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ABSTRACT 

 
For partially replicated distributed database systems to function efficiently, the data (relations) and 

operations (subquery) of the database need to be located, judiciously at various sites across the relevant 

communications network.The problem of allocating relations and operations to the most appropriate sites 

is a difficult one to solve so that genetic algorithms based on migration are proposed in this research. In 

partially replicated distributed database systems, the minimization of total time usually attempts to 

minimize resource consumption and therefore to maximize the system throughput. On the other hand, the 

minimization of response time may be obtained by having a large number of parallel executions to different 

sites, requiring a higher resource consumption, which means that the system throughput is reduced. 

Workload balancing implies the reduction of the average time that queries spend waiting for CPU and I/O 

service at a network site, but its effect on the performance of partially replicated distributed database 

systems cannot be isolated from other distributed database design factors. In this research, the total cost 

refers to the combination of total time and response time. This paper presents a framework for total cost 

minimization and workload balancing for partially replicated distributed database systems considering 

important database design objectives together. The framework incorporates both local processing, 

including CPU and I/O, and communication costs. To illustrate its suitability, experiments are conducted, 

and results demonstrate that the proposed framework provides effective partially replicated distributed 

database design. 
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1. INTRODUCTION 
 
Two important aspects for design of partially replicated distributed database systems are data 

allocation and operation allocation. Data allocation is to allocate  relations to  sites  so  that  

the  performance  of  distributed  database  are  improved. Operation allocation refers to 

query execution plan indicating which operations (sub queries) should be allocated to which sites 

in a computer network, so that query processing costs are minimized. The allocation of relations 

can be either non-replicated or replicated. In non-replicated allocation, each relation is mapped to 

exactly one site. In replicated allocation each relation is mapped to one or more sites. Replicated 

allocation can be either fully replicated or partially replicated to a system. A fully replicated 

database system refers to a system where a complete copy of the relation exists at every site in the 

system. In a partially replicated database system, copies of relations exist at some of the sites in 

the system. The replication of relations can improve data availability and reliability in the event 

of site failures and decrease the response time for queries partly through parallel query execution. 

The replication of relations, however, will increase the data storage cost and the transmission cost 
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for updates because some relations need to be updated simultaneously, which also incurs a 

communication overhead for concurrency control. Obviously, the advantage of full replication is 

that queries may be completely executed at one of the sites in the network without incurring any 

communication overhead. 

 

In partially replicated distributed database systems, the minimization of total time usually 

attempts to minimize resource consumption and therefore to maximize the system throughput. In 

other words, if the usage of resources (CPUs, I/Os, and communication channels) for a given 

transaction is minimized, more transactions can be processed for a given time period, which in 

turn means that the system throughput is increased. On the other hand, a decrease in response 

time may be obtained by having a large number of parallel executions to different sites, requiring 

a higher resource consumption, which means that the system throughput is reduced as shown by 

[5]. In this research, the total cost refers to the combination of total time and response time. The 

workloads represent the amount of services at a network site expressed in terms of the CPU and 

I/O loads when executing a query. Workload balancing implies the reduction of the average time 

that queries spend waiting for CPU and I/O services at a site so that the queuing delays at the 

network site are minimized as shown by [3], [4], [6] and [13]. 

 

In a fully replicated distributed database system, arriving transactions can be serviced at any sites. 

In a partially replicated distributed database system, however, arriving transactions should be 

routed (allocated) to the site owning the referenced relation for processing. In other words, the 

data allocation scheme gives to some extent limitations on decision choices in developing 

workload balancing schemes. In a partially replicated distributed database system, this means that 

data allocation and workload balancing are not independent. We, therefore, believe that in a 

partially replicated distributed database system the workload balancing issue should be taken into 

account in the early design step of data allocation according to [12]. In this paper, we propose a 

framework for total cost minimization and workload balancing as important design factors 

together. In this research, the total cost refers to the combination of total time and response time. 

In order to construct the framework for total cost minimization and workload balancing, we 

consider total cost minimization as the primary objective and workload balancing as the 

secondary objective for partially replicated distributed database design.  

 

In this research, we propose migration based genetic algorithms to explore the interactions not 

only between total cost minimization operation allocation and data allocation, but also between 

workload balancing and data allocation. During the last-three decades there has been a glowing 

interest in algorithms which rely on analogies to natural processes. The emergence of massively 

parallel computers made these algorithms of practical interest. The best known algorithms in this 

class include genetic algorithms, simulated annealing, classifier systems, and neural networks as 

shown by [8]. Genetic algorithms are heuristic solutions that have been used to solve intractable 

problems in distributed database systems as shown by [1],[2], [9] and [11]. When compared to 

other heuristic algorithms as demonstrated in [8] and enumerative techniques, genetic algorithms 

provide global ‘optima’ in much less time as shown by [10]. 

 

This paper is organized as follows. Section 2 has discussion of cost models for genetic 

algorithms. In Section 3, the framework for total cost minimization and workload balancing is 

described in detail using the migration based genetic algorithms. In Section 4, the illustration of 

genetic algorithm procedures is presented. In section 5, experiments and their results are 

presented. Section 6 provides conclusions. 
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2. DEVELOPMENT OF COST MODELS FOR GENETIC ALGORITHMS 
 

2.1. TOTAL TIME MODELS 
 

The total time for each query is the sum of local processing times and communication times for 

all subqueries.  Total Time= (LP +  COM )j
k

 j
k

j∑ , where j
k

LP  represent the local processing 

time of the subquery j (a node in the query tree in Figure 2) of a query k. j
k

COM  represents the 

communication time of transmitting the input relation(s) to the site at which the sub query j of a 

query k is being executed. 

 

2.1.1. LOCAL PROCESSING TIME ( j
k

LP ) 

 
The local processing time of a subquery depends on an operation type, the size of the input 

relation(s), the CPU speed and the I/O speed of the site selected. We assume that CPU processing 

is proportional to the amount of data accessed and that I/O time is proportional to the number of 

blocks read or written.  

 

(A) For a selection or projection on a relation, the local processing time for the subquery j of the 

query k is defined as:    

 

j
k

LP = Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+ )                            (1) 

 

whereBij

k
  is the number of blocks of relation i accessed by subquery j of query k, 

IO t is the I/O time of site t in msec for transferring 4k byte page into mainmemory, 

CPUt is the CPU time of site t in msec per 4k byte page for selection and/or projection. 

