
International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

DOI : 10.5121/ijdms.2017.9301 1

A FRAMEWORK FOR DESIGN OF PARTIALLY

REPLICATED DISTRIBUTED DATABASE SYSTEMS

WITH MIGRATION BASED GENETIC ALGORITHMS

Sukkyu Song

Department of Hotel Management, Youngsan University, Busan, Korea

ABSTRACT

For partially replicated distributed database systems to function efficiently, the data (relations) and

operations (subquery) of the database need to be located, judiciously at various sites across the relevant

communications network.The problem of allocating relations and operations to the most appropriate sites

is a difficult one to solve so that genetic algorithms based on migration are proposed in this research. In

partially replicated distributed database systems, the minimization of total time usually attempts to

minimize resource consumption and therefore to maximize the system throughput. On the other hand, the

minimization of response time may be obtained by having a large number of parallel executions to different

sites, requiring a higher resource consumption, which means that the system throughput is reduced.

Workload balancing implies the reduction of the average time that queries spend waiting for CPU and I/O

service at a network site, but its effect on the performance of partially replicated distributed database

systems cannot be isolated from other distributed database design factors. In this research, the total cost

refers to the combination of total time and response time. This paper presents a framework for total cost

minimization and workload balancing for partially replicated distributed database systems considering

important database design objectives together. The framework incorporates both local processing,

including CPU and I/O, and communication costs. To illustrate its suitability, experiments are conducted,

and results demonstrate that the proposed framework provides effective partially replicated distributed

database design.

KEYWORDS

Partially replicated distributed database, Total time minimization, Response time minimization, Workload

balancing, Operation allocation, Data allocation,Genetic algorithm

1. INTRODUCTION

Two important aspects for design of partially replicated distributed database systems are data

allocation and operation allocation. Data allocation is to allocate relations to sites so that

the performance of distributed database are improved. Operation allocation refers to

query execution plan indicating which operations (sub queries) should be allocated to which sites

in a computer network, so that query processing costs are minimized. The allocation of relations

can be either non-replicated or replicated. In non-replicated allocation, each relation is mapped to

exactly one site. In replicated allocation each relation is mapped to one or more sites. Replicated

allocation can be either fully replicated or partially replicated to a system. A fully replicated

database system refers to a system where a complete copy of the relation exists at every site in the

system. In a partially replicated database system, copies of relations exist at some of the sites in

the system. The replication of relations can improve data availability and reliability in the event

of site failures and decrease the response time for queries partly through parallel query execution.

The replication of relations, however, will increase the data storage cost and the transmission cost

This work was supported by a 2017 research grant from Youngsan University, Republic of Korea.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

2

for updates because some relations need to be updated simultaneously, which also incurs a

communication overhead for concurrency control. Obviously, the advantage of full replication is

that queries may be completely executed at one of the sites in the network without incurring any

communication overhead.

In partially replicated distributed database systems, the minimization of total time usually

attempts to minimize resource consumption and therefore to maximize the system throughput. In

other words, if the usage of resources (CPUs, I/Os, and communication channels) for a given

transaction is minimized, more transactions can be processed for a given time period, which in

turn means that the system throughput is increased. On the other hand, a decrease in response

time may be obtained by having a large number of parallel executions to different sites, requiring

a higher resource consumption, which means that the system throughput is reduced as shown by

[5]. In this research, the total cost refers to the combination of total time and response time. The

workloads represent the amount of services at a network site expressed in terms of the CPU and

I/O loads when executing a query. Workload balancing implies the reduction of the average time

that queries spend waiting for CPU and I/O services at a site so that the queuing delays at the

network site are minimized as shown by [3], [4], [6] and [13].

In a fully replicated distributed database system, arriving transactions can be serviced at any sites.

In a partially replicated distributed database system, however, arriving transactions should be

routed (allocated) to the site owning the referenced relation for processing. In other words, the

data allocation scheme gives to some extent limitations on decision choices in developing

workload balancing schemes. In a partially replicated distributed database system, this means that

data allocation and workload balancing are not independent. We, therefore, believe that in a

partially replicated distributed database system the workload balancing issue should be taken into

account in the early design step of data allocation according to [12]. In this paper, we propose a

framework for total cost minimization and workload balancing as important design factors

together. In this research, the total cost refers to the combination of total time and response time.

In order to construct the framework for total cost minimization and workload balancing, we

consider total cost minimization as the primary objective and workload balancing as the

secondary objective for partially replicated distributed database design.

In this research, we propose migration based genetic algorithms to explore the interactions not

only between total cost minimization operation allocation and data allocation, but also between

workload balancing and data allocation. During the last-three decades there has been a glowing

interest in algorithms which rely on analogies to natural processes. The emergence of massively

parallel computers made these algorithms of practical interest. The best known algorithms in this

class include genetic algorithms, simulated annealing, classifier systems, and neural networks as

shown by [8]. Genetic algorithms are heuristic solutions that have been used to solve intractable

problems in distributed database systems as shown by [1],[2], [9] and [11]. When compared to

other heuristic algorithms as demonstrated in [8] and enumerative techniques, genetic algorithms

provide global ‘optima’ in much less time as shown by [10].

This paper is organized as follows. Section 2 has discussion of cost models for genetic

algorithms. In Section 3, the framework for total cost minimization and workload balancing is

described in detail using the migration based genetic algorithms. In Section 4, the illustration of

genetic algorithm procedures is presented. In section 5, experiments and their results are

presented. Section 6 provides conclusions.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

3

2. DEVELOPMENT OF COST MODELS FOR GENETIC ALGORITHMS

2.1. TOTAL TIME MODELS

The total time for each query is the sum of local processing times and communication times for

all subqueries. Total Time= (LP + COM)j
k

 j
k

j∑ , where j
k

LP represent the local processing

time of the subquery j (a node in the query tree in Figure 2) of a query k. j
k

COM represents the

communication time of transmitting the input relation(s) to the site at which the sub query j of a

query k is being executed.

2.1.1. LOCAL PROCESSING TIME (j
k

LP)

The local processing time of a subquery depends on an operation type, the size of the input

relation(s), the CPU speed and the I/O speed of the site selected. We assume that CPU processing

is proportional to the amount of data accessed and that I/O time is proportional to the number of

blocks read or written.

(A) For a selection or projection on a relation, the local processing time for the subquery j of the

query k is defined as:

j
k

LP = Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+) (1)

whereBij

k
 is the number of blocks of relation i accessed by subquery j of query k,

IO t is the I/O time of site t in msec for transferring 4k byte page into mainmemory,

CPUt is the CPU time of site t in msec per 4k byte page for selection and/or projection.

