
International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

DOI: 10.5121/ijdms.2016.8401 1

QUERY OPTIMIZATION TECHNIQUES IN GRAPH

DATABASES

Ali Ben Ammar

1

1
Higher Institute of Computer Science and Management

Kairouan University, Tunisia

ABSTRACT :

Graph databases (GDB) have recently been arisen to overcome the limits of traditional databases for

storing and managing data with graph-like structure. Today, they represent a requirementfor many

applications that manage graph-like data,like social networks.Most of the techniques, applied to optimize

queries in graph databases, have been used in traditional databases, distribution systems,… or they are

inspired from graph theory. However, their reuse in graph databases should take care of the main

characteristics of graph databases, such as dynamic structure, highly interconnected data, and ability to

efficiently access data relationships. In this paper, we survey the query optimization techniques in graph

databases. In particular,we focus on the features they have introduced to improve querying graph-like data.

KEYWORDS

Query optimization, Graph database, Distribution, Query decomposition, Sketching.

1 INTRODUCTION

The last decade is characterized by an explosion in applications managing data with graph-like

structuresuch as social networks, telecommunication networks, linked webpages, ….These

applications manage billions of interconnected data, which construct the graph structure. User

queries in these applications are more interested on the relationships between data rather than on

the nodes of the graph. As example of such queries we cite: For Facebook user, find its friends

(neighbors) that have studied with him in the same college and that have worked in hospital; find

the calls of a person in a telecommunication network; find the peoples buying a specific product

or mining relationships between customers in a marketing study,….Theproliferationof these

applications and the requirement to access complex data relationships have imposed the re-arise

of graph databases (GDB) to be the most efficient systems forstoring and queryinggraph data. The

attempts of implementing graph databases have been introduced more than 20 years ago[1], [2]

but the ability of traditional database systems, especially relational databases and XML

(eXtensible Markup Language), to manage small data graph, over the past time, has carried over

thesuccess of these attempts. Today, traditional databases are enable to store large graphs and

querying their complex relationships, which need complex joins of relational tables.The actual

NoSQL (no structured query language) databases systems, like MapReduce, have demonstrated

their efficiency to store large volume of historic data but this efficiency decreases when

queryinghighly interconnected data with dynamic structure. Thus, there is a research tendency to

graph databases(GDB)in order to develop standard tools for managing graph data. Researchers in

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

2

this area exploit a large baseline of concepts and algorithms developed in graph theory over the

last thirty years.

Graph database systems are particularly used to store and query labeled data graphs, which are

sets of vertices and edges relating vertices. Vertices and edges have proprieties and each edge

have a label describing the relationship between pair of vertices. For example a relationship

between pair of Facebook users may be "friendship", "following" or "married". What

distinguishes graph databases from traditional storage systems is that every vertex stores direct

pointers to its adjacent elements. This specific feature, which allows querying neighborhood,

constitutes an advantage to improve response time of user queries. User queries in graph theory

are mainly pattern matching, data mining, and aggregation. We describe this queries with details

insection 4. However, querying neighborhood alone is not sufficient to obtain satisfactory query

response time. Many approaches, which benefit from the rich background on graph theory, have

been recently developed to improve query response time in graph databases. In this paper, we

addresstechniques used or shared by these approaches to optimize user queries. These techniques

have been, previously, applied in other domains like databases, distribution systems, data stream,

…. Particularly, we focus on the specificities of applying them in graph databases i.e. what are the

specific reasons for their application in this research area and, given the underline data structured,

how they have resolved the addressed issues. Our contribution is to studyrecent query

optimization techniques in graph database. We summarize their key features, outline their current

use cases and identify their limits. Recent studies in this area have addressed models, query

languages and storage systems. To the best of our knowledge, we are the first that focus on the

view of query optimization.

The rest of this paper is structured as follows. The next section discusses existing studies on graph

database. Section 3 presents an overview about graph databases. It contains definition, design

models and historic of graph databases. Section 4 presents the techniques of query optimization.

We discuss these techniques in section 5 and in section6 we conclude.

2 RELATED WORKS

Graph databases are new storage systems that manage highly interconnected data. They propose

typical solutions for recent applications in domains, dealing withgraph-like datastructure, such as

social networks, telecommunications, biology, marketing, spatial analysis, criminal networks,….

