
International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

DOI: 10.5121/ijdms.2016.8501                                                                                                                        1 

 

A PRUDENT-PRECEDENCE CONCURRENCY 

CONTROL PROTOCOL FOR HIGH DATA 

CONTENTION DATABASE ENVIRONMENTS 
 

Weidong Xiong
1
, Feng Yu

2
, Mohammed Hamdi

1
 and Wen-Chi Hou

1 

1
Department of Computer Science, Southern Illinois University, Carbondale, IL 62901 

 

2
Department of Computer Science and Information Systems, Youngstown State 

University, Youngstown, OH 44555 
 

ABSTRACT 
 

In this paper, we propose a concurrency control protocol, called the Prudent-Precedence Concurrency 

Control (PPCC) protocol, for high data contention database environments. PPCC is prudently more 

aggressive in permitting more serializable schedules than two-phase locking. It maintains a restricted 

precedence among conflicting transactions and commits the transactions according to the serialization 

order established in the executions. A detailed simulation model has been constructed and extensive 

experiments have been conducted to evaluate the performance of the proposed approach. The results 

demonstrate that the proposed algorithm outperforms the two-phase locking and optimistic concurrency 

control in all ranges of system workload. 

KEYWORDS 

Concurrency Control, Serializability, Serialization Graph, 2PL 

   

1. INTRODUCTION 
 

During the past few decades, there has been much research on currency control mechanisms in 

databases. The two-phase locking (2PL) [7], timestamping [3, 4, 13], and optimistic algorithms 

[10] represent three fundamentally different approaches and they have been most widely studied. 

Many other algorithms are developed based on these or combinations of these basic algorithms. 

Bernstein et al. [2] contains comprehensive discussions on various concurrency control protocols. 
 

Optimistic concurrency controls (OCCs) have attracted a lot of attention in distributed and real-

time databases [5, 6, 8, 9, 11, 12] due to its simplicity and dead-lock free nature. Transactions are 

allowed to proceed without hindrance until at the end - the verification phase. However, as the 

resource and data contention intensifies, the number of restarts can increase dramatically, and 

OCCs may perform much worse than 2PL [1].  As for the timestamp ordering methods, they are 

generally more appropriate for distributed environments with short transactions, but perform 

poorly otherwise [14]. 2PL and its variants have emerged as the winner in the competition of 

concurrency control in the conventional databases [1, 5] and have been implemented in all 

commercial databases. 

Recent advances in wireless communication and cloud computing technology have made 

accesses to databases much easier and more convenient. Conventional concurrency control 

protocols face a stern challenge of increased data contentions, resulted from greater numbers of 

concurrent transactions. Although two-phase locking (2PL) [7] has been very effective in 

conventional applications, its conservativeness in handling conflicts can result in unnecessary 

blocks and aborts, and deter the transactions in high data-contention environment. 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

2 

In this paper, we propose a concurrency control protocol, called prudent-precedence concurrency 

control (PPCC), for high data contention database environments. The idea comes from the 

observations that some conflicting transactions need not be blocked and may still be able to 

complete serializably. This observation leads to a design that permits higher concurrency levels 

than the 2PL. In this research, we design a protocol that is prudently more aggressive than 2PL, 

permitting some conflicting operations to proceed without blocking.  We prove the correctness of 

the proposed protocol and perform simulations to examine its performance. The simulation 

results verify that the new protocol performs better than the 2PL and OCC at high data contention 

environments. This method is also simple and easy to implement. 

The rest of this paper is organized as follows. In Section 2, we introduce the prudent-precedence 

concurrency control protocol. In Section 3, we report on the performance of our protocol. 

Conclusions are presented in Section 4. 

2. THE PRUDENT-PRECEDENCE CONCURRENCY CONTROL 
 
 

To avoid rollback and cascading rollback, hereafter we assume all protocols are strict protocols, 

that is, all writes are performed in the private workspaces and will not be written to the database 

until the transactions have committed. 
 

2.1. Observations 
 

 

Our idea comes from the observation that some conflicting operations need not be blocked and 

they may still be able to complete serializably. Therefore, we attempt to be prudently more 

aggressive than 2PL to see if the rationalized aggressiveness can pay off. In the following, we 

illustrate the observations by examples. 
 

Example 1.  Read-after-Write (RAW). The first few operations of transactions T1 and T2 are 

described as follows: 
 
 

T1: R1(b) W1(a) ...,            T2: R2(a) W2(e) ... 
 
