which need complex joins of relational tables.The actual 

NoSQL (no structured query language) databases systems, like MapReduce, have demonstrated 

their efficiency to store large volume of historic data but this efficiency decreases when 

queryinghighly interconnected data with dynamic structure. Thus, there is a research tendency to 

graph databases(GDB)in order to develop standard tools for managing graph data. Researchers in 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.4, August 2016 

 

2 

 

this area exploit a large baseline of concepts and algorithms developed in graph theory over the 

last thirty years.  

 

Graph database systems are particularly used to store and query labeled data graphs, which are 

sets of vertices and edges relating vertices. Vertices and edges have proprieties and each edge 

have a label describing the relationship between pair of vertices. For example a relationship 

between pair of Facebook users may be "friendship", "following" or "married". What 

distinguishes graph databases from traditional storage systems is that every vertex stores direct 

pointers to its adjacent elements. This specific feature, which allows querying neighborhood, 

constitutes an advantage to improve response time of user queries. User queries in graph theory 

are mainly pattern matching, data mining, and aggregation. We describe this queries with details 

insection 4. However, querying neighborhood alone is not sufficient to obtain satisfactory query 

response time. Many approaches, which benefit from the rich background on graph theory, have 

been recently developed to improve query response time in graph databases. In this paper, we 

addresstechniques used or shared by these approaches to optimize user queries. These techniques 

have been, previously, applied in other domains like databases, distribution systems, data stream, 

…. Particularly, we focus on the specificities of applying them in graph databases i.e. what are the 

specific reasons for their application in this research area and, given the underline data structured, 

how they have resolved the addressed issues. Our contribution is to studyrecent query 

optimization techniques in graph database. We summarize their key features, outline their current 

use cases and identify their limits. Recent studies in this area have addressed models, query 

languages and storage systems. To the best of our knowledge, we are the first that focus on the 

view of query optimization. 

 

The rest of this paper is structured as follows. The next section discusses existing studies on graph 

database. Section 3 presents an overview about graph databases. It contains definition, design 

models and historic of graph databases. Section 4 presents the techniques of query optimization. 

We discuss these techniques in section 5 and in section6 we conclude. 

 

2 RELATED WORKS 
 

Graph databases are new storage systems that manage highly interconnected data. They propose 

typical solutions for recent applications in domains, dealing withgraph-like datastructure, such as 

social networks, telecommunications, biology, marketing, spatial analysis, criminal networks,…. 

The expected efficiency of graph databases has attracted the attention of database community and 

engaged researchersin the process ofdeveloping standard tools for design models and query 

languages, which represent the two main elements of any database project.Therefore, the early 

survey on graph databases is presented in [3]. It consists of a well-rounded survey of graph data 

models and their features. The paper has given multiple comparisons of graph data models with 

respect to data storing, data structure, query languages, and integrity constraints. Later, [4] has 

identify the current applications and implementations of graph databases.[5] provides a survey of 

many of the graph query languages, focusing on the core functionality provided in these 

languages such as subgraph matching, finding nodes connected by paths, comparing and 

returning paths, aggregation, node creation, and approximate matching and ranking. The authors 

have used the expressive power and the computational complexity as criteria to evaluate queries 

and then compare languages.[6]presents a performance introspection framework for graph 

databases, PIG, which provides both a toolset and methodology for understanding graph database 

performance. Then, authors have demonstrated the efficacy of this their framework by analyzing 

the popular Neo4j and DEX graph databases.  Graph databases models and languages are also 

recently surveyed in [7],[8]. In this paper, we address another view of graph databases, the query 
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optimization. Recently, a few number of techniques have been proposed to optimize graph 

database queries. In this paper, we focus on these techniques and provide overviews of them, their 

features, their current use cases and their limits. To the best of our knowledge, this topic 

havenever been addressedbefore. 