The expected efficiency of graph databases has attracted the attention of database community and

engaged researchersin the process ofdeveloping standard tools for design models and query

languages, which represent the two main elements of any database project.Therefore, the early

survey on graph databases is presented in [3]. It consists of a well-rounded survey of graph data

models and their features. The paper has given multiple comparisons of graph data models with

respect to data storing, data structure, query languages, and integrity constraints. Later, [4] has

identify the current applications and implementations of graph databases.[5] provides a survey of

many of the graph query languages, focusing on the core functionality provided in these

languages such as subgraph matching, finding nodes connected by paths, comparing and

returning paths, aggregation, node creation, and approximate matching and ranking. The authors

have used the expressive power and the computational complexity as criteria to evaluate queries

and then compare languages.[6]presents a performance introspection framework for graph

databases, PIG, which provides both a toolset and methodology for understanding graph database

performance. Then, authors have demonstrated the efficacy of this their framework by analyzing

the popular Neo4j and DEX graph databases. Graph databases models and languages are also

recently surveyed in [7],[8]. In this paper, we address another view of graph databases, the query

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

3

optimization. Recently, a few number of techniques have been proposed to optimize graph

database queries. In this paper, we focus on these techniques and provide overviews of them, their

features, their current use cases and their limits. To the best of our knowledge, this topic

havenever been addressedbefore.

3 GRAPH DATABASES

3.1 Definition and examples of graph databases.

All the studied papers, in this work, agree that a graph database is a system to represent, storeand

manage data, which are naturally interconnected and structured in a form of graph. The

represented data are those contained in both nodes (vertices) and edges of the graph. According

to[6], the term graph database embodies two main characteristics: (i) First, a graph database is a

storage system whose native representation of data is in terms of objects (vertices) and inter-

object relationships (edges);(ii)Second, a graph database supports single-object access via

indexed lookup or iteration. That is, in addition to enabling whole-graph analysis, we require that

a graph database be able to efficiently answer queries about the attributes and relationships of

specific elements.

The authors of [9]provide a formal definition of graph database using graph terminology. They

consider a graph databaseas a finite edge-labeled graph. i.e. Let ∑ be a finite alphabet, and V a

countably infinite set of node ids,then a graph database over ∑ is a pair�	 = 	 (�, �), where � is

the set of nodes (afinite subset of
), and � is the set of edges, i.e., �	 ⊆ 	�	 × ∑ × �. That is, we

view each edgeas a triple (, �, ′), whose interpretation, of course, is an �-labeled edge from

to ′.

The generalization of graph database instances is called schema or model and it is mandatory for

the design and implementation of graph databases. The different models of graph databases are

studied in [3]. The two main elements that make up all these models are nodes and relationships.

The nodes represents entities and can hold any number of attributes. They can be tagged with

labels representing their different roles in the studied domain. The relationships provide directed

connections between two nodes.In most cases, relationships have quantitative properties, such as

weights, costs, distances, ratings, time intervals, or strengths. Because of these properties, two

nodes can share any number of relationships.

Example. The figure 1 presents schemas and instances of two graph databases. Figure 1.(a)

represents an instance ofsome relationships in a social network like friendships and user-post

relationships. The generalization of this instance is described in figure 1.(c). Figure 1.(b)

represents an instance of phone calls used to identify criminals [a use case with Neo4j:

http://neo4j.com/blog/use-phone-calls-identify-criminals/].The generalization of this instance is

described in figure 1.(d).

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

1.(a) Social network instance

1.(c) GDB schema for social network

Figure 1. Examples of graph dat

Recently,[10]hasproposed an approach to derive a graph database schema from the classical

entity-relation model. The main goal of this approach is the mini

operations needed in graph traversals at query time. Intuitively, this can be achieved in two

different ways: (i) by adding edges between nodes or (

The explosion of social networks

to be more interested in such networks.

domains like the phone calls in telecommunications

in biology, the relationships between people

marketing.

Graph nodes in certain applications may themselves comprise graphs like hypertext links. In this

case we call the overall graph hypergraph

described above.

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

Social network instance 1.(b) phone call instance

) GDB schema for social network 1.(d) GDB schema for phone calls.

Examples of graph databases (instances and schema).

hasproposed an approach to derive a graph database schema from the classical

relation model. The main goal of this approach is the minimization of data access

operations needed in graph traversals at query time. Intuitively, this can be achieved in two

different ways: (i) by adding edges between nodes or (ii) by merging different nodes.

of social networks over the last few years has encouragedresearchers

in such networks. Moreover, GDB are used to study and mine data

in telecommunications, the protein interactions and neural path

ationships between people, themedia they use and the products they buy

Graph nodes in certain applications may themselves comprise graphs like hypertext links. In this

hypergraph and its model is more elaborated than the simple model

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

4

hasproposed an approach to derive a graph database schema from the classical

mization of data access

operations needed in graph traversals at query time. Intuitively, this can be achieved in two

ii) by merging different nodes.

researchers in GDB area

Moreover, GDB are used to study and mine data of others

in interactions and neural pathways

themedia they use and the products they buy in

Graph nodes in certain applications may themselves comprise graphs like hypertext links. In this

ed than the simple model

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

5

3.2 Implementation

Recently, a limit number of models and systems are developed to implement graph databases

such as Neo4j, DEX,….These tools are well studied and compared in[3], [11], [4], [6]. These

studieshave demonstrated that Neo4j [http://neo4j.com/] dominates the others systems especially

when querying graph databases.