 

(B) We also assume that the intermediate result of each unary or join operation is transmitted 

directly to the next join site and stored at the next join site before the execution of the next join 

operation. As such, the local processing time for the join j of the query k is defined as: 

 

j
k

LP =  Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑  +                (2a) 

Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k
∑ ∏ ∏+ )                            (2b) 

 

whereρm  represents the selectivity of the two previous operations (m = 1 or 2), and where the 

selectivity is the ratio of output relation size and input relation size, Bijp[m]

k
is the size of an input 

(intermediate) relation where p[m] represents two previous operations of the join operation j (m is 

1 for the left and 2 for the right operation). 

 

Note that ρm  can represent selection, projection or join selectivity. (2a) represents the I/O time to 

store the intermediate results of the previous operations to the site of the current join operation. 

(2b) represents the I/O and CPU processing times for the current join operation. Note that we 

convert Bijp[m]

k
 (the size of intermediate results being stored at the join site) to Bij

k
 (the size of 

same intermediate results being retrieved for the current join operation) for notational 

convenience so that Bij

k
 will be used for the next join operation with the join selectivity of the 

current join operation. 
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2.1.2. COMMUNICATION TIME ( j
k

COM ) 

 

When either of the relation(s) to be joined is not produced at the site at which the join operation is 

performed, communication for join operations is needed, and is expressed as follows: 

 

j
k

COM  = Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑ )
 

 

whereC tp is the communication cost between site p and site t in msec per 4k byte page. 

 

Note that if a previous operation and the join operation are executed at the same site (t=p), then 

Ctp =0. Communication for sending the final result is also needed if the final operation is not 

performed at the query originating site. Since there is only one previous operation for the final 

operation, we assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0). It should be noted that we 

consider communication cost to include data transmission cost. However, in real world, 

communication cost may also include time to synchronize the two CPUs. In this research, we 

ignore this synchronization time, since this is usually a fixed overhead cost and it is not variable 

like data transfer cost. 

 

2.2. RESPONSE TIME MODEL 
 
In a partially replicated distributed database system, it is possible to decompose a query into 

subqueries that can be processed in parallel and also their intermediate relations can be 

transmitted in parallel to the required site. Two types of parallel execution are possible: (1) intra-

operation parallelism, and (2) inter-operation parallelismas shown by [5]. A typical example of 

intra-operation parallelism is pipelining of a single join operation, by which two sites work in 

parallel; that is, the site that request remote data will begin its join processing as soon as the first 

tuple or packet of data has arrived, whereas in sequential processing, the site receiving data will 

not begin its join processing until all of the required data has arrived. Inter-operation parallelism 

refers that several subqueries in a single query can be executed in parallel. In this research we 

assume the join operation is performed using the sequential processing method, and we are 

concerned only with parallelism in a single query, not among multiple queries. 

 
Response time is calculated by taking into consideration the possibility of performing local 

processing and data transmission in parallel under the condition that the operations are performed 

at different sites as mentioned in the previous section. The response time of query k is: 

 

Response time RT
k

j  = COM (p[1])j

k
+ LP

k

j (p[1]) + RT
k

j (p[1]) 

 

where RT
k

j (p[1])is the recursive function for the response time. 

 

The first term COM (p[1])j

k
 is to calculate the communication time sending the results to the 

query originating site ( ijp[2]
k

Z  for all i is 0 and Bijp[2]

k
 = 0) and the LP

k

j (p[1]) refers to the local 

processing time of the final operation. For the recursive function RT
k

j (p[1]) (but we will use RT

k

j for convenience), we calculate the cost as follows. Four scenarios exist depending upon sites at 

which the join operation j and the two preceding operations p[1] and p[2] are executed. 

 

 

 



International Journal of Database Management Systems ( IJDMS ) Vol.9, No.3, June 2017 

5 

2.2.1. SCENARIO – 1 

 

The join operation j and the sites two preceding operators p[1] and p[2] areexecuted at the same 

site; that is, 0 CYY tp

k

jp[2]t

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[1]t = and 0 CYY tp

k

jp[2]t

k

jt = then RT
k

j  can be 

calculated by using the equation. 

 

LP
k

j  + ∑m

k

j  (p[m]LP + (p[m])RTk

j ) 

 

Here, LP
k

j is the local processing time for sub query j, (p[m])LP
k

j is the local processingtime for 

the preceding left (m=1) or right (m=2) operation (i.e. subsub query). These local processing 

times are calculated using the equations introduced in the previous section. (p[m])RTk

j is the 

(response) time when a preceding operator is available for local processing. 

 

2.2.2. SCENARIO –2 

 
The join operation j and the two preceding operators p[1] and p[2] are performed at three 

different sites. In this case the three operators can be run in parallel. Then the response time of the 

entire group is computed as the maximum of resource consumption of individual operators and 

the usage of all the shared resources (such as communication times) [6]. Then 
k

jRT is given by 

 

Max { ,LPk

j                       (3a) 

(p[1])LPk

j + (p[1])RTk

j ,                     (3b) 

(p[2])LPk

j + (p[2])RTk

j ,                                  (3c) 

COM (p[1])j

k
+  COM (p[2])j

k
}                     (3d) 

 

where COM (p[1])j

k
 = )BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t ∑  

 COM (p[2])j

k
 = )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t ∑
 

 

In the above, (3d) represents shared resource consumption, which is the communication time. (3a) 

is the local processing time for sub query j and (3b) and (3c) are the processing times for the two 

preceding operations of sub query j. The communication costs will be additive, since those are the 

overheads on the receiving node, as represented by (3d). 

 

2.2.3. SCENARIO –3 
 

The sites at which two preceding operations of sub query j are performed are different and the 

join sub query j uses one of these sites. There is no communication cost between one of the 

preceding operators, say p[1], and the operator j. That is, 0 CYY tt

k

jt

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[2]p ≠ and 

0 CYY tp

k

jp[2]p

k

jp[1]t ≠ , then 
k

jRT  is given by: 

 

Max  {
k

jLP  + (p[1])LPk

j + (p[1])RTk

j ,                                                 (4a) 

(p[2])LPk

j + (p[2])RTk

j ,                             (4b)

COM (p[2])j

k
}                 (4c) 
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whereCOM (p[2])j

k
 = )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑
 

 

In the above since sub query j and the left previous operation p[1] are executed at the same site, 

the local processing times of the two sites need to be added (4a). Since right previous operation 

p[2] is executed at a different site, its local processing time (included in (4b)) can be executed in 

parallel. In addition, the communication time (4c) can be implemented in parallel as well. 