 

3 GRAPH DATABASES  
 

3.1 Definition and examples of graph databases. 
 

All the studied papers, in this work, agree that a graph database is a system to represent, storeand 

manage data, which are naturally interconnected and structured in a form of graph. The 

represented data are those contained in both nodes (vertices) and edges of the graph. According 

to[6], the term graph database embodies two main characteristics: (i) First, a graph database is a 

storage system whose native representation of data is in terms of objects (vertices) and inter-

object relationships (edges);(ii)Second, a graph database supports single-object access via 

indexed lookup or iteration. That is, in addition to enabling whole-graph analysis, we require that 

a graph database be able to efficiently answer queries about the attributes and relationships of 

specific elements. 

 

The authors of [9]provide a formal definition of graph database using graph terminology. They 

consider a graph databaseas a finite edge-labeled graph. i.e. Let ∑ be a finite alphabet, and V a 

countably infinite set of node ids,then a graph database over ∑ is a pair�	 = 	 (�, �), where � is 

the set of nodes (afinite subset of 
), and � is the set of edges, i.e., �	 ⊆ 	�	 × ∑ × �. That is, we 

view each edgeas a triple (, �, ′), whose interpretation, of course, is an �-labeled edge from  

to ′. 
 

The generalization of graph database instances is called schema or model and it is mandatory for 

the design and implementation of graph databases. The different models of graph databases are 

studied in [3]. The two main elements that make up all these models are nodes and relationships.  

The nodes represents entities and can hold any number of attributes. They can be tagged with 

labels representing their different roles in the studied domain. The relationships provide directed 

connections between two nodes.In most cases, relationships have quantitative properties, such as 

weights, costs, distances, ratings, time intervals, or strengths. Because of these properties, two 

nodes can share any number of relationships. 

 

Example. The figure 1 presents schemas and instances of two graph databases. Figure 1.(a) 

represents an instance ofsome relationships in a social network like friendships and user-post 

relationships.  The generalization of this instance is described in figure 1.(c). Figure 1.(b) 

represents an instance of phone calls used to identify criminals  [a use case with Neo4j: 

http://neo4j.com/blog/use-phone-calls-identify-criminals/].The generalization of this instance is 

described in figure 1.(d). 
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1.(c) GDB schema for social network

Figure 1. Examples of graph dat

Recently,[10]hasproposed an approach to derive a graph database schema from the classical 

entity-relation model. The main goal of this approach is the mini

operations needed in graph traversals at query time. Intuitively, this can be achieved in two 

different ways: (i) by adding edges between nodes or (

 

The explosion of social networks 

to be more interested in such networks. 

domains like the phone calls in telecommunications

in biology, the relationships between people

marketing. 

 

Graph nodes in certain applications may themselves comprise graphs like hypertext links. In this 

case we call the overall graph hypergraph

described above.  
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Social network instance    1.(b) phone call instance 

 

) GDB schema for social network 1.(d) GDB schema for phone calls. 

Examples of graph databases (instances and schema).  

 

hasproposed an approach to derive a graph database schema from the classical 

relation model. The main goal of this approach is the minimization of data access 

operations needed in graph traversals at query time. Intuitively, this can be achieved in two 

different ways: (i) by adding edges between nodes or (ii) by merging different nodes.

of social networks over the last few years has encouragedresearchers 

in such networks. Moreover, GDB are used to study and mine data 

in telecommunications, the protein interactions and neural path

ationships between people, themedia they use and the products they buy

Graph nodes in certain applications may themselves comprise graphs like hypertext links. In this 

hypergraph and its model is more elaborated than the simple model 
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3.2 Implementation  
 

Recently, a limit number of models and systems are developed to implement graph databases 

such as Neo4j, DEX,….These tools are well studied and compared in[3], [11], [4], [6]. These 

studieshave demonstrated that Neo4j [http://neo4j.com/] dominates the others systems especially 

when querying graph databases. 