Neo4j is a commercially supported open-source graph database. It is based on the data model of a

directed multigraph with edge labels and optional node and edge properties. In Neo4j, both nodes

and relationships can contain properties. Nodes are often used to represent entities, but depending

on the domain relationships may be used for that purpose as well. A part from properties and

relationships, nodes can also be labeled with zero or more labels. Figure 2represents the Neo4j

model. [http://neo4j.com/developer/guide-data-modeling/].

Figure 2.Neo4j graph database model.

The migration of databases from a relational model to a graph-based storage system (example

Neo4j) respects a number of rules from which we cite here the main ones:

� Each entity table is represented by a label on nodes

� Each row in an entity table is a node

� Columns on those tables become node properties.

Further details about graph database systems and their performance are presented in [11], [6].

3.3 Historic and motivations

Storing data in a graph-like structure had attracted the attentionof database community in the first

half of the nineties. After that, these attemptshad rapidly disappeared and this interest died with

the uprising of XML and the Internet. Consequently, the database community moved toward

semistructured data and people working on graph databases moved to particular applications like

special data, web, and documents. Further details about the historic evolution of graph databases

are provided in [3].However,along this period and since the eighties,the relational data model has

dominated database management systems for more than thirty years.It has proved to be a

powerful platform for business applications mainly for storing and retrievingdata. It is

characterized by its rigid schema and its well-known querying language SQL. The demand for

alternatives to the relational model has grown with the rise of social media and the increase of

massive and complex graph-like data introduced by the web. For example, Google, Facebook and

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

6

Amazon have long been generating massive amounts of graph-like data using countless numbers

of servers. Querying such data by a relational database system will need a complex SQL joins of

multiple distributed tables. Thus, querying such data by traditional database management systems

becomes impossible.Consequently, the limitations of traditional databasesto cover the

requirements of current application domains, has ledto the development of new technologies,

called NOSQL databases like Big Data and Graph Databases.

Recently, there is an interest to graph databases. This interest is due in part to the large amounts

of graph data introduced by the Web like social media and in another part to the increase of

applications that focus on the relationships between data more than on the data nodes. Moreover,

graph databases represent the natural way for modelling graph-like data. Compared to the others

NOSQL databases, graph databases are dedicate for managing higher level of data complexity.

[4]has categorized the NOSQL databases as in the figure 3.

Figure 3.Categorization of NOSQL databases[4].

The main advantages or the powerof graph databases are presented in [8] as follow:

� Performance: The Graph database performance increases when dealing with connected

data versus relational databases and NOSQL stores. In contrast to relational

databases,Graph database systems provide direct access to relationships and perform well

the join of multiple data sources.

� Flexibility: Graph database allows dynamic structure and schema i.e. we can add new

kinds of relationships, new nodes, and new subgraphs to an existing structure without

disturbing existing queries and application functionality.because of this flexibility, we

don’t have to model our domain in exhaustive detail ahead of time.

� Agility: Modern graph databases equip us to perform frictionless development and

graceful systems maintenance. In particular, the schema-free nature of the graph data

model empowers us to evolve an application in a controlled manner.

In addition, a graph database system is considered efficient if it supports selecting vertices by

their proprieties [6]. For example, in a social network, we may select vertices that might

represent people by their proprieties such as names, ages, etc.

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

7

4 QUERYING GRAPH DATABASES

Querying graph databases has started to be investigated some 25 years ago. Today, the

proliferation of applications that manage high linked data has imposed the resurgence of the issue

of how efficiently querying graph databases. Consequently, number of query languages and

algorithms for optimizing query in graph databases have recently developed. In this section, we

study the major techniques used to optimize queries in graph databases. We refer readers to [5]for

further detailsabout query languages for graph databases.

The following basic rule: "Every graph node contains a direct pointer to its adjacent elements and

no index lookups are necessary" make the apparent distinction between graph databases systems

and the traditional DBMS. Therefore, all query languages for graph databases are based on this

rule and the algorithms, studied for tens of years in graph theory, constitutes a solid root that

underline them.

[5]compares the efficiency of some query languages for graph databases. They have used a list of

queries as criteria of comparison. They classify the used queries into three approximate levels.

The lower level contains database API operations, called micro-operations, such as

"GetVertex/Edge" or "SetProperty". The intermediate level contains operations that aggregate

API calls, such as "Get Neighbors" or "Ingest". These operations are calledgraph operations. The

upper level corresponds to algorithms that express fundamental concepts in graph algorithms, but

are often not part of a graph API, such as "FindShortest-Path", "Compute Clustering Coefficient".