 

2.2.4. SCENARIO – 4 
 

In secenario-4, the two preceding operations of subquery j, p[1] and p[2], are executed at the 

same site, while the  subquery j is executed at a different site. There is communication time 

involved in shipping data from both the preceding operations p[1] and p[2] to the site of subquery 

j. That is, 0 CYY tp

k

jt

k

jp[1]p ≠ , 0 CYY tp

k

jt

k

jp[2]p ≠ and 0 CYY pp

k

jp[2]p

k

jp[1]p = . Also, there will be no 

parallelism between the operations p[1] and p[2]. Then 
k

jRT  is given by 

 

Max  {
k

jLP ,                            (5a) 

(p[1])LPk

j + (p[2])LPk

j + (p[1])RTk

j + (p[2])RTk

j ,          (5b) 

COM (p[2])j

k
+ COM (p[2])j

k
}            (5c) 

where (p[1])COMk

j  = )BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p ∑  

     
COM (p[2])j

k
 = )BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑
 

 

In the above, since subquery j is executed at a different site than the preceding operators, its local 

processing of subquery j (5a) can be done in parallel to the communication time (5c) and the 

processing times of p[1] and p[2] . Since the preceding operators are executed at the same site, 

their local processing times are additive (5b). Also, the communication costs will be additive, 

since those are the overheads on the receiving node. Above equations hold whether previous 

operations are joins, selections, or projections, or other relational algebra operators. 

 

The stopping condition of the recursive function RT is as follows. We define: if p[m] in ijp[m]
k

Z  is 

equal to zero in the response time recursive function, where zero for p[m] means that the previous 

operation for this operation j (subquery) is original relation. In scenarios 2 and 3, parallelism 

between the preceding operations p[1] and p[2] is implied. It is assumed there is no clash in data 

access between the two preceding operations, i.e. i

k

ij

k

ij   0  (p[2]) Z* (p[1])Z ∀= , otherwise local 

processing times can be additive in the worst case. 

 

2.3. QUERY TREE AND UPDATE TREE MODEL FOR UPDATE TRANSACTION 
 

A query tree is illustrated in the query part in Figure 1. A node is called a leaf node (F1 and F2) if 

it has no incoming arcs; that is, it represents the relations in the database. A node is called an 

operation node (nodes 1, 2 and 3) if it has incoming and outgoing arcs. The operation nodes 

represent the relational operations. The operation nodes such as 1 and 2 represent a unary 

operation such as selection, projection or a combination of both, and the operation node such as 3 

represents a binary operation such as join or union. Sometimes a binary operation is performed on 

an input relation directly without any unary operation(s), and in this case the unary operation 

node connected to the corresponding input relation is called a dummy operation node. An 

operation node without any outgoing arcs is called a result node (node 4). An arc represents the 

transmission of a (intermediate) relation into the operations, such as f3, f4 and f5.  
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There is a site set associated with each node in the query tree. The members of the site set for a 

leaf node are those sites that hold a copy of that relation. The site set for an operation node 

contains those sites that can perform the operation. In general, selection and projection operations 

requiring relations should be executed at only those sites that hold a copy of relations referenced 

so that there is no transmission of a relation required at the site of the operations, but join 

operations can be executed at any site. 

 

3

1 2

f3

f5

f4

F1 F2

4

F2F1

F3 F4
Update

Query

Part

Part

L1 L2

 
 

Figure 1.  Query Tree for Update Transaction 

 

An update transaction may be viewed as a two-part action, wherein the first part corresponds to a 

query transaction, followed by the second part which updates the value of a set of relations, as 

shown in Figure 1. The simplified SQL statement for the update query tree Figure 1 may be as 

follows: 

 

� UPDATE   F3, F4 Alias F 

� SET       F.z = F.z * 1.1 

� WHERE F.k In (SELECT  k 

FROM   F1, F2 

WHERE  F1.x = F2.y) 

 

In the second part of an update transaction, the update values (L1 and L2, which are the same as 

the intermediate relation f5 resulting from the final operation 3 in Figure 1) resulting from the 

first part must be sent from the update initiation site (site for operation 4 in Figure 1) to all sites 

that have a copy of the relation being updated, and then the relation must be updated at each site 

(for example, two copies of F3 and three copies of F4 in Figure 1), which incurs CPU and I/O 

costs at each site. In Figure 1, two relations 1 and 2 are referenced by the query part of update 

transaction, and then both relations are updated according to the update value resulting from the 

query part. 

 

2.3.1. COST MODELS FOR UPDATE TRANSACTION 

 
As mentioned in the previous section, the total cost for executing all query (either OLTP or 

decision-support) and update transactions against a particular data allocation scheme will 

determine the goodness of its data allocation scheme, and it is represented as follows: 

 

   Total Cost = F(k, t)Q(k, t) +  F(u, t)U(u, t)
tk tu∑∑ ∑∑  
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Where F(k,t) and F(u,t) are the frequencies of query k originating at site t and update u originating 

at site t per unit time, and Q(k,t) and U(u,t) are the cost of query k and update u transactions 

originating at site t. Our objective is to minimize this total cost. 

 

We now define the update transaction cost model. Before describing the cost model, we first 

introduce one more variable iU , specifying relations updated by the update transaction. iU is 1 if 

relation i is updated by the update transaction; otherwise, it is 0. The update transaction cost is 

defined as follows: 

 

U(u,t) = Q(u,t) +   

C U X Ltp i it iipt ∑∑∑ +                                       (1) 

(IO  U X B  +  CPU  U X B )t i it i

u

tit i it i

u

i∑∑ ∑  +                              (2) 

IO  U X Ltt i it ii∑ ∑                                  (3) 

 

Where 

 

Bi

u
is the number of blocks of relation i updated by update u, 

Li is the update value in number of blocks for the relation i, which is the same as the final result 

from the query part Q(u,t), 

IO t is the I/O cost coefficient (speed) of site t in msec per page (4k bytes), 

CPUt is the CPU cost coefficient (processing speed) of site t in msec per page (4k bytes), 

C tp is the communication cost coefficient (channel speed) between site t and site p in msec per 

page (4k bytes), 

Xit  represents data allocation; relation i is stored at site t. 