 

Neo4j is a commercially supported open-source graph database. It is based on the data model of a 

directed multigraph with edge labels and optional node and edge properties. In Neo4j, both nodes 

and relationships can contain properties. Nodes are often used to represent entities, but depending 

on the domain relationships may be used for that purpose as well. A part from properties and 

relationships, nodes can also be labeled with zero or more labels. Figure 2represents the Neo4j 

model. [http://neo4j.com/developer/guide-data-modeling/]. 

 

Figure 2.Neo4j graph database model. 

 

The migration of databases from a relational model to a graph-based storage system (example 

Neo4j) respects a number of rules from which we cite here the main ones: 

� Each entity table is represented by a label on nodes 

� Each row in an entity table is a node 

� Columns on those tables become node properties. 

 

Further details about graph database systems and their performance are presented in [11], [6].  

 

3.3 Historic and motivations  
 

Storing data in a graph-like structure had attracted the attentionof database community in the first 

half of the nineties. After that, these attemptshad rapidly disappeared and this interest died with 

the uprising of XML and the Internet. Consequently, the database community moved toward 

semistructured data and people working on graph databases moved to particular applications like 

special data, web, and documents. Further details about the historic evolution of graph databases 

are provided in [3].However,along this period and since the eighties,the relational data model has 

dominated database management systems for more than thirty years.It has proved to be a 

powerful platform for business applications mainly for storing and retrievingdata.  It is 

characterized by its rigid schema and its well-known querying language SQL. The demand for 

alternatives to the relational model has grown with the rise of social media and the increase of 

massive and complex graph-like data introduced by the web. For example, Google, Facebook and 
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Amazon have long been generating massive amounts of graph-like data using countless numbers 

of servers. Querying such data by a relational database system will need a complex SQL joins of 

multiple distributed tables. Thus, querying such data by traditional database management systems 

becomes impossible.Consequently, the limitations of traditional databasesto cover the 

requirements of current application domains, has ledto the development of new technologies, 

called NOSQL databases like Big Data and Graph Databases. 

 

Recently, there is an interest to graph databases. This interest is due in part to the large amounts 

of graph data introduced by the Web like social media and in another part to the increase of 

applications that focus on the relationships between data more than on the data nodes.  Moreover, 

graph databases represent the natural way for modelling graph-like data. Compared to the others 

NOSQL databases, graph databases are dedicate for managing higher level of data complexity. 

[4]has categorized the NOSQL databases as in the figure 3. 

 
 

Figure 3.Categorization of NOSQL databases[4]. 

 

The main advantages or the powerof graph databases are presented in [8] as follow: 

 

� Performance: The Graph database performance increases when dealing with connected 

data versus relational databases and NOSQL stores. In contrast to relational 

databases,Graph database systems provide direct access to relationships and perform well 

the join of multiple data sources. 

� Flexibility: Graph database allows dynamic structure and schema i.e. we can add new 

kinds of relationships, new nodes, and new subgraphs to an existing structure without 

disturbing existing queries and application functionality.because of this flexibility, we 

don’t have to model our domain in exhaustive detail ahead of time. 

� Agility: Modern graph databases equip us to perform frictionless development and 

graceful systems maintenance. In particular, the schema-free nature of the graph data 

model empowers us to evolve an application in a controlled manner.  

 

In addition, a graph database system is considered efficient if it supports selecting vertices by 

their proprieties [6]. For example, in a social network, we may select vertices that might 

represent people by their proprieties such as names, ages, etc. 
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4 QUERYING GRAPH DATABASES  
 

Querying graph databases has started to be investigated some 25 years ago. Today, the 

proliferation of applications that manage high linked data has imposed the resurgence of the issue 

of how efficiently querying graph databases. Consequently, number of query languages and 

algorithms for optimizing query in graph databases have recently developed. In this section, we 

study the major techniques used to optimize queries in graph databases. We refer readers to [5]for 

further detailsabout query languages for graph databases. 