4.1 Graph query terminology

- Pattern :

A pattern graph (or pattern query) �	 = 	 (
� , ��)specifies the structural and semantic

requirements that a subgraph of G must satisfy in order to match the pattern �. The task is to find

the set � of subgraphs of � that "match" the pattern �. A graph �′	 = 	 (
′, �′) is a subgraph of �

if and only if
′	 ⊆ 	
 and �′	 ⊆ 	�[12]. Here we are based on the formal definition of graph

database in section 3.

The following example, provided in[13], presents a pattern query and the steps to execute it in the

context of social network whose graph database schema may corresponds to the model in figure

1: For a person �, find all of his ������ who have worked in �������	�������	� ℎ��" and

who have a ����� from ����ℎ	#��� �. For a query like this, we have to start from node �, visit

all its neighbors to check which of them had worked in�������	$������	� ℎ��", and then for

all those friends, visit their neighbors till we find a neighbor matching the predicate.

- Graph matching:

The goal of graph matching is to find occurrences of a specific pattern in a graph [12]. A match or

a partial match is as a set of edge pairs. Each edge pair represents a mapping between an edge in a

query graph and its corresponding edge in the data graph [14]. In simply form, a match is an

isomorphic subgraph[14]. Some researchers propose semantic matching approaches that attempt

to match graphs based on their meaning by taking into account vertex and edge types and

attributes as well as graph structure.

Conjunctive queries, regular path queries and conjunctive regular path queries, which are

presented in [5] and supported by most query languages in graph databases, are all forms of

pattern matching. Conjunctive queries correspond the simple definition of pattern cited above.

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

8

Regular path queries consists of finding all node pairs (x,y) such that there is a path, from node x

to node y, whosesequence of edge labels matches some pattern. This sequence of edges represents

the researched regular path. Conjunctive regular path queries are the combination of conjunctive

queries with the regular path ones.

- Graph mining:

Consists of finding a set of the most common or most "interesting" patterns in a graph [12]

- Continuous query:

Continuous queries are distinguished from ad-hoc query processing by their high selectivity, i.e.

they look for unique events. Their aim is to detect newer updates of interest and notify a listener

as soon as the query is matched. In this sense they are trigger-oriented[13].

- Aggregate queries or ego-centric queries:

Aggregate queries are used to calculate some proprieties of the graph. For some applications, they

store theiroutputson nodes, which are part of their inputs;however, for others they create new

nodes. Recently, aggregate queries have been used in [15], [16]to aggregate events coming from

sources nodes, called producers, and stored in graph nodes, called consumers. In this context, an

aggregate query is a producer of a single stream of events on a given topic from multiple sources.

4.2 Optimization techniques.

The major part of query optimization techniques in graph databases, and particularly those studied

in this section, are previously applied in traditional databases. The interest of studying them here

is to focus on the specificities of applying these techniques in graph databases and to describe the

new ones of them like graph sketching. In addition, we discuss these techniques in the next

section.

4.2.1 Data Distribution

This technique consists of partitioning data over several servers when it is infeasible to query and

store them on a single site. The aim is to improve query response time and to minimize the data

storage cost.Distribution has been extensively studied in traditional databases and often known as

data replication [17], [18], and then applied in MapReduce framework forstoring and managing

massive data[19], [20].

Graph databases are characterized by real-time data ingest, which make their schema dynamic,

and real-time querying. In addition, most queries in graph databases traverse edges to fetch

neighbor's information. For these reasons and because of the large size of graphs, theproblem of

optimally partitioning a graph into equal-sized or equal-weighted partitions while minimizing the

edges cut is NP-Hard. Consequently, graph partition techniques should found a good compromise

between reducing server communication cost, which is defined in most cases by the number of

edge-cuts, andreducing server-processing loads.

To do this, the studied works have applied different approaches thatdiverge in:

���� The number of steps of the partition algorithm.

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

9

���� The criteria used to partition

���� Update of the partition

���� Storage of auxiliary data

���� Replication

To construct partitions, most of the studied approaches are based on the community structure to

group the graph nodes. Community contains nodes and their neighbors.The aim is to reduce the

edge-cut load. This concept is strictly applied in [21], which imposes that all the neighbors of a

vertex % should be replicated locally in the same partition. Although this grantees the local

sematic, reduce edge-cut load but it increases the update load because of the high number of

replicated data. This constraint is mitigate in [13] where the authors have introduced a novel

parameter calledfairness requirementwhich is characterized by a threshold & ≤ 1 that means for

each vertex we require that at least a &	fraction of its neighbors be present locally in the same

partition.This fairness criterion is verified at the end of each repartitioning iteration. The approach

proposed in [13]begin with an initial partitioning based on a hash function. Then it calibrates the

result partitions by grouping together nodes having the same access pattern. Access pattern means

whether the read frequency of a vertex %is low or not. Moreover, the access pattern tells us about

the rate of read queries that ask both % and its neighbors. The access pattern is used by the system

to assign, for each partition, an update policy i.e. either up-to-date or lazy. The aim is to reduce

the partitioning cost.