 

Note that calculation of query execution time for the query part Q(u,t) of the update transaction is 

exactly the same as that of the total time model (see below for details). The reason for using the 

total time model for Q(u,t) is that the update transactions typically occurred in the 

DEBIT/CREDIT type of transactions in the banking industry, which in general require high 

throughput. Therefore, the calculation of Q(u,t) is the same as Q(k,t) of total time introduced in 

Chapter V. In the formula, (1) represents the communication cost for sending the update values 

(Li) from the update initiation site to all sites that have the copy of the relation being updated; (2) 

represents I/O cost for reading the required relation into main memory and CPU cost for 

processing the update; and (3) represents the update cost for writing the updated values back to 

disk. Calculation of Q(u,t) is as follows: 

 

Q(u,t) = (LP +  COM )j
k

 j
k

j∑                                  (1) 

j
k

LP = Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+ )                                 (2) 

j
k

LP = Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑  +                          (3a) 

Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∏ ∏+ )                       (3b) 

j
k

COM  = Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑ )                             (4) 

 

Where 

 

j
k

LP represents the local processing time of the subquery j of a query k. 
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j
k

COM represents the communication time of transmitting the input relation(s) to the site at which  

the subquery j of a query k is being executed. 

Bij

k
is the number of blocks of relation i accessed by subquery j of query k. 

Bijp[m]

k
is the size of an input (intermediate) relation where p[m] represents two previous 

operations of the join operation j: m is 1 for the left previous operation, and 2 for the right 

previous operation. 

ρm represents selectivity of the two previous operation (m = 1 or 2), and selectivity refers to the 

ratio of relation size reduction after an operation. 

jt
k

Y represents operation allocation and is 1 if subquery j of query k is done at site t; otherwise, it 

is 0. 

jp[m]t
k

Y is 1 if the left (m = 1) or right (m = 2) previous operation for join operation j of query k is 

done at site t; otherwise, it is 0. 

ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k. 

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m = 2) 

previous operation for join operation j of query k; otherwise, it is 0. 

 

(1) represents the total query execution time for the query part Q(u,t) of the update transaction 

and is the sum of all local processing times and communication times. (2) represents the local 

processing time for the subquery j of the query k when the subqueries are unary operations such 

as the selection or projection operation. (3a) represents the I/O time in storing the intermediate 

results of previous operations to the site of the current join operation before the execution of the 

join. (3b) represents the I/O and CPU processing times for the current join operation. (4) 

represents the communication time for join operations when either of the (intermediate) 

relation(s) to be joined is not produced at the site at which the join operation is performed. (4) is 

also used for the communication time for sending the final result if the final operation is not 

performed at the query originating site. Since there is only one previous operation for the final 

operation, we assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0). 

 

2.4. COST MODEL FOR WORKLOAD BALANCING 
 

We define the unbalanced factor (UBF) as the sum of the absolute deviation of site workloads 

from the average network load. The objective function for workload balancing is then defined to 

minimize UBF. Minimization of UBF gives a load distribution that has approximately balanced 

the network load. Note that if the network load among sites is balanced totally (all site have the 

same workload), the absolute deviation becomes zero. The objective function is defined as 

follows. 

 

Minimize UBF = LI  -  LI  +  LC  -  LCt avt t avt∑ ∑  

subject to        LI  =  
1

N
 LIav tt∑  

LC  =  
1

N
 LCav tt∑

 
 

Where LI t  and LC t  represent the I/O and CPU workloads (I/O and CPU times), respectively, at 

the site t; LIav  and LCav  represent the average I/O and CPU workloads (I/O and CPU times), 

respectively, in the entire database; N represents the number of sites. We now define LI t  and 

LC t  as follows: 
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(1) For a selection or projection, 

LI t  = F(k, t) Y  IO  Z  Bjt

k

jk t ij

k

i ij

k

∑∑ ∑  

LC t  = F(k, t) Y  CPU  Z  Bjt

k

jk t ij

k

i ij

k

∑∑ ∑  

(2) For a join,  

LI t  = F(k, t) Y  IO  Z  B
k jt

k

j t im m ijp[m]

k

ijp[m]

k

∑ ∑ ∑∑ ρ  +  

F(k, t) Y  IO  Z  Bjt

k

jk t ij

k

i ij

k

∑∑ ∏  

LC t  = F(k, t) Y  CPU  Z  Bjt

k

jk t ij

k

i ij

k

∑∑ ∏
 

 

Where 

 

F(k, t)represents the frequency of query k originating at site t, 

jt
k

Y represents operation allocation, and is 1 if subquery j of query k is done at site t, otherwise it 

is 0, 

ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k, 

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m = 2) 

previous operation for join operation j of query k, otherwise it is 0, 

IO t is the I/O cost coefficient (speed) of site t in msec per page (4k bytes), 

CPUt is the CPU cost coefficient (processing speed) of site t in msec per page (4k bytes), 

Bij

k
is the number of blocks of relation i accessed by subquery j of query k, 

Bijp[m]

k
is the size of an input (intermediate) relation where p[m] represents two previous 

operations of the join operation j: m is 1 for the left previous operation, and 2 for the right 

previous operation, and 

ρm represents the selectivity of the two previous operation (m = 1 or 2), and the selectivity refers 

to the ratio of relation size reduction. 

 

(3) For the update part of an update transaction, 

 

LI t  = F(u, t) IO  U X B  t i itiu i∑∑ + F(u, t) IO  U X L  t i itiu i∑∑  

LC t  = F(u, t) CPU  U X B  t i itiu i∑∑  
 

Where 

 

F(u, t) represents the frequency of update originating at site t, 

Xit represents data allocation; relation i is stored at site t, 

Bi

u
is the number of blocks of relation i updated by update u, and 

Li is the update value in number of blocks for the relation i, which is the same as the final result 

from the query part of an update transaction. 

 

Note that the query part of an update transaction is the same as (1) and (2) above. 

 

3. FRAMEWORK FOR TOTAL COST MINIMIZATION AND WORKLOAD  

BALANCING 
 

As described in the previous section, workload balancing can be used as the sole objective for the 

operation allocation as opposed to total cost minimization, and in our case, the total cost is the 



International Journal of Database Management Systems ( IJDMS ) Vol.9, No.3, June 2017 

11 

combination of total time and response time. Our purpose, however, is to use workload balancing 

as the secondary objective for the data allocation while keeping total cost minimization as the 

primary objective. In order to accomplishthis objective, we employ four algorithms: one for the 

operation allocation whose objective is minimizing the total cost, one for workload balancing 

whose work workload depends on the optimized operation allocation resulted from the operation 

allocation algorithm, and two for the data allocation. The framework is proposed that these four 

algorithms interact with each other as shown in Figure 2. 