[[ 

where Ri(x) denotes that transaction i reads item x, and Wj(y) denotes that transaction j writes 

item y.  Consider the following schedule: 
 
 

R1(b) W1(a) R2(a) ... 
 
 

There is a read-after-write (RAW) conflict on data item “a” because transaction T2 tries to read 

“a” (i.e., R2(a)) after T1 writes “a” (i.e., W1(a)). In 2PL, T2 will be blocked until T1 commits or 

aborts. T2 can also be killed if it is blocked for too long, as it may have involved in a deadlocked 

situation. 
 
 

If we are a little more aggressive and allow T2 to read “a”, T2 will read the old value of “a”, not 

the new value of “a” written by T1 (i.e., W1(a)), due to the strict protocol. Consequently, a read-

after-write conflict, if not blocked, yields a precedence, that is, T2 precedes T1, denoted as T2 → 

T1. We attempt to record the precedence to let the conflicting operations proceed. 
 
 

Example 2. Write-after-Read (WAR). Consider the same transactions with a different schedule as 

follows. 
 

R1(b) R2(a) W1(a) ... 
 

Similarly, W1(a) can be allowed to proceed when it tries to write “a” after T2 has read “a” (R2(a)). 

If so, the write-after-read (WAR) conflict on item “a” produces a precedence T2 → T1 in the strict 

protocol. Note that T2 again reads “a” before T1’s W1(a) becomes effective later in the database. 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

3 

Precedence between two transactions is established when there is a read-after-write or write-after-

read conflict. Note that a write-after-write conflict does not impose precedence between the 

transactions unless that the item is also read by one of the transactions, in which case precedence 

will be established through the read-after-write or the write-after-read conflicts. 

Note that either in a read-after-write or write-after-read conflict, the transaction reads the item 

always precedes the transaction that writes that item due to the strict protocol. 

2.2. Prudent Precedence 
 

To allow reads to precede writes (in RAW) and writes to be preceded by reads (in WAR) without 

any control can yield a complex precedence graph. Detecting cycles in a complex precedence 

graph to avoid possible non-serializability can be quite time-consuming and defeat the purpose of 

the potentially added serializability. Here, we present a rule, called the Prudent Precedence Rule, 

to simplify the graph so that the resulting graph has no cycles and thus automatically guarantees 

serializability. 
 

Let G(V, E) be the precedence graph for a set of concurrently running transactions in system, 

where V is a set of vertices T1, T2, …, Tn, denoting the transactions in the system, and E is a set of 

directed edges between transactions, denoting the precedence among them. An arc is drawn from 

Ti to Tj, Ti → Tj, 1 ≤ i, j ≤ n, i ≠ j, if Ti read an item written by Tj, which has not committed yet, or 

Tj wrote an item (in its workspace) that has been read earlier by Ti. 
 
 
 

Transactions in the system can be classified into 3 classes. A transaction that has not executed 

any conflicting operations is called an independent transaction. Once a transaction has executed 

its first conflicting operation, it becomes a preceding or preceded transaction, depending upon 

whether it precedes or is preceded by another transaction. To prevent the precedence graph from 

growing rampantly, once a transaction has become a preceding (or preceded) transaction, it shall 

remain a preceding (or a preceded) transaction for its entire lifetime. 
 

Let Ti and Tj be two transactions that involve in a conflict operation. Regardless the conflict being 

RAW or WAR, let Ti be the transaction that performs a read on the item while Tj the transaction 

that performs a write on that item. A conflict operation is allowed to proceed only if the following 

rule, called the Prudent Precedence Rule, is satisfied. 
 

Prudent Precedence Rule: 
 

Ti is allowed to precede Tj or Tj is allowed to be preceded by Ti if  
 

(i) Ti has not been preceded by any transaction and 
 

(ii) Tj has not preceded any other transaction. 

 

Figure 1. The Precedence Graph 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

4 

We shall use Figure 1 to explain the properties of the resulting precedence graph for transactions 

following the Prudent Precedence Rule. It can be observed that the first condition of the rule 

(denoted by (i) in the rule) states that a preceded transaction cannot precede any transaction, as 

illustrated by the red arcs, marked with x, T7 to T1 and T3 to T4, in the figure, while the second 

condition (denoted (ii)) states that a preceding transaction cannot be preceded, as illustrated by 

the red arcs, marked with x, T1 to T2 and T7 to T1, in the figure. Since there cannot be any arcs 

between nodes in the same class and there is no arc from the preceded class to the preceding 

class, the graph cannot have a cycle. 
 