The use ofnatural community structure topartition dynamic graph was also applied in[22], [23].

The partitioning approach presented in[22]start with initial partitions created by a hash function.

Then the incremental partitioning is done by migration of vertices from source partitions to

receiver ones. At each iteration, every vertex %should decide to migrateto a partition

containingsome of its neighbors or to remain in the current partition. But, in order to maintain a

balanced load of servers, % must stay in the current partition if this later contains some of %

neighbors. In [23], the authors propose a multi-level label propagation (MLP) method for graph

partitioning. Label propagation (LP), which was originally proposed for community detection in

social networks, is an iterative process. After assigning a unique label id to each vertex, the

process update the vertex label iteratively. In each iteration, a vertex takes the label that is

prevalent in its neighborhood as its own label. The process terminates when labels no longer

change. As a result, vertices that have the same label belong to the same partition.

In a recent work [24], a dynamic partitioning algorithm called lightweight repartitioner was

proposed. This approach overcomes the overload of incremental partitioning, characterizing the

previous approaches, and the limit of load imbalance, presented in some approaches. To perform

the incremental partitioning, the algorithm relies on a small amount of knowledge on the graph

structure called auxiliary data. These data represent the accumulated weight of vertices in each

partition and the number of neighbors of each hosted vertex in each partition. To guarantee a

balanced load between partitions, the proposed algorithm assign weights to vertex and partitions

based on the heuristic proposed in [25]. This heuristic consists of partitioning graph into)

partitions where the weight of a partition � is considered as the total weight of its vertices.

According to this heuristic, a partitioning solution is considered valid if the weight of each

partition is at most a factor * ≤ 1 away from the average weight of partitions. In other words,

each partition � of a graph �, should respect the following constraint:

+(�) ≤ * × ∑ +(%)/)-./(0) where +(�) and +(%) denote the weight of a partition � and vertex

%, respectively. The parameter *, which is in range [1,2] is called the imbalance load factor and

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

10

defines how imbalanced the partitions are allowed to be. When * = 1 then partitions are required

to be completely balanced (all have the same aggregate weights) and when * = 2 then this allows

the weight of one partition to be up to twice the average weight of all partitions.To calculate

vertex weights, the algorithm proposed in [24]was consider the read requests to a vertex %as its

weight.

Thus, graph-partitioning approaches should assign vertices to sites based on how much this

assignment will improve query response time. So, to expect this query time, the most of them

have consider the number of edge-cuts between partitions to simulate the query workload.

However, the contribution of the approach, presented in [26], is to take care of the hardware

features when expecting workload. In this contribution, the main factors to be considered are the

volume of transferred data, the network heterogeneity and the services provided by the underline

hardware architecture like the shared resource contention in multicore systems.

As we have seen in the above summary of the recent approaches of dynamic graph partitioning,

replication and incremental partitioning have been applied in the most of these approaches. The

role of replication is to reduce partition load and minimize the number of edge-cuts. The role of

incremental partitioning is to continually maintain balanced load between partition and to

improve the overall query response time. The advantage of Hermes [24], a system developed as

an extension to the open source Neo4j to support workload partitioning, is the fast and efficient

update of the partitionscheme. Another advantage of this system is the incremental integration of

news queries. It has joined the partitioning solution proposed in [13]. This feature represents the

limit of the solution proposed in [26]. The portioning solution proposed in [23]does not allow

replication, which represents its major limit.

4.2.2 Query decomposition and incremental processing

There is no much work in query decomposition and incremental processing in dynamic graph

area. Moreover, incremental processing and query decomposition are mainly devoted for graph

pattern matching [14], [27], [28]. Incremental processing is used as a technique to avoid running

complex queries from scratchon large graphs whenever they launched or the data graphs is

updated.The aim is to minimize unnecessary recompilation and improve response time. With each

new update on the data graph, the process of incremental processing checks to see if there are new

results to the designed queries. In the context of continuous queries, it notifies the listener when

there are new results forits queries. Otherwise,it plays the role of pre-processer for the

queries.The main idea of query decomposition technique is to split the original graph query into

subgraph ones. After finding matches for these subqueries, the process return up to assembly the

sub-results. Query decomposition and incremental processing are complementary techniques.

They are used separately in [27],[28] and combined in [14]. [27]presents incremental algorithms

for graph pattern matching and discusses their complexities.[28]implements a decomposition

based algorithm for searching a large static graph in a distributed environment.It splits any

matching query into a set of subquery graphs that can be efficiently processed via in-memory

graph exploration. The decomposition is well performed in order to avoid expensive join

operations when merging sub-results. Another advantage of this approach is that graph indexes

are unused which minimizes server loads. In contrast to these two works, [14] presents a complete

solution for optimizing queries by the use of decomposition and the incremental processing.