 

In order to obtain better data allocation in terms of total cost as well as workload balancing, each 

step in the framework is adopted to use the genetic algorithm. Four genetic algorithms interact 

with each other according to the following steps: 

 

(1) GA I produces the initial data allocation population by using binary strings. Note that the 

fitness of GA I is the total cost. 

(2) GA II also produces the initial data allocation population, but by using a different random 

number seed (for example, 0.5) from the one (for example, 0.1) used for GA I. Note that the 

fitness of GA II is UBF. 

(3) For each chromosome (data allocation scheme) from GA I, find the best operation 

allocation for each query (or query part of an update) by using GA III. In this step we obtain 

the fitness for each data allocation scheme in terms of the total cost. 

(4) For each chromosome (data allocation scheme) from GA II, find the best operation 

allocation for each query (or query part of an update) by using GA IV. In GA IV, the best 

operation allocation for each query is obtained in terms of the total cost like GA III. But, 

once the best operation allocation for each query has been obtained, UBF is calculated for 

each data allocation scheme (chromosome of GA II) based on the best operation allocation 

obtained. So in this step we obtain the fitness for each data allocation scheme in terms of 

UBF based on the best operation allocation. 

 

Data Allocation
Total Cost Minimization

Operation Allocation for

Operation Allocation for

Load balancing

Migration

(GA I)
(GA III)

(GA IV)

Data Allocation

(GA II)

Total cost

UBF

 
 

Figure 2. Framework for Total Cost Minimization and Workload Balancing  

Using Migration Based Genetic Algorithms 

 

 (5) Once all fitnesses (total costs) for GA I and (UBFs) GA II have been determined, the 

migration of selected chromosomes between GA I and GA II takes place. The number of 

chromosomes to be migrated is selected according to the random number which is always 

less than one-half of the total number of population, and these chromosomes are then 

selected based on their fitness (from the best one) in the current population of GA I and GA 

II respectively. Then the best chromosomes selected from GA I are migrated into the 

population of GA II, and at the same time the same number of the worst fitness 

chromosomes in GA II are removed from the population in GA II. The same migration 
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procedure occurs from GA II to GA I. The forced migration occurs at each generation 

during one-half of the total number of generations, and at the generation when the best 

fitness is not changed for three consecutive generations during subsequent generations. The 

reason to make the forced migration occur at the higher frequency during early generation 

and slow subsequent generation is that during early generation, there are not many 

differences between GA I and GA II in terms of total cost and UBF; but during later 

generation, since chromosomes in GA I and GA II are already optimized in terms of total 

cost and UBF, respectively, the migrated chromosomes do not make any significant 

contribution. The migration employed in this research, therefore, allows GA I to create as 

many diverse chromosomes as possible during early generations. 

(6) Steps 3, 4, and 5 are repeated until the GAs I and II have reached the maximum number of 

generations. The intended data allocation we are looking for is the best fitness chromosome 

in GA I. The best solution in GA I will have not only the optimized total cost but also the 

better UBF, if not the optimized one, than the solution derived from the genetic algorithms. 

 

4. ILLUSTRATION OF GENETIC ALGORITHM PROCEDURE 
 
We use the same example used in [11] to illustrate the migration based genetic algorithms 

proposed in this research.We consider five relations as follows: 

 

 Faculty(F#, Fname, Dept) 

 Students(S#, Sname, Major) 

 Courses(C#, Cname, Dept, Credits) 

 Enrolls(S#, C#, Grade) 

 Advises(F#, S#) 

 

We assume that the length of attributes measured in bytes is as follows: 

 

  F# (15), Fname (20), S# (15), Sname (20), Major (10),  

  C# (8), Cname (20), Dept (30), Credits (2), Grade (2) 

 

The database statistics for five relations are as shown in Table 1 and the size of page block is 

assumed to be 4k bytes. We assume that the database consists of four sites and that the cost 

coefficients for each component are as shown in Table 2.The following SQL statements are used 

to illustrate the genetic algorithm procedure. 

 

SQL Statement 1: 

 SELECT STUDENTS.S#, STUDENTS.Sname, COURSES.Cname 

 FROM  STUDENTS, COURSES, ENROLLS 

 WHERE STUDENTS.Major = 'CIS' 

 AND  ENROLLS.Grade> 'C' 

 AND    STUDENTS.S# = ENROLLS.S# 

 AND      ENROLLS.C# = COURSES.C# 

SQL Statement 2: 

 SELECT FACULTY.Fname, STUDENTS.Sname 

 FROM  FACULTY, STUDENTS, COURSES, ENROLLS 

 WHERE  ADVISES.S# = STDUENTS.S# 

 AND    COURSES.C# = ENROLLS.C# 

 AND  ENROLLS.Grade< 'C' 

 OR    STUDENTS.Major = 'CIS' 

SQL Statement 3: 

 UPDATE STUDENTS 
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 SET   Major = 'CIS' 

 WHERE  FACULTY.F# = ADVISES.F# 

 AND    STUDENTS.S# = ADVISES.S# 

 AND  STUDENTS.Major = 'UNDECLARED' 

 AND  FACULTY.Fname = 'BOB SMITH' 

 

As explained in the previous section, the high-level SQL statement can be transformed into the 

query tree, and the corresponding query tree for each SQL statement is shown in Figure 3. For the 

purpose of showing the calculation of the size of intermediate results for SQL statement 1, 

suppose that the allocation of the relations to sites is as follows: Relation (F1) is stored in sites 1 

and 2, relation (F2) at sites 2 and 3, relation F3 is stored at sites 3 and 4.It is assumed that the 

query-originating site is 4, and it is the node 6 in Figure 3.By using simple estimation techniques, 

the results of each operation execution are as follows: 

 