 

The following basic rule: "Every graph node contains a direct pointer to its adjacent elements and 

no index lookups are necessary" make the apparent distinction between graph databases systems 

and the traditional DBMS. Therefore, all query languages for graph databases are based on this 

rule and the algorithms, studied for tens of years in graph theory, constitutes a solid root that 

underline them. 

 

[5]compares the efficiency of some query languages for graph databases. They have used a list of 

queries as criteria of comparison. They classify the used queries into three approximate levels. 

The lower level contains database API operations, called micro-operations, such as 

"GetVertex/Edge" or "SetProperty". The intermediate level contains operations that aggregate 

API calls, such as "Get Neighbors" or "Ingest". These operations are calledgraph operations. The 

upper level corresponds to algorithms that express fundamental concepts in graph algorithms, but 

are often not part of a graph API, such as "FindShortest-Path", "Compute Clustering Coefficient". 

 

4.1 Graph query terminology 
 

- Pattern : 

A pattern graph (or pattern query) �	 = 	 (
� , ��)specifies the structural and semantic 

requirements that a subgraph of G must satisfy in order to match the pattern �. The task is to find 

the set � of subgraphs of � that "match" the pattern �. A graph �′	 = 	 (
′, �′) is a subgraph of � 

if and only if 
′	 ⊆ 	
 and �′	 ⊆ 	�[12]. Here we are based on the formal definition of graph 

database in section 3.  

 

The following example, provided in[13], presents a pattern query and the steps to execute it in the 

context of social network whose graph database schema may corresponds to the model in figure 

1: For a person �, find all of his ������ who have worked in �������	�������	� ℎ��" and 

who have a ����� from ����ℎ	#��� �. For a query like this, we have to start from node �, visit 

all its neighbors to check which of them had worked in�������	$������	� ℎ��", and then for 

all those friends, visit their neighbors till we find a neighbor matching the predicate.  
 

- Graph matching:  

 

The goal of graph matching is to find occurrences of a specific pattern in a graph [12]. A match or 

a partial match is as a set of edge pairs. Each edge pair represents a mapping between an edge in a 

query graph and its corresponding edge in the data graph [14]. In simply form, a match is an 

isomorphic subgraph[14].  Some researchers propose semantic matching approaches that attempt 

to match graphs based on their meaning by taking into account vertex and edge types and 

attributes as well as graph structure. 

Conjunctive queries, regular path queries and conjunctive regular path queries, which are 

presented in [5] and supported by most query languages in graph databases, are all forms of 

pattern matching. Conjunctive queries correspond the simple definition of pattern cited above. 
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Regular path queries consists of finding all node pairs (x,y) such that there is a path, from node x 

to node y, whosesequence of edge labels matches some pattern. This sequence of edges represents 

the researched regular path. Conjunctive regular path queries are the combination of conjunctive 

queries with the regular path ones. 
 

- Graph mining:  

 

Consists of finding a set of the most common or most "interesting" patterns in a graph [12] 

 
- Continuous query:  

 

Continuous queries are distinguished from ad-hoc query processing by their high selectivity, i.e. 

they look for unique events. Their aim is to detect newer updates of interest and notify a listener 

as soon as the query is matched. In this sense they are trigger-oriented[13].  

 
- Aggregate queries or ego-centric queries: 

 

Aggregate queries are used to calculate some proprieties of the graph. For some applications, they 

store theiroutputson nodes, which are part of their inputs;however, for others they create new 

nodes. Recently, aggregate queries have been used in [15], [16]to aggregate events coming from 

sources nodes, called producers, and stored in graph nodes, called consumers. In this context, an 

aggregate query is a producer of a single stream of events on a given topic from multiple sources.  

  

4.2 Optimization techniques. 
 

The major part of query optimization techniques in graph databases, and particularly those studied 

in this section, are previously applied in traditional databases. The interest of studying them here 

is to focus on the specificities of applying these techniques in graph databases and to describe the 

new ones of them like graph sketching. In addition, we discuss these techniques in the next 

section.  