Another feature that distinguishes the later approach is the focus on continuous queries in

dynamic graph. In such situation (dynamic environment or streaming in general) the use of

indexation to accelerate queries will be a costly process since index should be update or

recomputed after each graph update. Also, the periodic preprocess of queries will be wasteful

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

11

especially when graph update are less frequent. The solution, proposed in [14], consists of an

incremental processing of queries. It consists of finding the set of matches that result from

updating the graph with a set of new updates, especially edge and vertex ingests.

The idea of the algorithm proposed in [14] is to decompose a graph query �4 into subgraphs.

Then we construct a binary tree called SJ-Tree so that each node of this treewill represent a

subgraph of �4 and that this subgraph, except those of the leaf nodes, corresponds to the

combination of the two subgraphs of their children nodes. So, the root node will corresponds to

�4. The nodes of this tree stores references to all their correspondent matches retrieved on the

dynamic graph. When a new edge is added to the data graph we check to see if there is a match to

be inserted to leaf nodes. When a new match is inserted we check to see if it can be combined

with any match of the sibling node. Each successful combination leads to the insertion of a larger

match at the parent node. This process is repeated recursively and it terminates either by a

complete matching in the root node or by a combination failure at any iteration of the algorithm.

A problem that faced this solution when decomposing graph query is that if we choose a small

subgraphs we undertake an overload of searching frequent matches. However, if we choose larger

subgraphs we undertake an overload of searching complex matches. To overcome this problem,

the authors of [14] have extended the original algorithm to consider lazy search of matches. The

idea is that, when a new edge is added to the graph data, we firstly searching the node (the

subgraph) with less probability (with high selectivity) to findmatches to it. If there is no match for

that node, we stop searching for the rest of subgraphs since a part of the query is not satisfied.

This algorithm performs well the decomposition but it suffer from the cost of managing auxiliary

data.

4.2.3 Graph sketching

This technique consists of summarizing the behavior of large dynamic graphs like social network and web

graphs. Dynamic graphs are characterized by a stream of edge insertions and deletions. Queries that are

interested in controlling graph behavior will be affected by this rapid change on the data structure.

Moreover, their repetitive execution on the data graph will be costly. So,the aim from creating a sketch is to

compute the proprieties of this evolving graph without dealing (storing, updating) with the entire graph and

then to enable effective query processing. The computed proprieties may be numbers of nodes and edges,

distances between edges, frequency of edges, …In other words, graph sketch are simply a synopsis data

structure that allows good approximations of the relevant properties of the data set[29].Consequently, graph

sketch are limited to serve aggregate-like queries or analytical requests. [30]proposes a graph sketch

method to estimate and optimize the response to basic queries on graph streams. The typical queries

considered in [30] are edge query and aggregate-subgraph query. Edge query allows to estimate the

frequency of particular edges in a graph stream. For example, in social network context, the estimation of

the communication frequency between two specific friends is an edge query. However, aggregate subgraph

query used to determinate the aggregate frequency behavior of constituent edges of a subgraph. For

example, in social network context, the estimation of the overall communication frequencies within a

community is an aggregate subgraph query.[29]proposessketch-based algorithms for estimating shortest

path distances, frequency of various subgraphs and sparsification. A recent sketch-based approach,

presented in [31], has used sketches in graph clustering. Graph clustering allows identifying communities

or dense subgraphs in the graph and it is important to network structure inference, anomaly detection, and

data mining.

4.2.4 Pre-processing aggregate queries.

Aggregate queries are characterized by a cost joins and a complex calculus. In traditional

databases, materialization has proven to be a good technique for optimizing response time of

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

12

aggregate queries. It allows pre-computing and storing their results, called views, to avoid re-

computing them whenever they are asked. However, this technique may be not efficient in

dynamic environments like graph databases and continuous stream. In dynamic environments,

materialized views need to be updated continually, which increases their maintenance cost and

decreases their efficiency.The previous technique, i.e. sketching and incremental processing may

be used to optimize aggregate queries. To the best of our knowledge, there is no complete

approach that optimizes aggregate queries regardless of its form or pre-process them. But, the

ego-centric aggregate queries, which is a special case of aggregate queries, were addressed in

[16], [15]. Ego-centric queries allow to a graph node, called consumer, to aggregate events from

others nodes, called producers. For example, in social network, usersare often interested in events

happening in the network but also physically close to them. So, theyare interested in an aggregate

over the current state or the recent history of their neighborhood's nodes. Both [16] and [15] have

addressed the issue of when the events should be transferred from the produces to the consumer.