(Note that ρs , ρp  and ρ j : the selectivity for selection, projection and join respectively) 

operation 1: σgrade > 'C' (Enrolls)  f 4⇒  (63 x 0.8 (ρs) = 51 blocks) 

operation 2: ΠC#, Cname Courses   f 5( ) ⇒  (8 x 0.47 (ρp) = 4 blocks) 

operation 3: σmajor ='CIS' (Students)  f 7⇒  (225 x 0.05 (ρs) = 12 blocks) 

operation 4: f 4 f5  f6c#=c# >< ⇒ (f4 x f5 x ρ j
 = 51 x 4 x 0.1 = 20 blocks) 

operation 5: f 6  f 7  f8S# = S#>< ⇒  (f6 x f7 x ρ j  = 20 x 12 x 0.1 = 24 blocks) 

 
Table 1. Relation Statistics 

 

Relation No. RelationNa

me 

Cardinality Tuple Size Size (bytes) Size (blocks) 

F1 Faculty 500 65 32,500 9 

F2 Students  20,000 45 900,000 225 

F3 Courses  500 60 30,000 8 

F4 Enrolls 50,000 25 1,250,000 313 

F5 Advises 20,000 30 600,000 150 

 
Table 2. Cost Coefficients for Example 

 

 Site 

  1 2 3 4 

Communication 1 0 13 12 11 

Coefficients 2 13 0 11 12 

 3 12 11 0 13 

 4 11 12 13 0 

I/O Coefficients 20 19 18 21 

CPU Coefficients 1 1 1 1 

 

The results of the above size estimation for SQL statement 1 are shown in Figure 3. From the 

query tree, input(intermediate) relations used for each subquery are shown in Table 3. For 

example, the Enrolls relation is used by the operation 1 ( ij
k

Z  where i = 1 and j = 1), and the 

intermediate relations 4 and 5 are used by the operation 4 ( ijp[m]
k

Z  where i = 4 and j = 4 for p[1], 

and i = 5 and j = 4 for p[2]), etc.In case of SQL statement 2, the size estimation of intermediate 

results is as follows: 
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operation 1: σ πcname Databases Courses= ' ' ( ) c# &   (Courses)  -> f6; 

                     8 x 0.01 (ρs) x 0.03 (ρp
) = 1 

operation 2: σ πgrade c< ' ' ( ) s#,c#Enrolls  &   (Enrolls)  -> f7 

                     313 x 0.2 (ρs) x 0.92 (ρp ) = 58 

operation 3: σ πmajor cis= ' ' ( s#,snameStudents) &   (Students)  -> f8 

                     225 x 0.05 (ρs) x 0.78 (ρp )= 9 

operation 4: Dummy -> f9 (size of Advises: 150) 

operation 5: f 6 f 7c#=c# ><  -> f10 

                     1 (f6) x 58 (f7) x 0.01 (ρ j) = 1 

operation 6: f8 f 9s#=s# ><  -> f11 

                    9 (f8) x 150 (f9) x 0.01 (ρ j) = 14 

operation 7: f10 f11s#=s# ><  -> f12 

                     1 (f9) x 14 (f10) x 0.01 (ρ j) = 1 

 

We assume that SQL statement 1 is an OLTP (Online Transaction Processing) type query so that 

its execution order results in the left deep query tree; that SQL statement 2 is a DSS (Decision 

Support System) type query so that its execution order results in the bushy query tree; and that 

SQL statement 3 is the update query tree (the query part of update is the OLTP type, so the left 

deep tree is used), and their corresponding query trees are as shown in Figure 4. So for this simple 

example problem, the objective function is to minimize a linear combination of total time 

andresponse time, in which the ratio of total time minimization and response time minimization is 

one to one. We assume that the frequencies of queries 1, 2, and update 3 are 3, 1, and 2, and the 

transaction originating site is assumed to be 4, 3, and 1 respectively. 

 

4.1. INITIAL SOLUTION POOL 

 
We first generate the initial solution pools (populations) for GA I and II using the probability 0.2 

in order to get the genetic algorithms started with the best initial solution pools. Table 4 shows 

 

Table 3. Input relation(s) used by subqueries ( ij
k

Z and ijp[m]
k

Z ) 

 

(Intermediate) Subquery 

Relation 1 2 3 4 5 6 

    1 2 1 2 1 

1 1 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 

5 0 0 0 0 1 0 0 0 

6 0 0 0 0 0 1 0 0 

7 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 1 
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Figure 3. Query Trees for SQL Statements 

 

the initial solution pools for GA I, and Table 5 shows those for GA II. Note that the fitness in 

Table 4 is calculated in terms of total cost while that in Table 5 is in terms of UBF. 

 
Table 4. Initial Solution Pool for GA I 

 

Solution # Solution Total Cost UBF Fitness 

 F1  F2  F3 F4  F5    

1 0001 1000 1000 1000 1000 136396 138241 0.733 

2 0001 1000 1000 0010 0001 133166 123071 0.750 

3 0100 0001 1000 0010 0011 131528 135748 0.760 

4 1000 0010 1010 0001 0010 130198 150728 0.768 

5 1000 0100 0100 1000 0001 135178  71058 0.739 

6 1010 0001 1100 0100 0001 136724  72802 0.731 

7 1000 0100 1000 1000 0100 133934  95256 0.746 

8 0010 0001 0010 0010 0010 131296 142643 0.761 

9 0011 0101 0001 0100 0001 143308 117358 0.697 

10 0010 0010 1010 0001 0001 133430 139326 0.749 
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Table 5. Initial Solution Pool for GA II 

 

Solution # Solution Total Cost UBF Fitness 

 F1  F2   F3  F4  F5    

1 1000 0010 0001 1000 0010 150148 129334 0.066 

2 1000 1001 0001 0010 0100  58677 142037 0.170 

3 1010 0010 0010 1010 1000 176918 128140 0.056 

4 0001 0110 0100 0001 1010 144968 139438 0.068 

5 0010 1000 0100 1000 0100  72417 135664 0.138 

6 0100 0010 0100 1000 0100  83986 131524 0.119 

7 0010 0001 1000 1000 0100  21050 137376 0.475 

8 0100 0001 0100 1000 0100  20743 137380 0.482 

9 0010 0001 0010 0001 0001 147299 139394 0.067 

10 1000 0100 1000 0001 0010  80677 133014 0.123 

 
Table 6. Operation Allocation for Solution #5 

 

SQL Number Frequency OperationAllocation Time Remarks 

1 3 12233 22,423 Total Time 

2 1 2124133 31,097 Response Time 

3 2 24133 

----- 

13,874 

4,532 

Query Part 

Update Part 

 