 

4.2.1 Data Distribution 

 

This technique consists of partitioning data over several servers when it is infeasible to query and 

store them on a single site. The aim is to improve query response time and to minimize the data 

storage cost.Distribution has been extensively studied in traditional databases and often known as 

data replication [17], [18], and then applied in MapReduce framework forstoring and managing 

massive data[19], [20]. 

 

Graph databases are characterized by real-time data ingest, which make their schema dynamic, 

and real-time querying. In addition, most queries in graph databases traverse edges to fetch 

neighbor's information. For these reasons and because of the large size of graphs, theproblem of 

optimally partitioning a graph into equal-sized or equal-weighted partitions while minimizing the 

edges cut is NP-Hard. Consequently, graph partition techniques should found a good compromise 

between reducing server communication cost, which is defined in most cases by the number of 

edge-cuts, andreducing server-processing loads. 

 

To do this, the studied works have applied different approaches thatdiverge in: 

 

���� The number of steps of the partition algorithm.  
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���� The criteria used to partition 

���� Update of the partition 

���� Storage of auxiliary data 

���� Replication  

 

To construct partitions, most of the studied approaches are based on the community structure to 

group the graph nodes. Community contains nodes and their neighbors.The aim is to reduce the 

edge-cut load. This concept is strictly applied in [21], which imposes that all the neighbors of a 

vertex % should be replicated locally in the same partition. Although this grantees the local 

sematic, reduce edge-cut load but it increases the update load because of the high number of 

replicated data. This constraint is mitigate in [13] where the authors have introduced a novel 

parameter calledfairness requirementwhich is characterized by a threshold & ≤ 1 that means for 

each vertex we require that at least a &	fraction of its neighbors be present locally in the same 

partition.This fairness criterion is verified at the end of each repartitioning iteration. The approach 

proposed in [13]begin with an initial partitioning based on a hash function. Then it calibrates the 

result partitions by grouping together nodes having the same access pattern. Access pattern means 

whether the read frequency of a vertex %is low or not. Moreover, the access pattern tells us about 

the rate of read queries that ask both % and its neighbors. The access pattern is used by the system 

to assign, for each partition, an update policy i.e. either up-to-date or lazy. The aim is to reduce 

the partitioning cost.  

 

The use ofnatural community structure topartition dynamic graph was also applied in[22], [23]. 

The partitioning approach presented in[22]start with initial partitions created by a hash function. 

Then the incremental partitioning is done by migration of vertices from source partitions to 

receiver ones. At each iteration, every vertex %should decide to migrateto a partition 

containingsome of its neighbors or to remain in the current partition. But, in order to maintain a 

balanced load of servers, % must stay in the current partition if this later contains some of % 

neighbors. In [23], the authors propose a multi-level label propagation (MLP) method for graph 

partitioning. Label propagation (LP), which was originally proposed for community detection in 

social networks, is an iterative process. After assigning a unique label id to each vertex, the 

process update the vertex label iteratively. In each iteration, a vertex takes the label that is 

prevalent in its neighborhood as its own label. The process terminates when labels no longer 

change. As a result, vertices that have the same label belong to the same partition. 

 

In a recent work [24], a dynamic partitioning algorithm called lightweight repartitioner was 

proposed. This approach overcomes the overload of incremental partitioning, characterizing the 

previous approaches, and the limit of load imbalance, presented in some approaches. To perform 

the incremental partitioning, the algorithm relies on a small amount of knowledge on the graph 

structure called auxiliary data. These data represent the accumulated weight of vertices in each 

partition and the number of neighbors of each hosted vertex in each partition. To guarantee a 

balanced load between partitions, the proposed algorithm assign weights to vertex and partitions 

based on the heuristic proposed in [25]. This heuristic consists of partitioning graph into ) 

partitions where the weight of a partition � is considered as the total weight of its vertices. 