(B) We also assume that the intermediate result of each unary or join operation is transmitted

directly to the next join site and stored at the next join site before the execution of the next join

operation. As such, the local processing time for the join j of the query k is defined as:

j
k

LP = Y IO Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑ + (2a)

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k
∑ ∏ ∏+) (2b)

whereρm represents the selectivity of the two previous operations (m = 1 or 2), and where the

selectivity is the ratio of output relation size and input relation size, Bijp[m]

k
is the size of an input

(intermediate) relation where p[m] represents two previous operations of the join operation j (m is

1 for the left and 2 for the right operation).

Note that ρm can represent selection, projection or join selectivity. (2a) represents the I/O time to

store the intermediate results of the previous operations to the site of the current join operation.

(2b) represents the I/O and CPU processing times for the current join operation. Note that we

convert Bijp[m]

k
 (the size of intermediate results being stored at the join site) to Bij

k
 (the size of

same intermediate results being retrieved for the current join operation) for notational

convenience so that Bij

k
 will be used for the next join operation with the join selectivity of the

current join operation.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

4

2.1.2. COMMUNICATION TIME (j
k

COM)

When either of the relation(s) to be joined is not produced at the site at which the join operation is

performed, communication for join operations is needed, and is expressed as follows:

j
k

COM = Y Y C (Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑)

whereC tp is the communication cost between site p and site t in msec per 4k byte page.

Note that if a previous operation and the join operation are executed at the same site (t=p), then

Ctp =0. Communication for sending the final result is also needed if the final operation is not

performed at the query originating site. Since there is only one previous operation for the final

operation, we assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0). It should be noted that we

consider communication cost to include data transmission cost. However, in real world,

communication cost may also include time to synchronize the two CPUs. In this research, we

ignore this synchronization time, since this is usually a fixed overhead cost and it is not variable

like data transfer cost.

2.2. RESPONSE TIME MODEL

In a partially replicated distributed database system, it is possible to decompose a query into

subqueries that can be processed in parallel and also their intermediate relations can be

transmitted in parallel to the required site. Two types of parallel execution are possible: (1) intra-

operation parallelism, and (2) inter-operation parallelismas shown by [5]. A typical example of

intra-operation parallelism is pipelining of a single join operation, by which two sites work in

parallel; that is, the site that request remote data will begin its join processing as soon as the first

tuple or packet of data has arrived, whereas in sequential processing, the site receiving data will

not begin its join processing until all of the required data has arrived. Inter-operation parallelism

refers that several subqueries in a single query can be executed in parallel. In this research we

assume the join operation is performed using the sequential processing method, and we are

concerned only with parallelism in a single query, not among multiple queries.

Response time is calculated by taking into consideration the possibility of performing local

processing and data transmission in parallel under the condition that the operations are performed

at different sites as mentioned in the previous section. The response time of query k is:

Response time RT
k

j = COM (p[1])j

k
+ LP

k

j (p[1]) + RT
k

j (p[1])

where RT
k

j (p[1])is the recursive function for the response time.

The first term COM (p[1])j

k
 is to calculate the communication time sending the results to the

query originating site (ijp[2]
k

Z for all i is 0 and Bijp[2]

k
 = 0) and the LP

k

j (p[1]) refers to the local

processing time of the final operation. For the recursive function RT
k

j (p[1]) (but we will use RT

k

j for convenience), we calculate the cost as follows. Four scenarios exist depending upon sites at

which the join operation j and the two preceding operations p[1] and p[2] are executed.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

5

2.2.1. SCENARIO – 1

The join operation j and the sites two preceding operators p[1] and p[2] areexecuted at the same

site; that is, 0 CYY tp

k

jp[2]t

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[1]t = and 0 CYY tp

k

jp[2]t

k

jt = then RT
k

j can be

calculated by using the equation.

LP
k

j + ∑m

k

j (p[m]LP + (p[m])RTk

j)

Here, LP
k

j is the local processing time for sub query j, (p[m])LP
k

j is the local processingtime for

the preceding left (m=1) or right (m=2) operation (i.e. subsub query). These local processing

times are calculated using the equations introduced in the previous section. (p[m])RTk

j is the

(response) time when a preceding operator is available for local processing.

2.2.2. SCENARIO –2

The join operation j and the two preceding operators p[1] and p[2] are performed at three

different sites. In this case the three operators can be run in parallel. Then the response time of the

entire group is computed as the maximum of resource consumption of individual operators and

the usage of all the shared resources (such as communication times) [6]. Then
k

jRT is given by

Max { ,LPk

j (3a)

(p[1])LPk

j + (p[1])RTk

j , (3b)

(p[2])LPk

j + (p[2])RTk

j , (3c)

COM (p[1])j

k
+ COM (p[2])j

k
} (3d)

where COM (p[1])j

k
 =)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t ∑

 COM (p[2])j

k
 =)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t ∑

In the above, (3d) represents shared resource consumption, which is the communication time. (3a)

is the local processing time for sub query j and (3b) and (3c) are the processing times for the two

preceding operations of sub query j. The communication costs will be additive, since those are the

overheads on the receiving node, as represented by (3d).

2.2.3. SCENARIO –3

The sites at which two preceding operations of sub query j are performed are different and the

join sub query j uses one of these sites. There is no communication cost between one of the

preceding operators, say p[1], and the operator j. That is, 0 CYY tt

k

jt

k

jp[1]t = , 0 CYY tp

k

jt

k

jp[2]p ≠ and

0 CYY tp

k

jp[2]p

k

jp[1]t ≠ , then
k

jRT is given by:

Max {
k

jLP + (p[1])LPk

j + (p[1])RTk

j , (4a)

(p[2])LPk

j + (p[2])RTk

j , (4b)

COM (p[2])j

k
} (4c)

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

6

whereCOM (p[2])j

k
 =)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑

In the above since sub query j and the left previous operation p[1] are executed at the same site,

the local processing times of the two sites need to be added (4a). Since right previous operation

p[2] is executed at a different site, its local processing time (included in (4b)) can be executed in

parallel. In addition, the communication time (4c) can be implemented in parallel as well.

