
International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

DOI:10.5121/ijdps.2019.10301 1

ADVANCED DIFFUSION APPROACH TO DYNAMIC

LOAD-BALANCING FOR CLOUD STORAGE

Eman Daraghmi1 and Yousef-Awwad Daraghmi2

1Department of Applied Computing, Palestine Technical University Kadoori (PTUK),

Tulkarm, Palestine
2Department of Computer Systems Engineering, Palestine Technical University Kadoori

(PTUK), Tulkarm, Palestine

ABSTRACT

Load-balancing techniques have become a critical function in cloud storage systems that consist of
complex heterogeneous networks of nodes with different capacities. However, the convergence rate of any

load-balancing algorithm as well as its performance deteriorated as the number of nodes in the system, the

diameter of the network and the communication overhead increased. Therefore, this paper presents an

approach aims at scaling the system out not up - in other words, allowing the system to be expanded by

adding more nodes without the need to increase the power of each node while at the same time increasing

the overall performance of the system. Also, our proposal aims at improving the performance by not only

considering the parameters that will affect the algorithm performance but also simplifying the structure of

the network that will execute the algorithm. Our proposal was evaluated through mathematical analysis as

well as computer simulations, and it was compared with the centralized approach and the original diffusion

technique. Results show that our solution outperforms them in terms of throughput and response time.

Finally, we proved that our proposal converges to the state of equilibrium where the loads in all in-domain
nodes are the same since each node receives an amount of load proportional to its capacity. Therefore, we

conclude that this approach would have an advantage of being fair, simple and no node is privileged.

KEYWORDS

Load balancing, cloud storage, Heterogeneous, Simulation, Task assignment

1. INTRODUCTION

Load-balancing techniques have become a critical function in cloud storage systems that consist

of hundreds of independent storage nodes (or nodes for short). In such systems [1], nodes

simultaneously serve computing and storage functions where a file is partitioned into a large
number of disjointed and fixed-size pieces (or file chunks), and each file chunk is assigned to a

different cloud storage node so that the load of a node is typically proportional to the number of

file chunks the node possesses. Thus, it is possible to improve the overall performance of the
cloud storage system by balancing the load among the distributed nodes. In general, load-

balancing algorithms are designed to distribute the loads over multiple nodes in a way that

ensures expanding resource utilization, maximizing throughput, minimizing response time, and

avoiding the overload situation where one node is heavily loaded with excess of loads while
another node is lightly loaded or idle.

Practically, distributed file systems for clouds [2], such as GFS, utilize the centralized approach to

simplify the design as well as the implementation of a distributed file system, to manage the
metadata information of the systems and to balance the loads of storage nodes based on that

metadata. However, when increasing the number of storage nodes, the number of files to be

stored and the number of files to be accessed, central nodes become a bottleneck. Additionally, if
the central nodes fail, then the whole file system fails as well. As a solution, many studies have

proposed a number of dynamic load-balancing algorithms to eliminate the dependence on central

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 2

nodes by allowing the storage nodes balance their loads spontaneously. The main objective of

these previous studies was to propose a better algorithm and to develop a new approach to

remedy shortcomings in previous efforts. In fact, previous algorithms are designed to be scalable,

portable, easy to use and more improved. Improvements include the derivation of a faster
algorithm that transfers less work to achieve a balanced state than other algorithms, and a

mechanism for selecting and transferring the loads to other machines in order to improve the

algorithm performance. They found that the performance of any load-balancing algorithm as well
as its convergence rate deteriorated as the number of nodes in the system, the diameter of the

network and the communication-overhead increased. They concluded that increasing the number

of nodes in the system, from one hand; make it not feasible for a node to collect the load-
information from all nodes in the system and, from the other hand, leads to difficulties in using

the collected load-information as most of this information will be out of date which result in

lower performance. In other word, the more complex the system is, the less performance

achieved. Therefore, our proposed solution attempts to bolster the previous approaches efforts by
applying the going-vertical principle for the dynamic diffusion load-balancing technique to

consider both the virtual structure of the system and the variables of the load-balancing algorithm.

In other words, this principle aims at scaling the system out not up – allowing the system to be
expanded by adding more nodes without increasing the system complexity nor the need to

increase the power of each node while at the same time increasing the overall performance of the

system. The key idea is to simplify the structure of the system by breaking down the entire

complex heterogeneous network into simpler domains or clusters of homogeneous nodes based
on the property of each node in the system. As a result, the number of nodes, the diameter of the

network as well as the communication overhead are decreased and thus the overall performance is

increased.