According to this heuristic, a partitioning solution is considered valid if the weight of each 

partition is at most a factor * ≤ 1 away from the average weight of partitions. In other words, 

each partition � of a graph �, should respect the following constraint: 

+(�) ≤ * × ∑ +(%)/)-./(0)  where +(�) and +(%) denote the weight of a partition � and vertex 

%, respectively. The parameter *, which is in range [1,2] is called the imbalance load factor and 
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defines how imbalanced the partitions are allowed to be. When * = 1 then partitions are required 

to be completely balanced (all have the same aggregate weights) and when * = 2 then this allows 

the weight of one partition to be up to twice the average weight of all partitions.To calculate 

vertex weights, the algorithm proposed in [24]was consider the read requests to a vertex %as its 

weight. 

 

Thus, graph-partitioning approaches should assign vertices to sites based on how much this 

assignment will improve query response time.  So, to expect this query time, the most of them 

have consider the number of edge-cuts between partitions to simulate the query workload. 

However, the contribution of the approach, presented in [26], is to take care of the hardware 

features when expecting workload. In this contribution, the main factors to be considered are the 

volume of transferred data, the network heterogeneity and the services provided by the underline 

hardware architecture like the shared resource contention in multicore systems. 

 

As we have seen in the above summary of the recent approaches of dynamic graph partitioning, 

replication and incremental partitioning have been applied in the most of these approaches. The 

role of replication is to reduce partition load and minimize the number of edge-cuts. The role of 

incremental partitioning is to continually maintain balanced load between partition and to 

improve the overall query response time. The advantage of Hermes [24], a system developed as 

an extension to the open source Neo4j to support workload partitioning, is the fast and efficient 

update of the partitionscheme. Another advantage of this system is the incremental integration of 

news queries. It has joined the partitioning solution proposed in [13]. This feature represents the 

limit of the solution proposed in [26]. The portioning solution proposed in [23]does not allow 

replication, which represents its major limit. 
 

4.2.2 Query decomposition and incremental processing 

 

There is no much work in query decomposition and incremental processing in dynamic graph 

area. Moreover, incremental processing and query decomposition are mainly devoted for graph 

pattern matching [14], [27], [28]. Incremental processing is used as a technique to avoid running 

complex queries from scratchon large graphs whenever they launched or the data graphs is 

updated.The aim is to minimize unnecessary recompilation and improve response time. With each 

new update on the data graph, the process of incremental processing checks to see if there are new 

results to the designed queries. In the context of continuous queries, it notifies the listener when 

there are new results forits queries. Otherwise,it plays the role of pre-processer for the 

queries.The main idea of query decomposition technique is to split the original graph query into 

subgraph ones. After finding matches for these subqueries, the process return up to assembly the 

sub-results. Query decomposition and incremental processing are complementary techniques. 

They are used separately in [27],[28] and combined in [14]. [27]presents incremental algorithms 

for graph pattern matching and discusses their complexities.[28]implements a decomposition 

based algorithm for searching a large static graph in a distributed environment.It splits any 

matching query into a set of subquery graphs that can be efficiently processed via in-memory 

graph exploration. The decomposition is well performed in order to avoid expensive join 

operations when merging sub-results.  Another advantage of this approach is that graph indexes 

are unused which minimizes server loads. In contrast to these two works, [14] presents a complete 

solution for optimizing queries by the use of decomposition and the incremental processing. 

Another feature that distinguishes the later approach is the focus on continuous queries in 

dynamic graph. In such situation (dynamic environment or streaming in general) the use of 

indexation to accelerate queries will be a costly process since index should be update or 

recomputed after each graph update.  Also, the periodic preprocess of queries will be wasteful 
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especially when graph update are less frequent. The solution, proposed in [14], consists of an 

incremental processing of queries. It consists of finding the set of matches that result from 

updating the graph with a set of new updates, especially edge and vertex ingests. 

 

The idea of the algorithm proposed in [14] is to decompose a graph query �4 into subgraphs. 