2.2.4. SCENARIO – 4

In secenario-4, the two preceding operations of subquery j, p[1] and p[2], are executed at the

same site, while the subquery j is executed at a different site. There is communication time

involved in shipping data from both the preceding operations p[1] and p[2] to the site of subquery

j. That is, 0 CYY tp

k

jt

k

jp[1]p ≠ , 0 CYY tp

k

jt

k

jp[2]p ≠ and 0 CYY pp

k

jp[2]p

k

jp[1]p = . Also, there will be no

parallelism between the operations p[1] and p[2]. Then
k

jRT is given by

Max {
k

jLP , (5a)

(p[1])LPk

j + (p[2])LPk

j + (p[1])RTk

j + (p[2])RTk

j , (5b)

COM (p[2])j

k
+ COM (p[2])j

k
} (5c)

where (p[1])COMk

j =)BZ(CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p ∑

COM (p[2])j

k
 =)BZ(CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p ∑

In the above, since subquery j is executed at a different site than the preceding operators, its local

processing of subquery j (5a) can be done in parallel to the communication time (5c) and the

processing times of p[1] and p[2] . Since the preceding operators are executed at the same site,

their local processing times are additive (5b). Also, the communication costs will be additive,

since those are the overheads on the receiving node. Above equations hold whether previous

operations are joins, selections, or projections, or other relational algebra operators.

The stopping condition of the recursive function RT is as follows. We define: if p[m] in ijp[m]
k

Z is

equal to zero in the response time recursive function, where zero for p[m] means that the previous

operation for this operation j (subquery) is original relation. In scenarios 2 and 3, parallelism

between the preceding operations p[1] and p[2] is implied. It is assumed there is no clash in data

access between the two preceding operations, i.e. i

k

ij

k

ij 0 (p[2]) Z* (p[1])Z ∀= , otherwise local

processing times can be additive in the worst case.

2.3. QUERY TREE AND UPDATE TREE MODEL FOR UPDATE TRANSACTION

A query tree is illustrated in the query part in Figure 1. A node is called a leaf node (F1 and F2) if

it has no incoming arcs; that is, it represents the relations in the database. A node is called an

operation node (nodes 1, 2 and 3) if it has incoming and outgoing arcs. The operation nodes

represent the relational operations. The operation nodes such as 1 and 2 represent a unary

operation such as selection, projection or a combination of both, and the operation node such as 3

represents a binary operation such as join or union. Sometimes a binary operation is performed on

an input relation directly without any unary operation(s), and in this case the unary operation

node connected to the corresponding input relation is called a dummy operation node. An

operation node without any outgoing arcs is called a result node (node 4). An arc represents the

transmission of a (intermediate) relation into the operations, such as f3, f4 and f5.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

7

There is a site set associated with each node in the query tree. The members of the site set for a

leaf node are those sites that hold a copy of that relation. The site set for an operation node

contains those sites that can perform the operation. In general, selection and projection operations

requiring relations should be executed at only those sites that hold a copy of relations referenced

so that there is no transmission of a relation required at the site of the operations, but join

operations can be executed at any site.

3

1 2

f3

f5

f4

F1 F2

4

F2F1

F3 F4
Update

Query

Part

Part

L1 L2

Figure 1. Query Tree for Update Transaction

An update transaction may be viewed as a two-part action, wherein the first part corresponds to a

query transaction, followed by the second part which updates the value of a set of relations, as

shown in Figure 1. The simplified SQL statement for the update query tree Figure 1 may be as

follows:

� UPDATE F3, F4 Alias F

� SET F.z = F.z * 1.1

� WHERE F.k In (SELECT k

FROM F1, F2

WHERE F1.x = F2.y)

In the second part of an update transaction, the update values (L1 and L2, which are the same as

the intermediate relation f5 resulting from the final operation 3 in Figure 1) resulting from the

first part must be sent from the update initiation site (site for operation 4 in Figure 1) to all sites

that have a copy of the relation being updated, and then the relation must be updated at each site

(for example, two copies of F3 and three copies of F4 in Figure 1), which incurs CPU and I/O

costs at each site. In Figure 1, two relations 1 and 2 are referenced by the query part of update

transaction, and then both relations are updated according to the update value resulting from the

query part.

2.3.1. COST MODELS FOR UPDATE TRANSACTION

As mentioned in the previous section, the total cost for executing all query (either OLTP or

decision-support) and update transactions against a particular data allocation scheme will

determine the goodness of its data allocation scheme, and it is represented as follows:

 Total Cost = F(k, t)Q(k, t) + F(u, t)U(u, t)
tk tu∑∑ ∑∑

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

8

Where F(k,t) and F(u,t) are the frequencies of query k originating at site t and update u originating

at site t per unit time, and Q(k,t) and U(u,t) are the cost of query k and update u transactions

originating at site t. Our objective is to minimize this total cost.

We now define the update transaction cost model. Before describing the cost model, we first

introduce one more variable iU , specifying relations updated by the update transaction. iU is 1 if

relation i is updated by the update transaction; otherwise, it is 0. The update transaction cost is

defined as follows:

U(u,t) = Q(u,t) +

C U X Ltp i it iipt ∑∑∑ + (1)

(IO U X B + CPU U X B)t i it i

u

tit i it i

u

i∑∑ ∑ + (2)

IO U X Ltt i it ii∑ ∑ (3)

Where

Bi

u
is the number of blocks of relation i updated by update u,

Li is the update value in number of blocks for the relation i, which is the same as the final result

from the query part Q(u,t),

IO t is the I/O cost coefficient (speed) of site t in msec per page (4k bytes),

CPUt is the CPU cost coefficient (processing speed) of site t in msec per page (4k bytes),

C tp is the communication cost coefficient (channel speed) between site t and site p in msec per

page (4k bytes),

Xit represents data allocation; relation i is stored at site t.

Note that calculation of query execution time for the query part Q(u,t) of the update transaction is

exactly the same as that of the total time model (see below for details). The reason for using the

total time model for Q(u,t) is that the update transactions typically occurred in the

DEBIT/CREDIT type of transactions in the banking industry, which in general require high

throughput. Therefore, the calculation of Q(u,t) is the same as Q(k,t) of total time introduced in

Chapter V. In the formula, (1) represents the communication cost for sending the update values

(Li) from the update initiation site to all sites that have the copy of the relation being updated; (2)

represents I/O cost for reading the required relation into main memory and CPU cost for

processing the update; and (3) represents the update cost for writing the updated values back to

disk. Calculation of Q(u,t) is as follows:

Q(u,t) = (LP + COM)j
k

 j
k

j∑ (1)

j
k

LP = Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∑ ∑+) (2)

j
k

LP = Y IO Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

kρ∑∑∑ + (3a)

Y (IO Z B CPU Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k

∑ ∏ ∏+) (3b)

j
k

COM = Y Y C (Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k

∑∑∑ ∑) (4)

Where

j
k

LP represents the local processing time of the subquery j of a query k.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

9

j
k

COM represents the communication time of transmitting the input relation(s) to the site at which

the subquery j of a query k is being executed.