In summary, the objectives of this paper are: (1) to improve the performance of cloud storage

systems by applying dynamic load-balancing technique that employs the going on vertical

principle; (2) to propose an algorithm that re-balancing tasks to storage nodes by allowing the
storage nodes balance their loads spontaneously such that each node obtains load proportional to

its capacity and thus achieving the fairness state which in turn eliminates dependence on central

nodes. Our proposal was evaluated through computer simulations as well as mathematical
analysis, and it was compared with the centralized approach and the original diffusion technique.

Results show that our solution outperforms them in terms of throughput and response time.

Finally, we proved that our proposal converges to the state of equilibrium where the loads in all

in-domain nodes are the same since each node receives an amount of load proportional to its
capacity. Therefore, we conclude that this approach would have an advantage of being fair,

simple and no node is privileged.

2. RELATED WORK

Presented here is a summary of work related to the approaches and techniques used in this paper

[2, 4, 5, 6, 7]. In complex huge systems, it is not feasible for a node to collect the information of

all other nodes in the system. Thus, the Going-Vertical principle is a technique aims at converting

the complex heterogeneous system, by breaking it out, to several simple clusters of homogeneous
nodes. This technique considers both the properties of each node in the system, such as its

functionalities and/or capacity, as well as the objective of the system that will execute the load-

balancing algorithm to group those nodes who have similar properties into clusters or domains
and thus virtually simplifying the structure of the complex system. As mentioned before, load-

balancing becomes harder when more loads need to be balanced across a larger system.

Moreover, the performance of any load-balancing algorithm (i.e. throughput) as well as the
convergence rate of it deteriorated as the number of nodes, the diameter of the network and the

communication overhead increased; thus, employing this technique to any load-balancing

algorithm aims at scaling the system out not up means allowing the system to be expanded by

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 3

adding more nodes while at the same time increasing the performance of the system load-

balancing algorithm without the need to increase the power of each node, and maintaining the

homogeneity property in-domain. Fig.1 shows the concept of the principle.

Figure.1. The concept of the going vertical principle

The diffusion approach is a dynamic load balancing technique that allows the nodes to

communicate and migrate tasks with other nodes. Each node balances the load among the other

nodes in the hope that after a number of iterations the whole system will approach the balanced
state. In the diffusion approach, each node simultaneously sends the excessive load to its under-

loaded neighbor nodes and receives loads from its neighbor nodes with higher load. Under the

synchronous assumption, the diffusion method has been proven to converge in polynomial time

for any initial load distribution given the quiescent assumption that no new load is generated and
no existing load is completed during execution of the algorithm. Since it is not necessary to have

a global coordinator, the diffusion approach is inherently 1oca1, fault tolerant and scalable. Hence

this approach is a natural choice for load balancing in a highly dynamic environment [8]. In 1989,
Cybenko [9] proposed the first diffusion scheme for dynamic load balancing on a message

passing multiprocessor networks. According to his method the load distribution at time t is

quantified by a vector where t

i
l is the load of node i at time t ≥ 0. In each

round t, node i and node j compare their load and node j sends tokens to node i if node j has

more loads than node i. Cybenko method requires ld(n) steps, where n is the number of

processors and ld denotes the logarithm to base 2. The method utilizes the topology of the
hypercube machine for its efficiency, but ignores any dependencies between the individual items

of data moved. In 1990, Boillat [10] et al. presented an approach to solve the load balancing

problem for parallel programs. They presented a fully distributed load balancing algorithm,

consisting of the same process running in parallel on each processor of a given network. No
assumption has to be made concerning the structure of the underlying network. They show the

number of iterations in several cases to be of the form 2(n)O where n is the number of processors.

Practically, neighborhood load balancing algorithms are diffusion algorithms that have the

advantage that they are very simple and that the vertices do not need any global information to

base their balancing decisions on. Another advantage is that balancing with neighbors has the
tendency to keep load items initiated by one vertex in the neighborhood of that vertex.