The two possible ways are: either at query time or materialized in advance on the consumer. The

former way consists of traversing the producers at each read of the consumer. In [16], this way is

called pull task and it corresponds to an on-demand update of aggregate data. However, the later

one consists of pre-computing aggregate query answer at each new write in the producers. In [16],

this way is called push task and it corresponds to online update. [15]proposesto retrieve events

from high-rate producers at query time and materialize, in aggregation nodes, events that come

from high-rate producers. [16] proposes detailed solution that beginsby constructing an

aggregation overlay graph and then makes a decision for each node of this graph whether to

aggregate events on it (push decision) or not (pull decision). The aggregation overlay graph is

constructed to encode the computations to be performed when an update or a query is received.

The main advantage of the aggregation overlay graph is that it allows sharing partial aggregates

across different ego-centric queries. The decisions of materializing events on nodes are made

based on the cost of push and pull tasks. As we have seen, what distinguishes [16] from [15] is

the response to the issue of where do we store materialized data? For this reason, the solution of

[16] has integrated intermediate aggregation nodes.

5 DISCUSSION

As in traditional databases, queries in graph databases cover the transactional operations, known

in traditional databases, to add, delete, update and find entities. The underline data structure of

GDB allows running efficiently queries with complex joins, called patterns. Pattern matching is

the most query type required on graph database applications. They are considered as analytical

queries that allow online finding semantic relationships of baseline data in order to discover

knowledges from the data graph.Pattern matching may be processed in continuous way, where for

each new events we check if a new match of the pattern is reached. Therefore, compared to data

warehouse and big data, historic data have less importance in analytical queries in graph

databases.

Query optimization techniques, which are inspired from distribution systems, graph theory,

traditional databases and streaming domains,handle problems arisen from three characteristics of

graph databases: large volume of stored data, high-interconnected data and dynamic schema of

graph databases. Contrary to traditional databases, algorithms for optimizing graph queries have

arisen before the born of graph database systems. They have been widely discussed in graph

theory tens of years ago. They constitute a baseline for attempts of optimizing queries and

developing query languages for graph databases. These attempts are recent and with limited

number and until now there is no standard query language for graph databases.In this paper, we

have studied the query optimization techniques, which are recently developed on graph databases:

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

13

Structure distribution, query decomposition, incremental processing, sketching and

aggregations.These techniques may be complementary, i.e. any combination of them is possible

and may lead to good results. However, they suffer from constraints on the types of queries they

treated. For example, aggregations are limited to ego-centric queries, incremental processing are

limited to pattern matching,…. So, there is no technique developed to be used for all graph query

types. In addition to that and in most cases, auxiliary data represents a limit of these techniques,

which manage lot of such data to perform their tasks.

6 CONCLUSION

Graph databases represent an important requirement for applications that manage graph-like data.

Recently, these applications have been proliferated especially on the web, like social networks.

The concepts and algorithms of graph database area constitute an overlap between traditional

domains such as database and graph theory. The database community benefit from this

background to develop systems managing graph databases. In this paper, we have presented an

overview about graph databases. In particular, we have focused on the optimization techniques

used to improve query response time. Most of these techniques have been applied in traditional

databases and distributed systems such as query decomposition and pre-processing. We have

identified the specificities of their current use in graph database and their limits. We conclude that

the current use of all optimization techniques, studied in this paper,is limited to specific queries,

i.e. there is no general technique to optimize any type of query in graph database. Moreover, there

is no standard language to query graph database. Modeling database schema and decomposing

queries are the most topics addressed by researchers.To summarize, we say that this area is in its

beginning and much work is needed to satisfy the requirement of the recent applications and to

support their proliferation, especially, on the web.

REFERENCES

[1] R. H. Guting, "GraphDB: modeling and querying graphs in databases," In Proceedings of the 20th

International Conference on Very Large Data Bases (VLDB), p. 297–308, 1994.

[2] M. GRAVES , E. R. BERGEMAN and C. B. LAWRENCE, "Graph database systems for genomics,"

IEEE Eng. Medicine Biol. Special issue on Managing Data for the Human Genome Project 11, 6.,

1995.

[3] R. Angles and C. Gutierrez, "Survey of graph database models," ACM Comput. Surv., Vol. 40, No. 1,

pp. pp. 1-39, 2008.

[4] K. N. Satone, "Modern Graph Databases Models," International Journal of Engineering Research and

Applications , 2014.

[5] P. . T. Wood, "Query languages for graph databases," SIGMOD Rec Vol. 41, No. 1, pp. pp. 50-60,

2012.

[6] P. Macko, D. W. Margo and M. I. Seltzer, "Performance introspection of graph databases," in 6th

Annual International Systems and Storage Conference, Haifa, Israel , June 30 - July 02, 2013.

[7] P. Jadhav and R. Oberoi, "Comparative Analysis of Graph Database Models using Classification and

Clustering by using Weka Tool," International Journal of Advanced Research in Computer Science

and Software Engineering, pp. 438-445, Volume 5, Issue 2, February 2015.