The total cost for the data allocation scheme (solution #5 in Table 6) is the sum of all transaction 

execution costs, which is 135178. Based on these operation allocations, we then can calculate 

UBF for solution #5. Table 7 shows I/O and CPU loads for each operation at each site.  The 

resulting I/O and CPU loads are given as: LIav  = 33939,  LI1  = 6199, LI2  = 907, LI3  = 

32931, LI4  = 27639, and LCav  = 1659.5, LC1 = 331.5, LC2 = 172.5, LC3 =1518.5, LC4 = 

1359.5. Based on these results, the unbalanced factor (UBF) for the solution #5 is equal to 71058. 

 

4.2. MIGRATION 

 

As explained in the previous section, the forced migration of selected chromosomes between GA 

I and GA II occurs at each generation during the first half of the total number of generations. As 

an example, suppose that the number of chromosomes to be migrated is three. Then the solution 

pools in GA I and GA II are sorted according to their fitnesses. Solutions 4, 8, and 3 are the three 

best chromosomes in GA I, whereas solutions 8, 7, and 2 are the three best chromosomes in GA 

II, and solutions 9, 1, and 5 are the worst chromosomes in GA I, whereas solutions 3, 1, and 9 are 

the worst chromosomes in GA II. Therefore, chromosomes 4, 8, and 3 are migrated into GA II 

while removing chromosomes 3, 1, and 9 in GA II, and at the same time chromosomes 8, 7, and 2 

are migrated into GA I while removing chromosomes 9, 1, and 5 in GA I. This completes the 

migration procedure, and the selection, crossover, and mutation are performed based on these 

new populations at the next generation. 

 

4.3. FINAL SOLUTION POOL 
 

Tables 8 and 9 illustrate the final solution pools for GA I and GA II at the 20th generation, 

respectively. They show that the total costs resulting from GA I are less than those from GA II 

whereas the UBFs resulting from GA II are much less than those from GA I. Since the purpose of 

this research is to obtain the best data allocation whose primary objective is total cost 
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minimization while load balancing is the secondary objective, the solutions 5, 7, and 10, which 

are the same, are the best data allocation scheme, and its total cost is 125332 and UBF 200884. 

 

5. EXPERIMENTS AND RESULTS 
 

In this section, we investigate how the data allocation pattern and the unbalanced factor are 

changed when a different objective function is used.We also investigate the effect of migration 

between two genetic algorithms. We will discuss this effect in terms of the total cost as well as 

the unbalanced factor.  

 
Table 7. I/O and CPU Loads at Sites (I/O Load / CPU Load) 

 

 Operation                        site 

SQL  No. 1 2 3 4 

1 1 18780/939    

 2  456/24   

 3  12825/675   

 4   13986/612  

 5   14688/720  

2 1  152/8   

 2 6260/313    

 3  4275/225   

 4    0/0 

 5 2340/58    

 6   27162/1350  

 7   522/14  

3 1  8550/450   

 2    6300/300 

 3 360/18    

 4   9036/442  

 5   1476/40  

 Update  4294/225   

Total Load 27740/1328 34864/1832 66870/3178 6300/300 

UBF at Site 6199/331.5 907/172.5 32931/1518.5 27639/1359.5 

 
Table 8. Final Solution Pool for GA I 

 

Solution # Solution Total Cost UBF Fitness 

 F1 F2  F3  F4  F5    

1 0100 0010 0010 0010 0011 125372 200132 0.797 

2 0010 0010 0001 1000 0010 129274 150792 0.773 

3 1000 0010 1100 0010 0010 125548 199008 0.796 

4 0100 0010 0010 0010 0100 127654 134034 0.783 

5 0010 0010 0010 0010 0010 125332 200884 0.797 

6 1000 0010 1000 1000 0010 129298 150106 0.773 

7 0010 0010 0010 0010 0010 125332 200884 0.797 

8 1000 0010 0100 1000 0010 129262 150063 0.773 

9 0100 0010 1000 0010 0010 125564 198943 0.796 

10 0010 0010 0010 0010 0010 125332 200884 0.797 
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Table 9. Final Solution Pool for GA II 

 

Solution # Solution UBF TotalCost Fitness 

 F1 F2  F3  F4  F5    

1 1000 0001 1000 1000 0100 15417 137436 0.648 

2 1000 0001 1000 1000 0100 19979 137436 0.500 

3 0100 0001 1000 1000 0100 20014 137416 0.499 

4 0100 0001 1000 1000 0100 20365 137416 0.491 

5 1000 0001 1000 1000 0100 15417 137436 0.648 

6 1000 0001 1000 1000 0100 19979 137436 0.500 

7 1000 0001 1000 1000 0100 15417 137436 0.648 

8 1000 0001 1000 1000 0100 15417 137436 0.648 

9 1000 0001 1000 1000 0100 20330 137436 0.491 

10 1000 0001 1000 1000 0100 19979 137436 0.500 

 

Finally, we compare two data allocation genetic algorithms, one using only interaction between 

total cost minimization operation allocation and data allocation (referred to as GA I/III) and one 

using only interaction between workload balancing operation allocation and data allocation 

(referred to as GA II/IV), using three different objective functions: total time, response time, and 

the combination of both. 

 

For all experiments, we assume that the communication speed between any two pairs of sites is 

identical, which is set at 2.0. The processing speeds of all sites are also assumed to be identical, 

and are set I/O and CPU at 0.1 and 1.2, respectively. The configuration of the distributed database 

is assumed to consist of five sites and seven relations. 

 

5.1. EFFECT OF OBJECTIVE FUNCTION 

 

The research questionsinvestigated are as follows, and they are reiterated in terms of the 

unbalanced factor: 

 

(1) for the total time minimization problem, the execution time can be minimized when queries 

are executed by using the smallest set of sites, which in turn means data themselves should 

be allocated to as few sites as possible. 

(2) response time minimization can be obtained by having a large number of parallel local 

processing and transmissions at different sites as much as possible, which in turn mean data 

should be allocated to as many sites as possible. 

(3) When the two objectives above are combined, data allocation should find a compromise 

suitable for total time minimization and response time minimization. 

 

The above statements imply that the unbalanced factor for the data allocation scheme resulting 

from total time minimization should be larger than that of the data allocation scheme from 

response time minimization. And the unbalanced factor for the data allocation scheme resulting 

from minimization of a combination of total time and response time should be between those 

from total time minimization and response time minimization. 