3. LOAD BALANCING PROBLEM FORMULATION

Formally, a large-scale cloud storage file system is modeled as an undirected

graph (,E)G V whereV represents the set of chunkservers or nodes and E describes the

connections among them. The cardinality of V is | |V n where n can be one thousand, ten

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 4

thousand, or more. The n chunkservers in the system
i
v V stores a number or a set of

files Fwhere any file f F is partitioned into a number of disjointed, fixed size chunks denoted

by
f
C . For example, in Google File System GFS, each chunk has 64 Mbytes [11]. Since each

chunkserver i hosts a number of fixed size files chunk, the load
i
L of a chunkserver is proportional

to the number of chunks hosted by the server. To simulate the worst case, we assume that the

chunkservers are heterogeneous in which each server has different capacity. Moreover, the files in

F may be arbitrarily created, deleted, and appended. The net effect results in file chunks not being
uniformly distributed to the chunkservers. Our objectives in this paper are to design a load-

balancing algorithm to reallocate the file chunks such that the chunks can be distributed to the

system as uniformly as possible and each chunkserver hosts a number of file chunk proportional
to its capacity.

Definition 1 (Going Vertical Principle).

Given a network of heterogeneous chunkservers or nodes (,)G V E such as each node has its

capacity and with any assigned file-chunks, a principle or a relation R to be found that classifies

the nodes based on their capacities into domains or clusters of homogeneous nodes and then the

load will be transferred among only nodes in the same domain is the going vertical principle.
More formally, the semantic of the relation is defined as follows:

 where

1
[a ,...,a]

n
 is the set of attribute names unique such as capacity to N and

1
t[a ,...,a]

n
 is the restriction

of t to this set. It is usually required that the attribute names in the header of D are a subset of

those of N because otherwise the result of the operation will always be empty.

Definition 2 (Dynamic Load-Balancing Problem).

Given a large scale distributed file system (,)G V E of | | nV  heterogeneous chunkservers and a

set of files F such that each file is partitioned into fixed size chunks, the dynamic load balancing

problem is to employ the going vertical principle to convert the set of heterogeneous

chunkservers into several clusters or domains of homogeneous chunkservers so that the load-
balancing algorithm efficiently redistribute the file chunks among the in-domain chunk servers

such that ifG is stable in a sufficient time period, the file-chunks allocated at each chunkserver in

one domain ; is fair, that is,
1 2

...
n

L L L   . Considers that for all
i
v V when the load in all one

domain nodes are equal
1 2

...
n

L L L   . When this happens, the domainG is said to have achieved

local fairness. Obviously achieving the local fairness in all domains means the entire system
achieves the fairness state.

4. OUR PROPOSAL

Our proposed algorithm is shown in algorithm1. NeighborLB. Each node in
in the system G that

executes the same algorithm in parallel has a unique node id and a capacity, which defined as the

maximum number of file chunk that can the chunk server host. First, the structure of the system is

simplified by applying the going-vertical principle; thus, all the chunkservers that have the same

capacity form one local-domain or cluster such that chunkservers in one cluster are neighbors and
they can exchange their metadata load information and a file chunk can only be migrated to

another chunkserver in the domain. As a result, the graph diameter, the number of nodes that will

exchange the load information and communication overhead is decreased. In this paper, because
of the size limitation, we only focus of the load-balancing algorithm not the management of the

domains. Following sub-sections illustrate the proposed algorithm in details.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 5

4.1. Initialization

Each chunkserver i
v hosts a number of fixed size file-chunks . Each

chunkserver i
v initializes its state (initialization stage) in steps 1 through step 3. First, by applying

the going vertical principle, all nodes who have the same capacity form one domain. This pre-

initialization step means converting the heterogeneous system into several clusters of

homogeneous nodes. Step 1: Each chunkserver i
v defines a set info to store its information and the

in-domain chunkservers neighbors inf { , }
i i

o v L   , where iv is the node id and iL is its load i.e. the

number of chunks the node hosts. Step 2: Each chunkserver i
v defines an array .tomig to store the

amount of the migrated load that node in will transfer to its in-domain neighbors. Step 3: Each

node iv computes its initial load
|CF |

i i
L 

4.2. Information Broadcasting

Step 4: Each chunkserver i
v then broadcasts its initial state to all its in-domain neighbors. Note

that, each node maintains a FIFO message queue which holds the incoming messages. Each

message has the format
, ," ",g
f f
v L T 

where the message came from f
v

, its load f
L

, T is the type

of the message, and g is the migration information. There are three types of messages:

1. Request message (“R”): iv receives a message to be informed that additional load submitted to

it.

2. Load Migration message (“G”): iv
sends a “G”-message to jv

 to tell it that iv
wants to migrate g

units of load to jv
.