Bij

k
is the number of blocks of relation i accessed by subquery j of query k.

Bijp[m]

k
is the size of an input (intermediate) relation where p[m] represents two previous

operations of the join operation j: m is 1 for the left previous operation, and 2 for the right

previous operation.

ρm represents selectivity of the two previous operation (m = 1 or 2), and selectivity refers to the

ratio of relation size reduction after an operation.

jt
k

Y represents operation allocation and is 1 if subquery j of query k is done at site t; otherwise, it

is 0.

jp[m]t
k

Y is 1 if the left (m = 1) or right (m = 2) previous operation for join operation j of query k is

done at site t; otherwise, it is 0.

ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k.

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m = 2)

previous operation for join operation j of query k; otherwise, it is 0.

(1) represents the total query execution time for the query part Q(u,t) of the update transaction

and is the sum of all local processing times and communication times. (2) represents the local

processing time for the subquery j of the query k when the subqueries are unary operations such

as the selection or projection operation. (3a) represents the I/O time in storing the intermediate

results of previous operations to the site of the current join operation before the execution of the

join. (3b) represents the I/O and CPU processing times for the current join operation. (4)

represents the communication time for join operations when either of the (intermediate)

relation(s) to be joined is not produced at the site at which the join operation is performed. (4) is

also used for the communication time for sending the final result if the final operation is not

performed at the query originating site. Since there is only one previous operation for the final

operation, we assume that Zijp[2]

k
 for all i is 0 (also Bijp[2]

k
 = 0).

2.4. COST MODEL FOR WORKLOAD BALANCING

We define the unbalanced factor (UBF) as the sum of the absolute deviation of site workloads

from the average network load. The objective function for workload balancing is then defined to

minimize UBF. Minimization of UBF gives a load distribution that has approximately balanced

the network load. Note that if the network load among sites is balanced totally (all site have the

same workload), the absolute deviation becomes zero. The objective function is defined as

follows.

Minimize UBF = LI - LI + LC - LCt avt t avt∑ ∑

subject to LI =
1

N
 LIav tt∑

LC =
1

N
 LCav tt∑

Where LI t and LC t represent the I/O and CPU workloads (I/O and CPU times), respectively, at

the site t; LIav and LCav represent the average I/O and CPU workloads (I/O and CPU times),

respectively, in the entire database; N represents the number of sites. We now define LI t and

LC t as follows:

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

10

(1) For a selection or projection,

LI t = F(k, t) Y IO Z Bjt

k

jk t ij

k

i ij

k

∑∑ ∑

LC t = F(k, t) Y CPU Z Bjt

k

jk t ij

k

i ij

k

∑∑ ∑

(2) For a join,

LI t = F(k, t) Y IO Z B
k jt

k

j t im m ijp[m]

k

ijp[m]

k

∑ ∑ ∑∑ ρ +

F(k, t) Y IO Z Bjt

k

jk t ij

k

i ij

k

∑∑ ∏

LC t = F(k, t) Y CPU Z Bjt

k

jk t ij

k

i ij

k

∑∑ ∏

Where

F(k, t)represents the frequency of query k originating at site t,

jt
k

Y represents operation allocation, and is 1 if subquery j of query k is done at site t, otherwise it

is 0,

ij
k

Z is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k,

ijp[m]
k

Z is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m = 2)

previous operation for join operation j of query k, otherwise it is 0,

IO t is the I/O cost coefficient (speed) of site t in msec per page (4k bytes),

CPUt is the CPU cost coefficient (processing speed) of site t in msec per page (4k bytes),

Bij

k
is the number of blocks of relation i accessed by subquery j of query k,

Bijp[m]

k
is the size of an input (intermediate) relation where p[m] represents two previous

operations of the join operation j: m is 1 for the left previous operation, and 2 for the right

previous operation, and

ρm represents the selectivity of the two previous operation (m = 1 or 2), and the selectivity refers

to the ratio of relation size reduction.

(3) For the update part of an update transaction,

LI t = F(u, t) IO U X B t i itiu i∑∑ + F(u, t) IO U X L t i itiu i∑∑

LC t = F(u, t) CPU U X B t i itiu i∑∑

Where

F(u, t) represents the frequency of update originating at site t,

Xit represents data allocation; relation i is stored at site t,

Bi

u
is the number of blocks of relation i updated by update u, and

Li is the update value in number of blocks for the relation i, which is the same as the final result

from the query part of an update transaction.

Note that the query part of an update transaction is the same as (1) and (2) above.

3. FRAMEWORK FOR TOTAL COST MINIMIZATION AND WORKLOAD

BALANCING

As described in the previous section, workload balancing can be used as the sole objective for the

operation allocation as opposed to total cost minimization, and in our case, the total cost is the

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

11

combination of total time and response time. Our purpose, however, is to use workload balancing

as the secondary objective for the data allocation while keeping total cost minimization as the

primary objective. In order to accomplishthis objective, we employ four algorithms: one for the

operation allocation whose objective is minimizing the total cost, one for workload balancing

whose work workload depends on the optimized operation allocation resulted from the operation

allocation algorithm, and two for the data allocation. The framework is proposed that these four

algorithms interact with each other as shown in Figure 2.

In order to obtain better data allocation in terms of total cost as well as workload balancing, each

step in the framework is adopted to use the genetic algorithm. Four genetic algorithms interact

with each other according to the following steps:

(1) GA I produces the initial data allocation population by using binary strings. Note that the

fitness of GA I is the total cost.

(2) GA II also produces the initial data allocation population, but by using a different random

number seed (for example, 0.5) from the one (for example, 0.1) used for GA I. Note that the

fitness of GA II is UBF.

(3) For each chromosome (data allocation scheme) from GA I, find the best operation

allocation for each query (or query part of an update) by using GA III. In this step we obtain

the fitness for each data allocation scheme in terms of the total cost.

(4) For each chromosome (data allocation scheme) from GA II, find the best operation

allocation for each query (or query part of an update) by using GA IV. In GA IV, the best

operation allocation for each query is obtained in terms of the total cost like GA III. But,

once the best operation allocation for each query has been obtained, UBF is calculated for

each data allocation scheme (chromosome of GA II) based on the best operation allocation

obtained. So in this step we obtain the fitness for each data allocation scheme in terms of

UBF based on the best operation allocation.