[8] H. R. Vyawahare and P. P. Karde, "An Overview on Graph Database Model," International Journal of

Innovative Research in Computer and Communication Engineering, Vol. 3, Issue 8, August 2015.

[9] J. Reutter, Graph Patterns: Structure, Query Answering and Applications in Schema Mappings and

Formal Language Theory, PhD. Dissertation, University of Edinburgh, 2013.

[10] R. De Virgilio , A. Maccioni and R. Torlone, "Model-Driven Design of Graph Databases," in

Conceptual Modeling - 33rd International Conference, Atlanta, GA, USA, October 27-29, 2014.

International Journal of Database Management Systems (IJDMS) Vol.8, No.4, August 2016

14

[11] R. Angles, "A Comparison of Current Graph Database Models," Proceedings of the 2012 IEEE 28th

International Conference on Data Engineering Workshops (ICDEW '12), pp. 171-177, 2012.

[12] B. Gallagher, "Matching structure and semantics: A survey on graph-based pattern matching," AAAI

FS., vol. 6 , 2006.

[13] J. Mondal and A. Deshpande, "Managing large dynamic graphs efficiently," SIGMOD Conference ,

pp. 145-156, 2012.

[14] S. Choudhury, L. B. Holder, . G. J. Chin , P. Mackey, . K. Agarwal and J. Feo, "Query Optimization

for Dynamic Graphs," CoRR abs/1407.3745, 2014.

[15] A. Silberstein, J. Terrace, B. . F. Cooper and R. Ramakrishnan, "Feeding Frenzy: Selectively

Materializing Users’ Event Feeds," SIGMOD, 2010.

[16] J. Mondal and . A. Deshpande, "EAGr: Supporting Continuous Ego-centric Aggregate Queries over

Large Dynamic Graphs," in international conference on Management of Data, 2014.

[17] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and G. Alonso, "Database Replication Techniques:

a Three Parameter Classification," Proceedings of the 19th IEEE Symposium on Reliable Distributed

Systems (In SRDS '00) , 2000.

[18] M. C. MAZILU , "Database Replication," Database Systems Journal vol. I, no. 2, pp. 33-38, 2010 .

[19] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung and . B. Moon, "Parallel data processing with

MapReduce: a survey," SIGMOD Record 40(4), pp. 11-20, 2011.

[20] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters,"

Communications of the ACM - 50th anniversary issue: 1958 - 2008. Volume 51 Issue 1, January 2008

, 2008.

[21] J. M. Pujol , V. Erramilli , G. Siganos, X. Yang, N. Laoutaris , P. Chhabra and P. Rodriguez, "The

little engine(s) that could: scaling online social networks," SIGCOMM Comput. Commun. Rev., pp.

375--386, Vol 40. No. 4 . 2010.

[22] L. Vaquero, . F. Cuadrado , D. Logothetis and C. Martella, "Adaptive Partitioning of Large-Scale

Dynamic Graphs," Proceedings of the 4th annual Symposium on Cloud Computing (SOCC '13),

2013.

[23] L. Wang, Y. Xiao, B. Shao and H. Wang, "How to partition a billion-node graph," ICDE , pp. 568-

579, 2014.

[24] D. Nicoara , S. Kamali , K. Daudjee and L. Chen, "Hermes: Dynamic Partitioning for Distributed

Social Network Graph Databases," EDBT , pp. 25-36, 2015.

[25] B. W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning graphs," Bell System

Technical Journal, pp. pp. 291-307, Vol. 49, No. 2. (February 1970).

[26] A. Zheng, A. Labrinidis, P. . H. Pisciuneri, P. K. Chrysanthis and P. Givi, "PARAGON: Parallel

Architecture-Aware Graph Partition Refinement Algorithm," in EDBT 2016: 365-376, 2016.

[27] S. Yang, X. Yan, B. Zong and A. Khan, "Towards effective partition management for large graphs,"

SIGMOD Conference , pp. 517-528, 2012.

[28] F. Wenfei , L. Jianzhong, L. Jizhou , T. Zijing , W. Xin and W. Yinghui, "Incremental Graph Pattern

Matching," SIGMOD, pp. 925- 936, 2011.

[29] Z. Sun, H. Wang, H. Wang, B. Shao and J. Li, "Efficient Subgraph Matching on Billion Node

Graphs," VLDB Endowment, pp. 788-799, Volume 5 Issue 9, May 2012.

[30] K. J. Ahn, S. Guha and A. McGregor, "Graph Sketches: Sparsification, Spanners, and subgraphs,"

PODS, pp. 5-14, 2012.

[31] P. Zhao, C. C. Aggarwal and M. Wang, "gSketch: On Query Estimation in Graph Streams," VLDB

Endowment, pp. 193-204, Volume 5 Issue 3, November 2011.