3. Broadcast message (“B”): broadcast the status (i.e. id, load to all in-domain neighbors).

Step 5: The main part of the algorithm starts when the node takes the first message from the

queue and processes the message according to its type. Initially, first messages received by each

node iv
 are “B” type messages.

4.3. Computing the Average In-Domain-Load and Finding In-Domain Assistant

Neighbors

Step 6: After receiving the information of all in-domain neighbors, each node in
computes the

average in-domain load in which a node is located. The average in-domain load is defined

as

inf

|Cf |

|info|

i
i o

avg
L 



 . Step 7: According to the set info of node in
 and the average in-domain-load,

node in
defines a set of assistant neighbors lower

N
whose loads is less than the in-domain average

load.

The transferring strategy

Step 8: The decision of calling a procedure LB to migrate the excess files chunks or not depends

on the difference between the current load of the node iv
and the average in-domain load.

Therefore, the requests will be migrated if the load difference is positive. Hence, we will show

later that the local domain will rapidly converge to a state where
0

i avg
L L 

 for all edges. The

pseudo-code of the procedure Load-Balance is given in Procedure LB.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 6

1 1

lg 1.

: The node where the algorithm is executed.

() { }The set of in-domain neighbors

={f c ,...,f c } The set of hosted file chunks by node i

Begin

1.Let info { ,L }

2. Let

i

i i

i m s

i i

A orithm NeighborLB

n

Adj n n

Cf

n

  

  

mig()=0 for all ()

3.Compute the initial Load: L |Cf |

4.For each node () do

 send message< ,L ,"B",0>

5.Read messages from the messages queue

 a. if T="B" then info= info { ,L

j j i

i i

j i

i i

f f

n n Adj n

n Adj n

n

n







 



inf

}

 b. if T="G" then

 info= info { ,L , ,L }

 For each node () do

 send message< ,L g,"B",0>

6.Compute the average in-domain-load L
| ()|

7.Define the se

i i f f

j i

i i

j
j o

avg

i

n g n g

n Adj n

n

L

Adj n



     









t of Assistant Neighbors

For each node () do

 if L then N N

8.Let load-difference (L - L)

9.If 0 then exit;

else

(,N ,)

EndBegin

j i

j avg lower lower j

i avg

i lower

n Adj n

L n

LD

LD

LB Cf LD



 





4.4. Load-Balancing Mechanism

In the procedure LB, the load difference LD, the set of in-domain assistant neighbors and the set

of the hosted file chunks are formed the procedure input parameters. In this step all the over-
loaded nodes call the procedure LB to migrate the excess file chunks to the under-loaded nodes.

Each overloaded node sorts the set of assistant neighbors in ascending order. The file chunks that

will be migrated from the overloaded node is the load difference between the load of the

overloaded node and the average in-domain load or the difference between the average load and
the assistant neighbor. In addition, this amount spread to the assistant neighbors ensures the node

who will receive the file chunk maintains the under-loaded status. Figure.4 shows the load-

balancing mechanism.

Pr LB(,LD ,N)

Begin

1. Sort the nodes in N in acsending order

2. for nodes in N

 compute =L

 if LD then send message <n ,L ,"G",LD >

 else

 if LD then send me

i i lower

lower

lower

avg j

i i i i

i

ocedure Cf

L









 ssage <n ,L ,"G", >

 LD = LD -
i i

i i

Endfor

EndBegin





International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 7

Figure. 2. Load-balancing example

5. ALGORITHM ANALYSIS

5.1. Time Complexity Analysis

Most of the operations in the proposed algorithm take (1)O time. Since the broadcasting

operations have time complexities O()
i
d , the idea of our approach is to improve the performance

of load-balancing algorithm by considering both the algorithm parameter and the virtual structure
of the system that will execute that algorithm and thus the number of in-domain neighbors

| ()|
i i
d Adj n

 of each node is decreased. That has benefits in reducing the communication delay

and the amount of out of date information. Also, if “info” and “to.mig” objects are implemented

as arrays, then steps 1 and 2 have time complexities O()
i
d and thus each individual update takes

(1)O time. Moreover, the sorting steps for the LB procedure has the worst case time complexity

of O(log)c c where c is the number of in-domain assistant neighbor, suppose that merge sort is

used. The for-loop only takes O()c since each entry in sorted is referenced only once. So

NeighborLB algorithm runs only at O(log)c c time.