2.3. Prudent Precedence Protocol 
 

Each transaction is executed in three phases: read, wait-to-commit, and commit phases. In the 

read phase, transactions proceed following the precedence rule. Once a transaction finishes all its 

operations, it enters the wait-to-commit phase, waiting for its turn to commit following the 

precedence established in the read phase. Updates are written to the disk and transactions release 

resources in the commit phase.  In the following, we describe in details each phase. 
 

2.3.1. Read Phase 
 

A transaction executing a conflict operation with another transaction will be allowed to proceed if 

it satisfies the prudent precedence rules; otherwise, it will be either blocked or aborted. The 

transaction that violates the precedence rules is hereafter called a violating transaction. 

In the following, we show a situation with a violating transaction. 
 

Example 3. There are three transactions. Their operations and schedule are as follows. 
 

T1: R1(b) W1(a) ... 
 

T2: R2(a) W2(e) ... 
 

T3: R3(e) ... 
 

Schedule: R1(b) W1(a) R2(a) W2(e) R3(e) ... 
 

T2 → T1 is established when T2 reads “a”, and T2 becomes a preceding transaction. Later when T3 

tries to read “e” (R3(e)), the operation is suspended (denoted by R3(e) in the schedule) because T2, 

a preceding transaction, cannot be preceded. Thus, T3 becomes a violating transaction and needs 

to be blocked or aborted. 
 

The simplest strategy to handle a violating transaction, such as T3, is to abort it.  Unfortunately, 

aborts may waste the efforts that are already spent. Therefore, we prefer blocking with the hope 

that the violation may later resolve and the violating transaction T3 can still complete later. For 

example, T3 is blocked, i.e., R3(e) is postponed; if T2 eventually commits, then T3 can resume and 

read the new value of “e” produced by T2. The read/write with the Prudent Precedence Rule is 

summarized in Figure 2. 
 

 
 

Figure 2. Read/Write with Prudent Precedence Rule 

if there is a RAW or WAR conflict 

 

{ 

        if the prudent precedence rule is satisfied,  

                proceed with the operation; 

        else 

                abort or block; 

} 

 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

5 

Let us elaborate on the blocking of a violating transaction a bit. By allowing a violating 

transaction to block, a transaction can now either be in an active (or running) state or a blocked 

state. Although blocking can increase the survival rate of a violating transaction, it can also hold 

data items accessed by the violating transaction unused for extended periods. Therefore, a time 

quantum must be set up to limit the amount of time a violating transaction can wait (block itself), 

just like the 2PL. Once the time quantum expires, the blocked (violating) transaction will be 

aborted to avoid building a long chain of blocked transactions. 
 
 

Theorem 1. The precedence graph generated by transactions following the Prudent Precedence 

Rule is acyclic. 
 

Proof:  By the Prudent Precedence Rule, a preceding transaction cannot be preceded by another 

transaction. That is to say, in the precedence graph, there cannot be a precedence path with more 

than one edge. Therefore, there cannot be a cycle in the precedence graph following the Prudent 

Precedence Rule. As for violating transactions, they will either abort by timeouts or resume 

executions if the violation disappears due to the aborts or commits of the other transactions with 

which the transactions conflict. In either case, it does not generate any arcs that violate the 

Prudent Precedence Rule, and the graph remains acyclic.  
 

2.3.2. Wait-to-Commit Phase 
 

Once a transaction finishes its read phase, it enters the wait-to-commit phase, waiting for its turn 

to commit because transactions may finish the read phase out of the precedence order established. 

First, each transaction entering the wait-to-commit phase acquires exclusive locks on those items 

it has written in the read phase to avoid building further dependencies. Any transaction in the read 

phase wishes to access a locked item shall be blocked. If such a blocked transaction already 

preceded a wait-to-commit transaction, it shall be aborted immediately in order not to produce a 

circular wait, that is, wait-to-commit transactions wait for their preceding blocked transactions to 

complete or vice versa.  Otherwise, the blocked transaction remains blocked until the locked item 

is unlocked. Figure 3 shows the locking when a transaction accesses a locked item. 
 