Data Allocation
Total Cost Minimization

Operation Allocation for

Operation Allocation for

Load balancing

Migration

(GA I)
(GA III)

(GA IV)

Data Allocation

(GA II)

Total cost

UBF

Figure 2. Framework for Total Cost Minimization and Workload Balancing

Using Migration Based Genetic Algorithms

 (5) Once all fitnesses (total costs) for GA I and (UBFs) GA II have been determined, the

migration of selected chromosomes between GA I and GA II takes place. The number of

chromosomes to be migrated is selected according to the random number which is always

less than one-half of the total number of population, and these chromosomes are then

selected based on their fitness (from the best one) in the current population of GA I and GA

II respectively. Then the best chromosomes selected from GA I are migrated into the

population of GA II, and at the same time the same number of the worst fitness

chromosomes in GA II are removed from the population in GA II. The same migration

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

12

procedure occurs from GA II to GA I. The forced migration occurs at each generation

during one-half of the total number of generations, and at the generation when the best

fitness is not changed for three consecutive generations during subsequent generations. The

reason to make the forced migration occur at the higher frequency during early generation

and slow subsequent generation is that during early generation, there are not many

differences between GA I and GA II in terms of total cost and UBF; but during later

generation, since chromosomes in GA I and GA II are already optimized in terms of total

cost and UBF, respectively, the migrated chromosomes do not make any significant

contribution. The migration employed in this research, therefore, allows GA I to create as

many diverse chromosomes as possible during early generations.

(6) Steps 3, 4, and 5 are repeated until the GAs I and II have reached the maximum number of

generations. The intended data allocation we are looking for is the best fitness chromosome

in GA I. The best solution in GA I will have not only the optimized total cost but also the

better UBF, if not the optimized one, than the solution derived from the genetic algorithms.

4. ILLUSTRATION OF GENETIC ALGORITHM PROCEDURE

We use the same example used in [11] to illustrate the migration based genetic algorithms

proposed in this research.We consider five relations as follows:

 Faculty(F#, Fname, Dept)

 Students(S#, Sname, Major)

 Courses(C#, Cname, Dept, Credits)

 Enrolls(S#, C#, Grade)

 Advises(F#, S#)

We assume that the length of attributes measured in bytes is as follows:

 F# (15), Fname (20), S# (15), Sname (20), Major (10),

 C# (8), Cname (20), Dept (30), Credits (2), Grade (2)

The database statistics for five relations are as shown in Table 1 and the size of page block is

assumed to be 4k bytes. We assume that the database consists of four sites and that the cost

coefficients for each component are as shown in Table 2.The following SQL statements are used

to illustrate the genetic algorithm procedure.

SQL Statement 1:

 SELECT STUDENTS.S#, STUDENTS.Sname, COURSES.Cname

 FROM STUDENTS, COURSES, ENROLLS

 WHERE STUDENTS.Major = 'CIS'

 AND ENROLLS.Grade> 'C'

 AND STUDENTS.S# = ENROLLS.S#

 AND ENROLLS.C# = COURSES.C#

SQL Statement 2:

 SELECT FACULTY.Fname, STUDENTS.Sname

 FROM FACULTY, STUDENTS, COURSES, ENROLLS

 WHERE ADVISES.S# = STDUENTS.S#

 AND COURSES.C# = ENROLLS.C#

 AND ENROLLS.Grade< 'C'

 OR STUDENTS.Major = 'CIS'

SQL Statement 3:

 UPDATE STUDENTS

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

13

 SET Major = 'CIS'

 WHERE FACULTY.F# = ADVISES.F#

 AND STUDENTS.S# = ADVISES.S#

 AND STUDENTS.Major = 'UNDECLARED'

 AND FACULTY.Fname = 'BOB SMITH'

As explained in the previous section, the high-level SQL statement can be transformed into the

query tree, and the corresponding query tree for each SQL statement is shown in Figure 3. For the

purpose of showing the calculation of the size of intermediate results for SQL statement 1,

suppose that the allocation of the relations to sites is as follows: Relation (F1) is stored in sites 1

and 2, relation (F2) at sites 2 and 3, relation F3 is stored at sites 3 and 4.It is assumed that the

query-originating site is 4, and it is the node 6 in Figure 3.By using simple estimation techniques,

the results of each operation execution are as follows:

(Note that ρs , ρp and ρ j : the selectivity for selection, projection and join respectively)

operation 1: σgrade > 'C' (Enrolls) f 4⇒ (63 x 0.8 (ρs) = 51 blocks)

operation 2: ΠC#, Cname Courses f 5() ⇒ (8 x 0.47 (ρp) = 4 blocks)

operation 3: σmajor ='CIS' (Students) f 7⇒ (225 x 0.05 (ρs) = 12 blocks)

operation 4: f 4 f5 f6c#=c# >< ⇒ (f4 x f5 x ρ j
 = 51 x 4 x 0.1 = 20 blocks)

operation 5: f 6 f 7 f8S# = S#>< ⇒ (f6 x f7 x ρ j = 20 x 12 x 0.1 = 24 blocks)

Table 1. Relation Statistics

Relation No. RelationNa

me

Cardinality Tuple Size Size (bytes) Size (blocks)

F1 Faculty 500 65 32,500 9

F2 Students 20,000 45 900,000 225

F3 Courses 500 60 30,000 8

F4 Enrolls 50,000 25 1,250,000 313

F5 Advises 20,000 30 600,000 150

Table 2. Cost Coefficients for Example

 Site

 1 2 3 4

Communication 1 0 13 12 11

Coefficients 2 13 0 11 12

 3 12 11 0 13

 4 11 12 13 0

I/O Coefficients 20 19 18 21

CPU Coefficients 1 1 1 1

The results of the above size estimation for SQL statement 1 are shown in Figure 3. From the

query tree, input(intermediate) relations used for each subquery are shown in Table 3. For

example, the Enrolls relation is used by the operation 1 (ij
k

Z where i = 1 and j = 1), and the

intermediate relations 4 and 5 are used by the operation 4 (ijp[m]
k

Z where i = 4 and j = 4 for p[1],

and i = 5 and j = 4 for p[2]), etc.In case of SQL statement 2, the size estimation of intermediate

results is as follows:

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

14

operation 1: σ πcname Databases Courses= ' ' () c# & (Courses) -> f6;