Then we construct a binary tree called SJ-Tree so that each node of this treewill represent a 

subgraph of �4 and that this subgraph, except those of the leaf nodes, corresponds to the 

combination of the two subgraphs of their children nodes. So, the root node will corresponds to 

�4. The nodes of this tree stores references to all their correspondent matches retrieved on the 

dynamic graph. When a new edge is added to the data graph we check to see if there is a match to 

be inserted to leaf nodes. When a new match is inserted we check to see if it can be combined 

with any match of the sibling node. Each successful combination leads to the insertion of a larger 

match at the parent node. This process is repeated recursively and it terminates either by a 

complete matching in the root node or by a combination failure at any iteration of the algorithm. 

A problem that faced this solution when decomposing graph query is that if we choose a small 

subgraphs we undertake an overload of searching frequent matches. However, if we choose larger 

subgraphs we undertake an overload of searching complex matches. To overcome this problem, 

the authors of [14] have extended the original algorithm to consider lazy search of matches. The 

idea is that, when a new edge is added to the graph data, we firstly searching the node (the 

subgraph) with less probability (with high selectivity) to findmatches to it. If there is no match for 

that node, we stop searching for the rest of subgraphs since a part of the query is not satisfied. 

This algorithm performs well the decomposition but it suffer from the cost of managing auxiliary 

data. 
 

4.2.3 Graph sketching  

 
This technique consists of summarizing the behavior of large dynamic graphs like social network and web 

graphs. Dynamic graphs are characterized by a stream of edge insertions and deletions. Queries that are 

interested in controlling graph behavior will be affected by this rapid change on the data structure. 

Moreover, their repetitive execution on the data graph will be costly. So,the aim from creating a sketch is to 

compute the proprieties of this evolving graph without dealing (storing, updating) with the entire graph and 

then to enable effective query processing. The computed proprieties may be numbers of nodes and edges, 

distances between edges, frequency of edges, …In other words, graph sketch are simply a synopsis data 

structure that allows good approximations of the relevant properties of the data set[29].Consequently, graph 

sketch are limited to serve aggregate-like queries or analytical requests. [30]proposes a graph sketch 

method to estimate and optimize the response to basic queries on graph streams. The typical queries 

considered in [30] are edge query and aggregate-subgraph query. Edge query allows to estimate the 

frequency of particular edges in a graph stream. For example, in social network context, the estimation of 

the communication frequency between two specific friends is an edge query. However, aggregate subgraph 

query used to determinate the aggregate frequency behavior of constituent edges of a subgraph. For 

example, in social network context, the estimation of the overall communication frequencies within a 

community is an aggregate subgraph query.[29]proposessketch-based algorithms for estimating shortest 

path distances, frequency of various subgraphs and sparsification. A recent sketch-based approach, 

presented in [31], has used sketches in graph clustering. Graph clustering allows identifying communities 

or dense subgraphs in the graph and it is important to network structure inference, anomaly detection, and 

data mining. 

 

4.2.4 Pre-processing aggregate queries. 

 
Aggregate queries are characterized by a cost joins and a complex calculus. In traditional 

databases, materialization has proven to be a good technique for optimizing response time of 
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aggregate queries. It allows pre-computing and storing their results, called views, to avoid re-

computing them whenever they are asked. However, this technique may be not efficient in 

dynamic environments like graph databases and continuous stream. In dynamic environments, 

materialized views need to be updated continually, which increases their maintenance cost and 

decreases their efficiency.The previous technique, i.e. sketching and incremental processing may 

be used to optimize aggregate queries. To the best of our knowledge, there is no complete 

approach that optimizes aggregate queries regardless of its form or pre-process them. But, the 

ego-centric aggregate queries, which is a special case of aggregate queries, were addressed in 

[16], [15]. Ego-centric queries allow to a graph node, called consumer, to aggregate events from 

others nodes, called producers. For example, in social network, usersare often interested in events 

happening in the network but also physically close to them. So, theyare interested in an aggregate 

over the current state or the recent history of their neighborhood's nodes. Both [16] and [15] have 

addressed the issue of when the events should be transferred from the produces to the consumer. 