 
 

Figure 3. Accessing Locked Items 
 

A transaction can proceed to the commit phase if no transactions, either in the read or the wait-to-

commit phase, precede it. Otherwise, it has to wait until all its preceding transactions commit. 
 

2.3.3. Commit Phase 
 

As soon as a transaction enters the commit phase, it flushes updated items to the database, 

releases the exclusive locks on data items obtained in the wait-to-commit phase, and also releases 

transactions blocked by it due to violations of the precedence rule. Figure 4 summarizes the wait-

to-commit and the commit phases. 
 

 

 

/* Ti is accessing an item x */ 

 if x is locked 

{ 

        if x is locked by a transaction preceded by Ti 

                abort Ti; 

        else 

                block Ti (until x is unlocked); 

 } 

read/write with the Prudent Precedence Rule (Figure 2); 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

6 

Example 4. Suppose that we have the following transactions, T1, T2: 
 

T1: R1(a), R1(b) 
 

T2: R2(b), W2(a), W2(b) 
 

Assume that the following is the schedule: 

R1(a), R2(b), W2(a), W2(b), [wc2], R1(b) abort1, wc2, c2 

When T2 writes “a” (W2(a)), T1 → T2 is established, due to an earlier R1(a). So, when T2 reaches 

its wait-to-commit phase, denoted by wc2, it locks both “a” and “b”. However, T2 has to wait until 

T1 has committed or aborted, denoted by [wc2], due to the established precedence T1 → T2. Later, 

when T1 tries to read “b”, it is aborted, as indicated by R1(b) and abort1, because “b” is locked by 

T2, as stipulated in Figure 3.  Now no transaction is ahead of T2, so it can finish its wait phase 

(wc2) and commits (c2). 

 

 

Figure 4. Wait-to-Commit and Commit Phases 

2.4. Serializability 

A history is a partial order of the operations that represents the execution of a set of transactions 

[5]. Let H denote a history. The serialization graph for H, denoted by SGH, is a directed graph 

whose nodes are committed transactions in H and whose edges are Ti → Tj (i ≠ j) if there exists a 

Ti’s operation precedes and conflicts with a Tj’s operation in H. To prove that a history H is 

serializable, we only have to prove that SGH is acyclic. 
 

Theorem 2: Every history generated by the Prudent Precedence Protocol is serializable. 

Proof: The precedence graph is acyclic as proved in Theorem 1. The wait-to-commit phase 

enforces the order established in the precedence graph to commit. So, the serialization graph has 

no cycle and is serializable.  
 

3. SIMULATION RESULTS 
 

This section reports the performance evaluation of 2PL, OCC, and the Prudent Precedence 

Concurrency Control (PPCC) by simulations. 
 

3.1. Simulation Model 
 

We have implemented 2PL, OCC, and PPCC in a simulation model that is similar to [1]. Each 

transaction has a randomized sequence of read and write operations, with each of them separated 

by a random period of a CPU burst of 15 ± 5 time units on average. The randomized disk access 

time is 35 ± 10. All writes are performed on items that have already been read in the same 

transactions. All writes are stored in private work space and will only be written to the database 

after commits following the strict protocol. 

 

 

/* when a trans. Ti reaches its wait-to-commit phase */ 

Wait-to-Commit Phase: 

  Lock items written by Ti; 

  Ti waits until all preceding transactions have committed or aborted; 

Commit Phase: 

  Flush updated items to database; 

  Release locks; 

  Release transactions blocked by Ti; 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

7 

3.2. Parameter Settings 
 

Our goal is to observe the performance of the algorithms under data and resource contentions. 

The write operations cause conflicts and thus data contentions. Therefore, we shall experiment 

with different write probabilities, 20% (moderate), and 50% (the highest), to observe how the two 

algorithms adapt to conflicts. Other factors that affect the data contentions are database sizes and 

transaction sizes.  Therefore, two database sizes of 100 and 500 items, and two transaction sizes 

of averaged 8 and 16 operations will be used in the simulation. 
 

To observe the effect of the resource contention, we report the results of simulations in which one 

with 4 CPUs and 8 Disks (denoted as 4/8 in Table 1) and the other 16 CPUs and 32 disks (16/32). 

Table 1 summarizes the base parameter settings that underline the simulation. 
 