5.2. The Convergence

In this section we prove that the NeighborLB algorithm converges to the state of fairness given

sufficient time.

Lemma 1. Given 1 2
(, ,...,)t t t t

n
L l l l

 is the loads array of the in-domain nodes at time t where 1

tl
 is

load of node 1 at time . In time t, if there is at least one overloaded node (i.e. 0LD ) then
1tL 

is lexicographically greater than
tL means the lightly-loaded nodes at time t will receive load at

time t+1.

Proof:

Let X  be the set of overloaded nodes in domain (i.e. nodes with 0LD ) who needs to migrate

some loads to other nodes at time t . In reality, a node i X will also host additional loads in time t .

Thus, the nodes that migrate loads in time t will reduce their load at time t+1. Let  be the node

that has lowest load at time t+1. Assume that  occupies the
thk position of the array

1tL 

where
1tL 

similarly is the load array of in-domain nodes at time t+1 sorting in ascending order. Let

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 8

 1 2 1
 , , , t t t

t k
Q l l l


 

 be the array of the loads in first k-1 positions of
tL . In order to prove this lemma

we have to consider two cases: A set 1t
Q

 contains a node i that received loads in time t . Thus, node

i belongs to both t
Q and 1t

Q
 , and its load value is increased in time 1t  since it will received some

migrated load. Therefore, there will be at least one load value in set 1t
Q

 strictly greater than one

value in
t
Q . Accordingly,

1tL 

 is lexicographically greater than
tL .There are nodes in which

located in 1t
Q

 and did not migrate or receive loads at time t . In this case, the load value

at
thk position at time 1t  is strictly greater than the load value in the same position at time twhich

has received load from
tX and therefore,

1tL 

 is lexicographically greater than
tL .

Theorem 1 Convergence. In heterogeneous system, if each domain of nodes executes the
NeighborLB algorithm, then the system converges to a balanced state.

Proof: Given a heterogeneous unbalanced system. Assume that the going-vertical principle, first,

applied to this system to spread the nodes into several domains and some of these domains are

unbalanced. Each domain separately execute the NeighborLB algorithm in order to achieve the

convergence state. Consider one domain N . Let i be the most heavily loaded node in that domain,

i.e.
0

i avg
l l 

, and all other nodes in-domain j N who have j i
l l

 and j avg
l l

form the set of

assistant neighbors of node i. When i avg
l l

and thus
0

i avg
l l 

. Thus, the result of Lemma 3 shall

be used, which guarantees that the array of loads sorted in ascending order, in the next time

moment, is lexicographically greater than the array of the current step. Given that the

NeighborLB algorithm is executed in some domains in a given time t . Let S N be the domain of

nodes executed the algorithm in time t . Let
tL be the array of loads in one domain sorted in

ascending order in time t . It has been proven in lemma 1 that
1tL 

 is lexicographically greater

than
tL . Let min

S be the lightly loaded node in time t . There exists at least one node min
v S which is

in-domain neighbor to node k such that
t t

k v
l l . Now by using the proposed algorithm, node k

migrates a portion of its excess load to node v , but v does not migrate any loads in time t because

v is under loaded when compared to the average load of the domain. In time 1t  the effective-

load of node k decreases; however, its load value never become less than the load value of node

v which is given by
1 t t

k avg v
l l l  

. Thus,
1tL 

is lexicographically greater than
tL meaning that the

sorted array of load values of nodes in time 1t  are lexicographically greater than the sorted array

of the load values of nodes at time t .

6. SIMULATIONS

The performance of our proposed algorithm was examined through a computer simulation that

was implemented with CloudSim [12,13] and was compared to the original diffusion

neighborhood method and the centralized approach. Initially, the test of our proposed method was
based on two parameters: the number of chunk files and the number of storage nodes. The

measurement of the performance of the proposed algorithm was based on two metrics: throughput

and the response time. Only one parameter was changed each time so that any changes in the
performance would be based solely on this parameter. Therefore, two tests were produced for

each parameter to allow a rough average and standard deviation to be obtained. In fact, results

achieved from these tests were used to study: (1) the behavior of different load-balancing

algorithms under the same condition; (2) the behavior of the algorithms for random systems with

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 9

different number of storage nodes; (3) the behavior of the algorithms for different load

distributions.

6.1. Changing the Number of File Chunks

To study the effects of changing the number of file chunks on the average response time and the

throughput, the number of file chunks was varied from 1000-10,000 chunks and the distribution

of the chunks among the storage nodes were carried in the following manner.