 8 x 0.01 (ρs) x 0.03 (ρp
) = 1

operation 2: σ πgrade c< ' ' () s#,c#Enrolls & (Enrolls) -> f7

 313 x 0.2 (ρs) x 0.92 (ρp) = 58

operation 3: σ πmajor cis= ' ' (s#,snameStudents) & (Students) -> f8

 225 x 0.05 (ρs) x 0.78 (ρp)= 9

operation 4: Dummy -> f9 (size of Advises: 150)

operation 5: f 6 f 7c#=c# >< -> f10

 1 (f6) x 58 (f7) x 0.01 (ρ j) = 1

operation 6: f8 f 9s#=s# >< -> f11

 9 (f8) x 150 (f9) x 0.01 (ρ j) = 14

operation 7: f10 f11s#=s# >< -> f12

 1 (f9) x 14 (f10) x 0.01 (ρ j) = 1

We assume that SQL statement 1 is an OLTP (Online Transaction Processing) type query so that

its execution order results in the left deep query tree; that SQL statement 2 is a DSS (Decision

Support System) type query so that its execution order results in the bushy query tree; and that

SQL statement 3 is the update query tree (the query part of update is the OLTP type, so the left

deep tree is used), and their corresponding query trees are as shown in Figure 4. So for this simple

example problem, the objective function is to minimize a linear combination of total time

andresponse time, in which the ratio of total time minimization and response time minimization is

one to one. We assume that the frequencies of queries 1, 2, and update 3 are 3, 1, and 2, and the

transaction originating site is assumed to be 4, 3, and 1 respectively.

4.1. INITIAL SOLUTION POOL

We first generate the initial solution pools (populations) for GA I and II using the probability 0.2

in order to get the genetic algorithms started with the best initial solution pools. Table 4 shows

Table 3. Input relation(s) used by subqueries (ij
k

Z and ijp[m]
k

Z)

(Intermediate) Subquery

Relation 1 2 3 4 5 6

 1 2 1 2 1

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0

4 0 0 0 1 0 0 0 0

5 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

15

(20)

f7

f8 f9

6

Students

1

3

Enrolls

2

5

F4
F3

F2
f6

4

(225)

(8)
(313)

Courses

(12)

(4)(51)

f10 (24)

SQL Statement 1

(14)

f7 f8 f9

Students

1

Enrolls

2

5

F4F3

f6

(225)(8) (313)

Courses

(0)

(58)(1)

f10

(1)

SQL Statement 2

Advises

3 4

6

8

7

F2 F5

f12

f11

(150)(9)

(1)

(1)

f7

f8 f9

6

Students

1

3

Advises

2

5

F1

F5
F2

f6

4

(225)
(150)

Faculty

(20)

(17)(13)

f10

Students

(9)

(1)

(1)

SQL Statement 3

Figure 3. Query Trees for SQL Statements

the initial solution pools for GA I, and Table 5 shows those for GA II. Note that the fitness in

Table 4 is calculated in terms of total cost while that in Table 5 is in terms of UBF.

Table 4. Initial Solution Pool for GA I

Solution # Solution Total Cost UBF Fitness

 F1 F2 F3 F4 F5

1 0001 1000 1000 1000 1000 136396 138241 0.733

2 0001 1000 1000 0010 0001 133166 123071 0.750

3 0100 0001 1000 0010 0011 131528 135748 0.760

4 1000 0010 1010 0001 0010 130198 150728 0.768

5 1000 0100 0100 1000 0001 135178 71058 0.739

6 1010 0001 1100 0100 0001 136724 72802 0.731

7 1000 0100 1000 1000 0100 133934 95256 0.746

8 0010 0001 0010 0010 0010 131296 142643 0.761

9 0011 0101 0001 0100 0001 143308 117358 0.697

10 0010 0010 1010 0001 0001 133430 139326 0.749

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

16

Table 5. Initial Solution Pool for GA II

Solution # Solution Total Cost UBF Fitness

 F1 F2 F3 F4 F5

1 1000 0010 0001 1000 0010 150148 129334 0.066

2 1000 1001 0001 0010 0100 58677 142037 0.170

3 1010 0010 0010 1010 1000 176918 128140 0.056

4 0001 0110 0100 0001 1010 144968 139438 0.068

5 0010 1000 0100 1000 0100 72417 135664 0.138

6 0100 0010 0100 1000 0100 83986 131524 0.119

7 0010 0001 1000 1000 0100 21050 137376 0.475

8 0100 0001 0100 1000 0100 20743 137380 0.482

9 0010 0001 0010 0001 0001 147299 139394 0.067

10 1000 0100 1000 0001 0010 80677 133014 0.123

Table 6. Operation Allocation for Solution #5

SQL Number Frequency OperationAllocation Time Remarks

1 3 12233 22,423 Total Time

2 1 2124133 31,097 Response Time

3 2 24133

13,874

4,532

Query Part

Update Part

The total cost for the data allocation scheme (solution #5 in Table 6) is the sum of all transaction

execution costs, which is 135178. Based on these operation allocations, we then can calculate

UBF for solution #5. Table 7 shows I/O and CPU loads for each operation at each site. The

resulting I/O and CPU loads are given as: LIav = 33939, LI1 = 6199, LI2 = 907, LI3 =

32931, LI4 = 27639, and LCav = 1659.5, LC1 = 331.5, LC2 = 172.5, LC3 =1518.5, LC4 =

1359.5. Based on these results, the unbalanced factor (UBF) for the solution #5 is equal to 71058.

4.2. MIGRATION

As explained in the previous section, the forced migration of selected chromosomes between GA

I and GA II occurs at each generation during the first half of the total number of generations. As

an example, suppose that the number of chromosomes to be migrated is three. Then the solution

pools in GA I and GA II are sorted according to their fitnesses. Solutions 4, 8, and 3 are the three

best chromosomes in GA I, whereas solutions 8, 7, and 2 are the three best chromosomes in GA

II, and solutions 9, 1, and 5 are the worst chromosomes in GA I, whereas solutions 3, 1, and 9 are

the worst chromosomes in GA II. Therefore, chromosomes 4, 8, and 3 are migrated into GA II

while removing chromosomes 3, 1, and 9 in GA II, and at the same time chromosomes 8, 7, and 2

are migrated into GA I while removing chromosomes 9, 1, and 5 in GA I. This completes the

migration procedure, and the selection, crossover, and mutation are performed based on these

new populations at the next generation.