Table 1. Parameter Settings 

 

Database size 100, 500 items 

Average transaction size 8 ± 4,  16 ± 4 operations 

Write probability 20%, 50% 

Num. of CPUs/Disks 4/8, 16/32  

CPU burst 15 ± 5 time units 

I/O access time 35 ± 10 time units 

 

Transactions may be blocked in 2PL and PPCC to avoid generating cycles in the precedence 

graphs. Blocked transactions are aborted if they have been blocked longer than specified periods. 

We have experimented with several block periods and select the best ones to use in the 

simulations. 
 

The primary performance metric is the system throughput, which is the number of transactions 

committed during the period of the simulation. 
 

3.2. Experimental Results 
 

In this section, we report the simulation results on the three protocols based on the above setups. 
 

3.2.1. Data Contention 
 

As mentioned earlier, the data contention is mainly caused by the write operations. If transactions 

have no writes, there will be no conflicts and all three protocols will have identical performance. 

Given the same write probability, the greater the transaction sizes, the greater the numbers of 

write operations are in the system, and thus the higher the data contentions are. On the other hand, 

given the same number of write operations, the smaller the database size, the greater the chance 

of conflicts, and thus the higher the data contentions are. Here, we will see how these factors 

affect the performance of the two protocols. 
 

We experimented with two database sizes, 100 items and 500 items, and two transaction sizes, 

averaged 8 and 16 operations in each transaction. The experimental results in this subsection were 

obtained with the setup of 4 CPUs and 8 Disks. The simulation time for each experiment is 

100,000 time units. 
 

• Write probability 0.2 
 

Given the write probability 0.2, each transaction has on average one write operation for every 

four reads. 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

8 

Figures 5 and 6 show the performance for transactions with averaged 8 (8 ± 4) operations for two 

databases of sizes 500 (Figure 5) and 100 (Figure 6). As observed, as the level of concurrency 

increased initially, the throughput increased. At low concurrency levels, all protocols had similar 

throughputs because there were few conflicts. But as the concurrency level increased further, 

conflicts or data contention intensified and the increase in throughput slowed down a bit. After a 

particular point, each protocol reached its peak performance and started to drop, known as 

thrashing. 

 

0 10 20 30 40 50 60 70 80 90

1000

1200

1400

1600

1800

2000

2200

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 5. Write Probability 0.2, Transaction Size 8, DB Size 500 

 

For database size 500 (Figure 5), the highest numbers of transactions completed in the given 

100,000 time unit period were 2,271 for PPCC, 2,189 for 2PL, and 1,733 for OCC, that is, a 

3.75% and 31.04% improvements over 2PL and OCC, respectively. 
 

0 10 20 30 40 50 60

700

800

900

1000

1100

1200

1300

1400

1500

1600

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 6. Write Probability 0.2, Transaction Size 8, DB Size 100 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

9 

 

In Figure 6, the database size was reduced to 100 items to observe the performance of these 

protocols in a high data contention environment. The highest numbers of completed transactions 

were 1,625, 1,456, and 1,121 for PPCC, 2PL, and OCC, respectively, i.e., an 11.61% and 44.96% 

higher throughputs than 2PL and OCC. This indicates that PPCC is more effective in high data 

contention environments than in low data contention environments, which is exactly the purpose 

that we design the PPCC for. 
 

Now, we increase the average number of operations in each transaction to 16 while maintaining 

the same write probability 0.2.  Figures 7 and 8 show the results. 
 

0 10 20 30 40 50 60

400

450

500

550

600

650

700

750

800

850

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 7. Write Probability 0.2, Transaction Size 16, DB Size 500 
 

0 5 10 15 20 25 30

200

250

300

350

400

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 8. Write Probability 0.2, Transaction Size 16, DB Size 100 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

10 

 

For database size 500 (Figure 7), the highest throughput obtained by PPCC was 866, while 2PL 

peaked at 789 and OCC at 597. PPCC had a 9.76% and 45.06% higher throughputs than 2PL and 

OCC. As for database size 100 (Figure 8), the highest throughputs obtained were 394, 331, and 

297 for PPCC, 2PL and OCC, respectively. PPCC had a 19.03% and 32.66% higher throughputs 

than 2PL and OCC. 
 

In general, as the data contention intensifies, PPCC has greater improvements over 2PL and OCC 

in performance. 
 

• Write probability 0.5 
 

With the write probability 0.5, every item read in a transaction is later written too in that 

transaction. Figures 9 and 10 show the throughput of the three protocols with the average number 

of operations set to 8 per transaction. 
 