 The initial distributions varying 25% from the in-domain average load to represent a

situation where all nodes have similar loads at the beginning and those loads are close to

the in-domain average load; in other word, the initial situation is quite balanced.

 The initial load distributions varying 50% from the average load to constitute the

intermediate situations.

 The initial load distributions varying 75% from the average load to constitute the higher
intermediate situations.

 The initial load distributions varying 100% from the average load to constitute the

advanced unbalanced situations.

6.1.1. Average Response Time

The total time taken for the three algorithms increased as the number of file chunks was increased

as shown in Figure.3. This is expected as the more files to be stored, the longer it takes to

complete the storing tasks. However, it was observed that our proposed method performed better
than the centralized scheme and the original diffusion algorithm. In addition, when comparing the

results of the method and the centralized algorithm, it is observed that the gap between these two

curves was widening as the assigned loads was increased. This shows that the method actually
reduced the completion time by a considerable amount (greater speedup) in comparison to the

centralized algorithm as amount of loads increased.

Figure. 3. Number of File Chunks vs. Response Time

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 10

6.1.2. Throughput

As shown in Figure.4, our method outperformed the original diffusion neighborhood algorithm in

terms of the system throughput in all loads distribution cases. The throughput using our method
was in the range of 89-98 percent while the nearest neighborhood algorithm only had a utilization

of 80-94 percent.

6.2. Varying the Number of Storage Nodes

To study the effects of changing the number of storage nodes on the average response time and

the throughputs, the number of nodes were varied from 10– 100 nodes and the distribution of the

overloaded nodes were carried in the following manner.

 25% of storage nodes are idle, 75% of storage nodes are overloaded.

 5o% of storage nodes are idle, 50% of storage nodes are overloaded.

 75% of storage nodes are idle, 25% of storage nodes are overloaded.

Figure. 4. Number of File Chunks vs. Throughput

6.2.1 Response Time

Figure. 4 shows that the response time improved when the number of nodes was increased.

However, this improvement was mainly caused by the fact that more nodes were used for larger

domain. Therefore, even though there were more loads to be scheduled in each round, the extra
load was easily handled by the additional nodes.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 11

Figure. 5. Number of nodes vs. Response time

6.2.2. Throughput

Figure. 5 shows that the throughput in the original neighborhood algorithm decreased as the

number of nodes in the system increased. However, in our proposed method, the number of nodes
is divided into several domains keeping the number of node in a domain reasonable. This shows

that load-balancing is harder when more tasks are to be balanced out across a larger system.

Figure. 6. Number of Nodes vs. Throughput

6.3. Discussion

This section summarized the performance of the proposed solution as compared to the original

diffusion method and the centralized scheme (see table 1 below). Each of the test used the

response time and the throughput as performance measures. The performance of these methods
was compared in many cases by changing the parameters of the algorithm. The parameters varied

(one at a time) were the assigned loads to be executed and the number of nodes. It was observed

that our proposed method performed better than the other approaches. The number of nodes, the
network diameter and the communication delay affect the convergence rate of any load-balancing

algorithm as well as its performance. It is intuitive that a graph or a system with longer diameter

will take longer time to converge as the number of iterations to propagate the loads to all assistant

neighbors is proportional to the network diameter. In addition, more communication delays lead
to out of date information. Our proposed method considers both the structure of the network that

will execute the algorithm and the algorithm parameters. It works, first, by simplifying the

structure of the system which in turn decreases, from one hand, the communication overhead
between the in-domain neighbors which lead to faster response time and, from the other hand, the

time need to choose the assistant neighbors and the target node that will receive the migrated

loads. This effect appears clearly when the assigned loads and the number of nodes increased.
Moreover, reducing the communication delay improves the load evaluation since the effect of out

of date information will be decreased. Also, considering the processing speed and thus the

processing capacity of each node leads to more accurate average load evaluation which improves

the algorithm performance. The importance of the average load appears when deciding the
amount of loads to be migrated; if the migrated loads to one node is too small, then the load

distribution will take longer and so the convergence rate. In contrast, if the migrated loads to one

node is too large, then the overloaded node may transfer too much load to its neighbor and thus
this overloaded node will not have sufficient load to transfer to the remaining neighbors. Thus, by

using the in-domain average load, each node obtains an amount of load proportional to its

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 12

capacity and thus no node is privileged. This indicates reliable performance of the method when

the assigned loads increases that is very valuable from a practical point of view.