4.3. FINAL SOLUTION POOL

Tables 8 and 9 illustrate the final solution pools for GA I and GA II at the 20th generation,

respectively. They show that the total costs resulting from GA I are less than those from GA II

whereas the UBFs resulting from GA II are much less than those from GA I. Since the purpose of

this research is to obtain the best data allocation whose primary objective is total cost

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

17

minimization while load balancing is the secondary objective, the solutions 5, 7, and 10, which

are the same, are the best data allocation scheme, and its total cost is 125332 and UBF 200884.

5. EXPERIMENTS AND RESULTS

In this section, we investigate how the data allocation pattern and the unbalanced factor are

changed when a different objective function is used.We also investigate the effect of migration

between two genetic algorithms. We will discuss this effect in terms of the total cost as well as

the unbalanced factor.

Table 7. I/O and CPU Loads at Sites (I/O Load / CPU Load)

 Operation site

SQL No. 1 2 3 4

1 1 18780/939

 2 456/24

 3 12825/675

 4 13986/612

 5 14688/720

2 1 152/8

 2 6260/313

 3 4275/225

 4 0/0

 5 2340/58

 6 27162/1350

 7 522/14

3 1 8550/450

 2 6300/300

 3 360/18

 4 9036/442

 5 1476/40

 Update 4294/225

Total Load 27740/1328 34864/1832 66870/3178 6300/300

UBF at Site 6199/331.5 907/172.5 32931/1518.5 27639/1359.5

Table 8. Final Solution Pool for GA I

Solution # Solution Total Cost UBF Fitness

 F1 F2 F3 F4 F5

1 0100 0010 0010 0010 0011 125372 200132 0.797

2 0010 0010 0001 1000 0010 129274 150792 0.773

3 1000 0010 1100 0010 0010 125548 199008 0.796

4 0100 0010 0010 0010 0100 127654 134034 0.783

5 0010 0010 0010 0010 0010 125332 200884 0.797

6 1000 0010 1000 1000 0010 129298 150106 0.773

7 0010 0010 0010 0010 0010 125332 200884 0.797

8 1000 0010 0100 1000 0010 129262 150063 0.773

9 0100 0010 1000 0010 0010 125564 198943 0.796

10 0010 0010 0010 0010 0010 125332 200884 0.797

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

18

Table 9. Final Solution Pool for GA II

Solution # Solution UBF TotalCost Fitness

 F1 F2 F3 F4 F5

1 1000 0001 1000 1000 0100 15417 137436 0.648

2 1000 0001 1000 1000 0100 19979 137436 0.500

3 0100 0001 1000 1000 0100 20014 137416 0.499

4 0100 0001 1000 1000 0100 20365 137416 0.491

5 1000 0001 1000 1000 0100 15417 137436 0.648

6 1000 0001 1000 1000 0100 19979 137436 0.500

7 1000 0001 1000 1000 0100 15417 137436 0.648

8 1000 0001 1000 1000 0100 15417 137436 0.648

9 1000 0001 1000 1000 0100 20330 137436 0.491

10 1000 0001 1000 1000 0100 19979 137436 0.500

Finally, we compare two data allocation genetic algorithms, one using only interaction between

total cost minimization operation allocation and data allocation (referred to as GA I/III) and one

using only interaction between workload balancing operation allocation and data allocation

(referred to as GA II/IV), using three different objective functions: total time, response time, and

the combination of both.

For all experiments, we assume that the communication speed between any two pairs of sites is

identical, which is set at 2.0. The processing speeds of all sites are also assumed to be identical,

and are set I/O and CPU at 0.1 and 1.2, respectively. The configuration of the distributed database

is assumed to consist of five sites and seven relations.

5.1. EFFECT OF OBJECTIVE FUNCTION

The research questionsinvestigated are as follows, and they are reiterated in terms of the

unbalanced factor:

(1) for the total time minimization problem, the execution time can be minimized when queries

are executed by using the smallest set of sites, which in turn means data themselves should

be allocated to as few sites as possible.

(2) response time minimization can be obtained by having a large number of parallel local

processing and transmissions at different sites as much as possible, which in turn mean data

should be allocated to as many sites as possible.

(3) When the two objectives above are combined, data allocation should find a compromise

suitable for total time minimization and response time minimization.

The above statements imply that the unbalanced factor for the data allocation scheme resulting

from total time minimization should be larger than that of the data allocation scheme from

response time minimization. And the unbalanced factor for the data allocation scheme resulting

from minimization of a combination of total time and response time should be between those

from total time minimization and response time minimization.

In order to investigate the effect of objective functions in terms of the unbalanced factor, the

query and update originating site and their frequency are set as shown in Table 10. Table 11

shows solution patterns for all three minimization problems converge around the 20th generation.

As expected, in the case of total time minimization, four relations are allocated to site 3 while two

relations are allocated to sites 1 and 2, which in turn means that UBF is high. In case of

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

19

responsetime minimization, one or two relations are dispersed among five sites, so UBF

(83285.8) is much

Table 10. Site and Frequency for Transactions

Transaction Q1 Q2 Q3 Q4 Q5 Q6 Q7 U1 U2 U3 U4

Site 5 3 2 1 4 1 2 1 5 3 4

Frequency 50 50 50 50 2 2 2 10 10 10 10

Table 11. Solution Patterns

Notation: T (total time minimization)

 R (response time minimization)

 C (combination of both)

 + U (with update transactions)

Note: Column: Sites; Row: Relations

Total Time Minimization: Time = 223727, UBF = 170779.6

Response Time Minimization: Time = 207027, UBF = 83285.8

Combination: Time = 216242.5, UBF = 133183.6

less than that of total time minimization (170779.6). In case of the combination of total time and

response time minimization, the UBF is in between those of total time and response time

minimization. This results show that the genetic algorithm finds solutions in a reasonable way

according to its objective function.

5.2. EFFECT OF MIGRATION

The effect of the forced migration is investigated in this section. We first run the data allocation

genetic algorithm without workload balancing, naming it OADA (Operation Allocation with Data

Allocation). Then the genetic algorithms explained in this paper are run using the same query and

update transactions, named LBDA (WorkLoadBalancing with Data Allocation including cost

minimization operation allocation), for convenience.

As in the previous experiment, the genetic algorithms converge around the 20th generation. So all

results are obtained at the 20th generation, and the number of chromosomes (the population size)

is 20. First, in the case of total time minimization, the UBFs of LBDA are much less than those of

OADA, while the best total time of OADA is 223727 (UBF = 170779) and that of LBDA is

223137 (UBF = 52583). This result shows that LBDA not only gives better total time but also

much better UBF. Since OADA attempts only to minimize the total time, as a result the total time

is minimized but UBF actually may be increased, as explained in the previous section. LBDA,

however, not only attempts to minimize the total time but also UBF, and since the migration leads

to more diverse chromosomes, LBDA results in better total time and UBF. This result shows the

superiority of LBDA over OADA.