0 10 20 30 40 50 60 70 80 90

1000

1200

1400

1600

1800

2000

2200

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
Figure 9. Write Probability 0.5, Transaction Size 8, DB Size 500 

 

0 10 20 30 40 50 60

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
Figure 10. Write Probability 0.5, Transaction Size 8, DB Size 100 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

11 

The highest numbers of transactions completed during the simulation period (Figure 9) were 

2,301 for PPCC, 2,259 for 2PL, and 1,825 for OCC for database size 500, a slight improvement 

over 2PL(1.86%), but  a much larger improvement over OCC (26.08%). As the database size 

decreased to 100 (Figure 10), the highest numbers of completed transactions were 1,553, 1,506, 

and 1,148 for PPCC, 2PL, and OCC, respectively, that is, a 3.12% and 35.28% higher throughput 

than 2PL and OCC, due to the higher data contentions. 
 

Figures 11 and 12 show the throughputs of the three protocols with the number of operations per 

transaction increased to 16. 
 

The highest numbers of transactions completed during the simulation period (Figure 11) were 796 

for PPCC, 780 for 2PL, and 562 for OCC for database size 500, a 2.05% and 41.64% 

improvements over 2PL and OCC. As the database size decreased to 100 (Figure 12), the highest 

numbers of completed transactions were 343, 303, 283 for PPCC, 2PL,  and OCC, respectively, 

that is, a 13.2% and 21.20% higher throughputs than 2PL and OCC. 
 

0 10 20 30 40 50 60

300

350

400

450

500

550

600

650

700

750

800

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 11. Write Probability 0.5, Transaction Size 16, DB Size 500 
 

0 5 10 15 20 25
150

200

250

300

350

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 12. Write Probability 0.5, Transaction Size 16, DB Size 100 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

12 

In very high data contention environments, few transactions can succeed, as illustrated in Figure 

12. This indicates that there is still room for improvement in designing a more aggressive 

protocol that allows more concurrent schedule to complete serializably. 
 

3.2.2. Resource Contention 
 

As the hardware cost becomes cheaper and cheaper, a database can afford more CPUs and disks. 

Here, we examine how resource abundance can affect the three protocols. The experimental 

results in this subsection were obtained with the setup of 16 CPUs and 32 Disks. The simulation 

time for each experiment is 100,000 time units. For simplicity, we present only the cases with 

transaction size equal to 8. 
 

• Write probability 0.2 
 

0 20 40 60 80 100 120 140 160 180

1000

2000

3000

4000

5000

6000

7000

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 13. Write Probability 0.2, Transaction Size 8, DB Size 500 
 

For database size 500 (Figure 13), the highest numbers of transactions completed in the given 

100,000 time unit period were 6,793 for PPCC, 6,287 for 2PL, and 4,650 for OCC, that is an 

8.05% and 46.09% improvements over 2PL and OCC, respectively. 
 

0 10 20 30 40 50 60 70 80 90 100

1000

1500

2000

2500

3000

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
Figure 14. Write Probability 0.2, Transaction Tize 8, DB Size 100 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

13 

In Figure 14, the database size was reduced to 100 items to observe the performance of the two 

protocols in a higher data contention environment. The highest numbers of completed 

transactions were 2,936, 2,400, and 2,413 for PPCC, 2PL, and OCC, respectively, i.e., a 22.33% 

and 21.67% higher throughputs than 2PL and OCC. This again indicates that PPCC is more 

effective in higher data contention environments than in lower data contention environments. 
 

• Write probability 0.5 
 

The highest numbers of transactions completed during the simulation period (Figure 15) were 

6,659 for PPCC, 6,267 for 2PL, and 4,818 for OCC for database size 500, a 6.25% and 38.21% 

improvements over 2PL and OCC, respectively. As the database size decreased to 100 (Figure 

16), the highest numbers of completed transactions were 2,784, 2,227, and 2,459 for PPCC, 2PL, 

and OCC, respectively, that is, a 25.01% and 13.22% higher throughput than 2PL and OCC, due 

to the higher data contentions. 