The two possible ways are: either at query time or materialized in advance on the consumer. The 

former way consists of traversing the producers at each read of the consumer. In [16], this way is 

called pull task and it corresponds to an on-demand update of aggregate data. However, the later 

one consists of pre-computing aggregate query answer at each new write in the producers. In [16], 

this way is called push task and it corresponds to online update. [15]proposesto retrieve events 

from high-rate producers at query time and materialize, in aggregation nodes, events that come 

from high-rate producers. [16] proposes detailed solution that beginsby constructing an 

aggregation overlay graph and then makes a decision for each node of this graph whether to 

aggregate events on it (push decision) or not (pull decision).  The aggregation overlay graph is 

constructed to encode the computations to be performed when an update or a query is received. 

The main advantage of the aggregation overlay graph is that it allows sharing partial aggregates 

across different ego-centric queries. The decisions of materializing events on nodes are made 

based on the cost of push and pull tasks. As we have seen, what distinguishes [16] from [15] is 

the response to the issue of where do we store materialized data? For this reason, the solution of 

[16] has integrated intermediate aggregation nodes.  

 

5 DISCUSSION 
 

As in traditional databases, queries in graph databases cover the transactional operations, known 

in traditional databases, to add, delete, update and find entities. The underline data structure of 

GDB allows running efficiently queries with complex joins, called patterns. Pattern matching is 

the most query type required on graph database applications. They are considered as analytical 

queries that allow online finding semantic relationships of baseline data in order to discover 

knowledges from the data graph.Pattern matching may be processed in continuous way, where for 

each new events we check if a new match of the pattern is reached. Therefore, compared to data 

warehouse and big data, historic data have less importance in analytical queries in graph 

databases. 

 

Query optimization techniques, which are inspired from distribution systems, graph theory, 

traditional databases and streaming domains,handle problems arisen from three characteristics of 

graph databases: large volume of stored data, high-interconnected data and dynamic schema of 

graph databases. Contrary to traditional databases, algorithms for optimizing graph queries have 

arisen before the born of graph database systems. They have been widely discussed in graph 

theory tens of years ago. They constitute a baseline for attempts of optimizing queries and 

developing query languages for graph databases. These attempts are recent and with limited 

number and until now there is no standard query language for graph databases.In this paper, we 

have studied the query optimization techniques, which are recently developed on graph databases: 
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Structure distribution, query decomposition, incremental processing, sketching and 

aggregations.These techniques may be complementary, i.e. any combination of them is possible 

and may lead to good results. However, they suffer from constraints on the types of queries they 

treated. For example, aggregations are limited to ego-centric queries, incremental processing are 

limited to pattern matching,…. So, there is no technique developed to be used for all graph query 

types. In addition to that and in most cases, auxiliary data represents a limit of these techniques, 

which manage lot of such data to perform their tasks. 
 

6 CONCLUSION  
 

Graph databases represent an important requirement for applications that manage graph-like data. 

Recently, these applications have been proliferated especially on the web, like social networks. 

The concepts and algorithms of graph database area constitute an overlap between traditional 

domains such as database and graph theory. The database community benefit from this 

background to develop systems managing graph databases. In this paper, we have presented an 

overview about graph databases. In particular, we have focused on the optimization techniques 

used to improve query response time. Most of these techniques have been applied in traditional 

databases and distributed systems such as query decomposition and pre-processing. We have 

identified the specificities of their current use in graph database and their limits. We conclude that 

the current use of all optimization techniques, studied in this paper,is limited to specific queries, 

i.e. there is no general technique to optimize any type of query in graph database. Moreover, there 

is no standard language to query graph database. Modeling database schema and decomposing 

queries are the most topics addressed by researchers.To summarize, we say that this area is in its 

beginning and much work is needed to satisfy the requirement of the recent applications and to 

support their proliferation, especially, on the web. 
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