T + U R + U C + U

10000 01000 10000

00001 00010 00001

00110 10000 00100

01000 10000 10000

11100 00100 00100

00100 00001 01001

00100 00100 00001

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

20

Second, in the case of response time minimization, there is not much difference between OADA

and LBDA in terms of response time and UBF. As we described in the previous section, the

response time minimization naturally disperses data among sites, and as a result, UBF is also

minimized.

Third, in the case of minimization of the combination of total time and response time, the

difference of UBF between OADA and LBDA is not as much as those resulting from total time

minimization. But the total cost of LBDA is 238835, which is better than that of OADA, which is

239757. Figure 7 shows the slightly improved UBF of LBDA over OADA when we visually

inspect the patterns between two results, although we do not prove that statistically.In summary,

the above results show LBDA is superior to OADA.

5.3. COMPARISON BETWEEN THREE GENETIC ALGORITHMS

In this section we compare three genetic algorithms, OADA, LBDA, and one more genetic

algorithm employing GA II and IV in Figure 2; that is, its objective is to minimize UBF, and we

name it as UBFDA. The comparison is made in terms of total time, response time, and the

combination of both. Three genetic algorithms start with the same initial populations. Since the

objective of OADA is to minimize total cost, a combination of total time and response time,

whereas that of UBFDA is to minimize the unbalanced factor, even though three genetic

algorithms start with the same initial populations, the final results will be different in terms of

total time, response time, and the combination of both respectively. One more issue we are

investigating in this experiment is the implication of workload balancing; that is, workload

balancing can lead to significant reduction in the average query response time since the waiting

time for CPU and I/O services at sites of queries is reduced when queries are executed at the

dynamic (run-time) environment. But since we employ only a static (compile-time) workload

balancing in this research, it is hard to see the effect of actual response time (run-time) reduction

of queries due to workload balancing unless we actually run simulation models or use

mathematical queuing models based on data allocations and operation allocations (or workload

balanced operation allocation) resulting from two genetic algorithms. Applying simulation or

queuing models is, however, out of scope of this research. We, therefore, merely compare two

genetic algorithms in terms of how total time, response time, and the combination of both are

changed.

Table 12 shows the results based on two genetic algorithms, OADA and UBFDA. In case of total

time minimization, the total time of UBFDA (19,195) is increased ascompared to that of OADA

(15,595) even though UBF of UBFDA is significantly reduced. The main reason is that since

UBFDA tends to spreads the workloads among sites, the total time is increased due to increased

communications (note that the total time is minimized when subqueries are executed at the same

site as much as possible).

6. CONCLUSION

This paper proposes the framework for total cost minimization and workload balancing. It is more

realistic to solve the integrated problem of both data and operation problem based on total cost

minimization and workload balancing than solve each problem separately.

To the best of our knowledge, this paper is the first attempt to consider total cost minimization

and workload balancing in determination of data allocation and operation allocation.

International Journal of Database Management Systems (IJDMS) Vol.9, No.3, June 2017

21

Table 12: Comparison between Two Genetic Algorithms

Objective Genetic Algorithm Time UBF

Total Time OADA 15,595 11,967

UBF UBFDA 19,159 2,200

Response Time OADA 16,848 7,694

UBF UBFDA 16,914 3,953

Combination OADA 35,437 38,098

UBF UBFDA 36,179 3,121

Computational results show the effectiveness of the framework. The proposed framework is more

likely to provide a better data allocation and operation allocation for the performance of partially

replicated distributed database systemsand also provides a better understanding of the underlying

mechanisms for design of partially replicated distributed database systems.

REFERENCES

[1] C. Cheng, W. Lee, and K. Wong, (2002) “Genetic algorithm-based clustering approach for database

partitioning,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 32(3), pp. 215–230.

[2] J. Du, R. Alhajj, and K. Barker, (2006) “Genetic algorithms based approach to database vertical

partitioning,” Journal of Intelligent Information Systems, Vol. 26(2), pp. 167–183.

[3] X. Gu, W. Lin, and V. Bharadwaj,(2006) “Practically realizable efficient data allocation and

replication strategies for distributed databases with buffer constraints”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 17, issue 9, pp. 1001-1013.

[4] I. Hababeh, R. Omer, and B. Nicholas, (2007) “A high-performance computing method for data

allocation in distributed database systems”, Journal of Supercomputing, vol. 39, issue 1, pp. 3-18.

[5] J. Johansson, S. March, and J. Naumann, (2003) “Modeling network latency and parallel processing

in distributed database design,” Decision Sciences, Vol. 34(4), pp. 677–706.

[6] D. Kossmann, (2000) “The state of the art in distributed query processing,” ACM Computing

Surveys,” Vol. 32(4), pp. 422–469.

[7] B. Li and W/ Jiang, (2000) “A novel stochastic opitimizationalgorirhm,” IEEE Transactionn on

Systems, Man, and Cybernetics: Part B, Vol 30 Issue 1, pp. 191-198.

[8] Z. Michalewicz and D. Fogel, (2004) How to Solve It: Modern Heuristics, 2nd edition, Springer,

Berlin.

[9] E. Sevince and A. Cosar, (2011) “An evolutionary genetic algorithm for optimization of distributed

database queries,” Computer Journal, Vol. 54 Issue 5, pp. 717–725.

[10] S. Song and N. Gorla, (2000) “Genetic algorithm for vertical fragmentation and access path

selection,” Computer Journal, Vol. 43 Issue 1, pp. 81–93.

[11] S. Song, (2015) “Design of distributed database systems: an iterative genetic algorithm,” Journal of

Intelligent Information Systems, (2015) ” Journal of Intelligent Information Systems, Vol. 45, No. 1,

pp. 29-59.

[12] A. Verma and M. Tamhankar, (1997) “Reliability-based optimal task-allocation in distributed-

database management systems,”IEEE Transactions on Reliability, Vol. 46 Issue 4, pp. 452-459

[13] J. Wang and K. Jea,(2009) “A near-optimal database allocation and replication strategies for

distributed databases with buffer constraints,” Information Sciences, Vol. 179 Issue 21, pp. 3772-

3790.

AUTHORS

Sukkyu Song

Professor, Youngsan University

Manager, Posdata Co., Seoul, Korea