0 20 40 60 80 100 120 140 160 180

1000

2000

3000

4000

5000

6000

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o
m

p
le

te
d
 T

ra
n
s
a
c

ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 15. Write Probability 0.5, Transaction Size 8, DB Size 500 
 

0 10 20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Concurrency Level

N
u
m

b
e
r 

o
f 

C
o

m
p
le

te
d
 T

ra
n
s

a
c
ti
o
n
s

Throughput

 

 

2PL

PPCC

OCC

 
 

Figure 16. Write Probability 0.5, Transaction Size 8, DB Size 100 

 



International Journal of Database Management Systems ( IJDMS ) Vol.8, No.5, October 2016 

14 

It is noted in Figures 14 and 16, OCC outperformed 2PL when the database sizes are 100. This is 

because restarts (or aborts) in OCC become more beneficial than long waits in 2PL when 

resources are abundant. Since PPCC allows more schedules to complete, it alleviates the adverse 

effect of long waits and performs better than both OCC and 2PL.  
 

4. CONCLUSIONS 
 

The proposed protocol can resolve conflicts successfully to a certain degree. It performed better 

than 2PL and OCC in all the tested situations. It has the best performance when conflicts are not 

extremely severe, for example, in situations where transactions are not very long and write 

probabilities are not too high. Further research is still needed to allow more concurrent 

serializable schedules to complete while keeping the protocols simple. 
 

REFERENCES 
 

[1] Agrawal, R., Carey, M. J., & Livny, M. (1987). Concurrency control performance modeling: 

Alternatives and implications. ACM Transactions on Database Systems, 12(4), 609-654.  

[2] Bernstein, P. A., Hadzilacos, V., & Goodman N. (1987). Concurrency Control and Recovery in 

Database Systems, Reading, MA: Addison-Wesley. 

[3] Bernstein, P. A., & Goodman, N. (1980). Timestamp-based algorithm for concurrency control in 

distributed database systems. In Proceedings of the 6th International Conference on VLDB: Vol. 6 

(pp. 285-300). Montreal, Quebec, Canada. 

[4] Bernstein, P. A., Rothnie, J. B., Jr., Goodman, N., & Papadimitriou, C. A. (1978). The concurrency 

control mechanism of SDD-1: A system for distributed databases. IEEE Transaction on Software 

Engineering SE-4(3), 154 -168. 

[5] Carey, M. J. & Livny, M. (1988). Distributed concurrency control performance: A study of 

algorithms, distribution, and replication. In F Bancilhon & D. J. DeWitt (Eds.), 14th International 

Conference on VLDB (pp. 13-25). Long Beach, CA, USA.  

[6] Ceri, S., & Owicki, S. (1982). On the use of optimistic methods for concurrency control in distributed 

databases. In Proceedings of the 6th Berkeley Workshop on Distributed Data Management and 

Computer Networks (pp. 117-130). Asilomar, CA, USA. 

[7] Eswaran, K. P., Gray, J. N., Lorie, R. A., & Traiger, I. L. (1976). The notions of consistency and 

predicate locks in a database system. Communications of the ACM, 19(11), 624-633. 

[8] Haerder, T., (1984). Observations on optimistic concurrency control schemes. Information Systems, 

9(2), 111-120. 

[9] Haritsa, J. R., Carey, M. J., & Livny, M. (1990). Dynamic real-time optimistic concurrency control. 

In ,” In Proceedings of the 11th Real-Time Systems Symposium (pp. 94-103). Lake Buena Vista, FL, 

USA. 

[10] Kung, HT., & Robinson, J. T. (1981). On optimistic methods for concurrency control. ACM 

Transactions on Database Systems, 6(2), 213-226. 

[11] Lam, K. W., Lee, V. C.S., Lam, K. Y., & Hung, S. L. (1996). Distributed real-time optimistic 

concurrency control protocol. In Proceedings of the 4th International Workshop on Parallel and 

Distributed Real-Time Systems (pp. 122-125). Honolulu, Hawaii, USA. 

[12] Mullender, S. J., & Tanenbaum, A. S. (1985). A distributed file service based on optimistic 

concurrency control. In Proceedings of the 10th ACM Symposium on Operating System Principles 

(pp. 51-62). Orcas Island, WA, USA. 

[13] Reed, D. P. (1983) Implementing atomic actions on decentralized data. ACM Transactions on 

Computer Systems, 1(1), 3-23. 

[14] Ryu, K., & Thomasian, A. (1987). Performance analysis of centralized databases with optimistic 

concurrency control. Performance Evaluation, 7(3), 195-211. 

 