 

In order to investigate the effect of objective functions in terms of the unbalanced factor, the 

query and update originating site and their frequency are set as shown in Table 10. Table 11 

shows solution patterns for all three minimization problems converge around the 20th generation. 

As expected, in the case of total time minimization, four relations are allocated to site 3 while two 

relations are allocated to sites 1 and 2, which in turn means that UBF is high. In case of 
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responsetime minimization, one or two relations are dispersed among five sites, so UBF 

(83285.8) is much 

 
Table 10. Site and Frequency for Transactions 

 

Transaction Q1 Q2 Q3 Q4 Q5 Q6 Q7 U1 U2 U3 U4 

Site 5 3 2 1 4 1 2 1 5 3 4 

Frequency 50 50 50 50 2 2 2 10 10 10 10 

 
Table 11. Solution Patterns 

 

 

 

 

 

 

 

 

 

 

Notation: T (total time minimization) 

          R (response time minimization) 

          C (combination of both) 

     + U (with update transactions) 

Note: Column: Sites;   Row: Relations 

Total Time Minimization: Time = 223727, UBF = 170779.6 

Response Time Minimization: Time = 207027, UBF = 83285.8 

Combination: Time = 216242.5, UBF = 133183.6 

 

less than that of total time minimization (170779.6). In case of the combination of total time and 

response time minimization, the UBF is in between those of total time and response time 

minimization. This results show that the genetic algorithm finds solutions in a reasonable way 

according to its objective function. 

 

5.2. EFFECT OF MIGRATION 

 

The effect of the forced migration is investigated in this section. We first run the data allocation 

genetic algorithm without workload balancing, naming it OADA (Operation Allocation with Data 

Allocation). Then the genetic algorithms explained in this paper are run using the same query and 

update transactions, named LBDA (WorkLoadBalancing with Data Allocation including cost 

minimization operation allocation), for convenience. 

 
As in the previous experiment, the genetic algorithms converge around the 20th generation. So all 

results are obtained at the 20th generation, and the number of chromosomes (the population size) 

is 20. First, in the case of total time minimization, the UBFs of LBDA are much less than those of 

OADA, while the best total time of OADA is 223727 (UBF = 170779) and that of LBDA is 

223137 (UBF = 52583). This result shows that LBDA not only gives better total time but also 

much better UBF. Since OADA attempts only to minimize the total time, as a result the total time 

is minimized but UBF actually may be increased, as explained in the previous section. LBDA, 

however, not only attempts to minimize the total time but also UBF, and since the migration leads 

to more diverse chromosomes, LBDA results in better total time and UBF. This result shows the 

superiority of LBDA over OADA. 

T + U R + U C + U 

10000 01000 10000 

00001 00010 00001 

00110 10000 00100 

01000 10000 10000 

11100 00100 00100 

00100 00001 01001 

00100 00100 00001 
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Second, in the case of response time minimization, there is not much difference between OADA 

and LBDA in terms of response time and UBF. As we described in the previous section, the 

response time minimization naturally disperses data among sites, and as a result, UBF is also 

minimized. 

 

Third, in the case of minimization of the combination of total time and response time, the 

difference of UBF between OADA and LBDA is not as much as those resulting from total time 

minimization. But the total cost of LBDA is 238835, which is better than that of OADA, which is 

239757. Figure 7 shows the slightly improved UBF of LBDA over OADA when we visually 

inspect the patterns between two results, although we do not prove that statistically.In summary, 

the above results show LBDA is superior to OADA. 

 

5.3. COMPARISON BETWEEN THREE GENETIC ALGORITHMS 
 
In this section we compare three genetic algorithms, OADA, LBDA, and one more genetic 

algorithm employing GA II and IV in Figure 2; that is, its objective is to minimize UBF, and we 

name it as UBFDA. The comparison is made in terms of total time, response time, and the 

combination of both. Three genetic algorithms start with the same initial populations. Since the 

objective of OADA is to minimize total cost, a combination of total time and response time, 

whereas that of UBFDA is to minimize the unbalanced factor, even though three genetic 

algorithms start with the same initial populations, the final results will be different in terms of 

total time, response time, and the combination of both respectively. One more issue we are 

investigating in this experiment is the implication of workload balancing; that is, workload 

balancing can lead to significant reduction in the average query response time since the waiting 

time for CPU and I/O services at sites of queries is reduced when queries are executed at the 

dynamic (run-time) environment. But since we employ only a static (compile-time) workload 

balancing in this research, it is hard to see the effect of actual response time (run-time) reduction 

of queries due to workload balancing unless we actually run simulation models or use 

mathematical queuing models based on data allocations and operation allocations (or workload 

balanced operation allocation) resulting from two genetic algorithms. Applying simulation or 

queuing models is, however, out of scope of this research. We, therefore, merely compare two 

genetic algorithms in terms of how total time, response time, and the combination of both are 

changed.  

 

Table 12 shows the results based on two genetic algorithms, OADA and UBFDA. In case of total 

time minimization, the total time of UBFDA (19,195) is increased ascompared to that of OADA 

(15,595) even though UBF of UBFDA is significantly reduced. The main reason is that since 

UBFDA tends to spreads the workloads among sites, the total time is increased due to increased 

communications (note that the total time is minimized when subqueries are executed at the same 

site as much as possible).  

 

6. CONCLUSION 
 

This paper proposes the framework for total cost minimization and workload balancing. It is more 

realistic to solve the integrated problem of both data and operation problem based on total cost 

minimization and workload balancing than solve each problem separately. 

 

To the best of our knowledge, this paper is the first attempt to consider total cost minimization 

and workload balancing in determination of data allocation and operation allocation. 
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Table 12: Comparison between Two Genetic Algorithms 

 

Objective Genetic Algorithm Time UBF 

Total Time OADA 15,595 11,967 

UBF UBFDA 19,159  2,200 

Response Time  OADA 16,848  7,694 

UBF UBFDA 16,914  3,953 

Combination OADA 35,437 38,098 

UBF UBFDA 36,179  3,121 

 

Computational results show the effectiveness of the framework. The proposed framework is more 

likely to provide a better data allocation and operation allocation for the performance of partially 

replicated distributed database systemsand also provides a better understanding of the underlying 

mechanisms for design of partially replicated distributed database systems. 
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