Table 1. A comparison between our proposed solution and both the centralized approach as well as the

diffusion method

 Centralized Original Diffusion Our Method (diffusion + applying

the GV principle)

Pros

Simple design,

simple
implementation,

good

performance.

Good performance,

solve the bottleneck and
the failure problems in

centralized approach.

Good performance even with large

systems, simplify the network
structure, solve the cons of the

original diffusion method and the

centralized approach.

Cons Bottleneck

problem, failure

possibility

Communication

overhead, low

convergence rate and

low performance for
large heterogeneous

systems.

Need a good skills to define the

properties for each node.

7. CONCLUSION

This paper considered load-balancing mechanism in cloud storage systems. As the convergence
rate of any load-balancing algorithm as well as its performance deteriorated as the number of

nodes in the system, the diameter of the network and the communication overhead increased, our

proposal that employed the going-vertical principle has been very effective especially in the case
of a large number of nodes and dense loads. In fact, a going-vertical based scheme works better

when the number of nodes is large since the key idea of the proposed method is that the

communication occurs between only the in-domain node reduces the impact of communication

delay on freshness of the load information which in turn allows the method to handle all load-
balancing information and thus all load-balancing decisions with minimal inter node

communication. In other words, we aimed at not only considering the parameters that will affect

the algorithm performance but also simplifying the structure of the network that will execute the
algorithm. Finally, we proved that the proposed algorithm under this approach converge to the

state of equilibrium where the load in all nodes is the same since each node receives an amount of

load proportional to its capacity. Therefore, we conclude that this approach would have an

advantage of being fair, simple and no node is privileged.

REFERENCES

[1] H.-C. Hsiao, H.-Y. Chung, H. Shen and Y.-C. Chao, "Load Rebalancing for Distributed File Systems

in Clouds," IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 5, pp. 951-962, 2013.

[2] E. Y. Daraghmi and S. M. Yuan, "In-domain neighborhood approach to heterogeneous dynamic load
balancing in real world network," in 14'th International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT'13), Taipei, Taiwn, 2013.

[3] C. P. A. a. P. Berenbrink., "Distributed selfish load balancing with weights and speeds.," in The 2012

ACM symposium on Principles of distributed computing, New York, USA, 2012.

[4] J. Bahi, R. Couturier and F. Vernier, "Synchronous Distributed Load Balancing on Totally Dynamic

Networks," in Parallel and Distributed Processing Symposium, 2007.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.10, No.2/3, May 2019

 13

[5] E. Luque, A. Ripoll and A. C. a. T. Margalef, "A distributed diffusion method for dynamic load

balancing on parallel computers," in Euromicro Workshop on Parallel and Distributed Processing,
1995.

[6] P.Neelakantan, "Decentralized Load Balancing In Heterogeneous Systems Using Diffusion

Approach," International Journal of Distributed and Parallel systems (IJDPS), vol. 3, no. 1, pp. 229 -

239, 2012.

[7] C.-C. Hui and S. Chanson, "A hydro-dynamic approach to heterogeneous dynamic load balancing in a

network of computers," in Proceedings of the 1996 International Conference on Parallel Processing

Software., 1996.

[8] G. Cybenko, "Dynamic load balancing for distributed memory multiprocessors," Journal of Parallel

and Distributed Computing, vol. 7, no. 2, pp. 279-301, 1989.

[9] J. E. Boillat, "Load balancing and Poisson equation in a graph," Concurrency: Practice and

Experience, vol. 2, no. 4, pp. 289-313, 1990.

[10] "Google File System," [Online]. Available: http://en.wikipedia.org/wiki/Google_File_System.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazo, C. A. F. D. Rose and R. Buyya, "CloudSim: a toolkit for

modeling and simulation of cloud," SOFTWARE – PRACTICE AND EXPERIENCE, vol. 41, no. 1,

pp. 23-50, 2010.

[12] R. M. I. Stoica, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H. Balakrishnan,
"Chord: a Scalable Peer-to-Peer Lookup Protocol for Internet Applications," in Proceedings of the

2001 conference on Applications, technologies, architectures, and protocols, San Diego, California,

USA, 2001.

	Advanced Diffusion Approach to Dynamic Load-Balancing for Cloud Storage
	Abstract
	Keywords
	Load balancing, cloud storage, Heterogeneous, Simulation, Task assignment

