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ABSTRACT  
 
The Science Information Network (SINET) is a Japanese academic backbone network for more than 800 

universities and research institutions. The characteristic of SINET traffic is that it is enormous and highly 

variable. In this paper, we present a task-decomposition based anomaly detection of massive and 

highvolatility session data of SINET. Three main features are discussed: Tash scheduling, Traffic 

discrimination, and Histogramming. We adopt a task-decomposition based dynamic scheduling method to 

handle the massive session data stream of SINET. In the experiment, we have analysed SINET traffic from 

2/27 to 3/8 and detect some anomalies by LSTM based time-series data processing.  
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1. INTRODUCTION  
 

The Science Information Network (SINET) which the academic backbone network handles 
Internet traffic of more than 800 universities in Japan. Session data of SINET is increased 

drastically, which imposes a significant burden on network administrators. The main challenge in 

this paper is to handle massive and high volatility traffic data. 
 

 
 

Figure 1.  SINET ingoing traffic 
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First of all, we report the temporal pattern of the SINET ingoing/outgoing traffic patterns. Figures 
1 and 2 show the traffic volume of session data. Session data is grouped into one-hour frame bins. 

In ingoing traffic, we observe a clear diurnal pattern from 01/25/2021 to 01/29/2012. This period 

is the weekday of the academic campus. On the other hand, 01/30/2021 and 01/31/2021 are 

weekends, which results in a decrease of traffic and plateau. 
 

 
 

Figure 2.  SINET outgoing trafic 

 

More importantly, the session data stream on SINET is high-volatility traffic. In both ingoing and 
outgoing sessions, the peak traffic is about 2.5 times larger than average traffic. In this paper we 

present our pipeline for handling massive session data stream adopting taskdecomposition based 

parallelism. Our pipeline can handle high-volatility session data stream of about 500GB-650GB 

per day.  
 

2. RELATED WORK  
 

Asghari et al. [1] propose a systematic approach for providing comparative infection metrics from 
large-scale noisy sinkhole data of Conficker botnet. In [2], a large dataset of 350 million HTTP 

request logs is analyzed for understanding user behavior of mobile cloud storage service. [3] et al. 

report an empirical analysis for extracting and modeling the traffic patterns of 9600 cellular towers 

deployed in a metropolitan city. [4] Presents a characterization of Amazon's Web Services (AWS), 
which reveal that most of the content residing on EC2 and S3 is served by one Amazon data center 

located in Virginia. [5] et al. proposes a characterization of Dropbox by means of passive 

measurements of four vantage points in Europe, collected during 42 consecutive days. In [6], a new 
framework to enable a macroscopic characterization of attacks, attack targets, and DDOS 

protection is proposed. [7] Presents an analysis of online campus storage systems and data sharing 

services for more than 19,000 students and 500 student groups. [8] et al. present the large-scale 
characterization of inbound attacks towards the cloud and outbound attacks from the cloud using 

three months of NetFlow data in 2013 from a large cloud provider.  

 

Wang et al. show mobile traffic patterns of large scale networks in urban environment by gathering 
data in cellular towers. Sandiana National Laboratories (SNL) adopts Splunk for managing the Red 

Sky Supercomputer [11]. Bitincka et al. adopts Splunk for optimizing data analysis with a semi-

structured time series database [12]. GPUs were initially designed for graphics rendering, but, 
because of their cost effectiveness, they were quickly adopted by the HPC community for scientific 
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computations [13].  GPUs have also been used to accelerate functions such as pattern matching 
[14], network coding [15]. Ando [16] proposes a lock-free algorithm of data clustering using 

GPGPU. Ando [17] proposes a Multi-GPU based pipeline system with ELK stack. LSTM 

algorithm used in our pipeline is partly presented in [18].  

 

3. OVERVIEW  
 

Figure 3 depicts our pipeline for handling massive session data stream on SINET. Our pipeline is 

divided into three parts. 
 

 
 

Figure 3.  Overview of our data processing pipeline 

 

3.1. Dynamic Task Scheduling  
 
We adopt task decomposition for dynamic allocation. In handling massive and high-volatility 

traffic data, each work item's amount of processing time is different or even unknown at the 

beginning of the computation. We use task decomposition-based scheduling for coping with the 

session stream of SINET (academic backbone network) because the amount of processing time 
between tasks is usually variable and/or unpredictable.  

 

3.2. Traffic Discrimination  
 

At the second phase of our pipeline, we divide massive session data into ingoing/outgoing. We use 

an acronym for Compute Unified Device Architecture (CUDA) Thrust Library for calculating a 
huge amount of network addresses of session data by massive bit masking. For computing a large 

number of bit masking in parallel, we adopt vector level parallelism of General Purpose Graphic 

Processor Unit (GPGPU). To put it simply, we leverage GPGPU for traffic discrimination of 
session data.  

 

3.3. Histogramming  
 

Finally, our pipeline outputs a time-series of ingoing/outgoing session data stream by mergescatter 

pattern based histogramming. For generating time series data, we use a concurrent hash map of 
Intel TBB. The concurrent hash map stores the pairs[i] of <timestamp, data[i]> which are 

represented as histogram.  

 

Generally, our pipeline adopts a coordinated batch processing pattern. Coordinated batch 
processing is particularly effective as the workloads increase. Coordinated batch processing is vital 
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to pull multiple outputs back together to generate some aggregated outputs. For handle huge 
workloads of session data, we apply coordinated batch processing.   

 

3.4. Coordinated Batch Processing   
 

Coordinated batch processing is another key concept of our pipeline. Coordinated batch processing 

is vital to pull multiple outputs back together in order to generate some sort of aggregated output. 
The most canonical example of this aggregation is the reduce part of the map-reduce pattern for 

generating time-series data. It is easy to see that the map step is an example of sharding a work 

queue. The reduce step is an example of coordinated processing that eventually reduces a large 

number of outputs down to single aggregate response.   
 

4. METHODOLOGY 
  

Figure 4 shows another overview of our system which consists of several patterns and parallelism. 
The basic pattern is master-worker pattern. The master thread enqueues the chunks of session data 

in the task decomposition manner. From the viewpoint of worker threads, our system run in 

dynamic scheduling.  

 
The master-worker design pattern divides the roles of computation in the items as follows.  

 

[1] Coping with pieces of work to workers  
[2] Collecting the outputs of the computations from the workers  

[3] Performing I/O scheduling on behalf of the workers, sending them the data which workers 

are supposed to process, particularly accessing a file 
 

 
 

Figure 4.  Design pattern of our pipeline 

 

Each simplest form and implementation of the master-worker pattern involves a single master node 

and multiple worker nodes, as shown in Figure 3.  More specifically, the master thread traverses 
the session data file directory and enqueues the file name. When the queue is complete, the master 

thread waits until the worker thread processing packets consumes a file name and removes it from 

the queue.  
 

4.1. Task Decomposition  
 
The two fundamental components of algorithms are tasks and data. A task operates on data, either 

modifying it in place or creating new data. In a parallel computation, multiple tasks need to be 

managed and coordinated. If we want to transform code into a concurrent version, there are two 
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ways - data decomposition and task decomposition. In data decomposition, the program copes with 
a large collection of data and can independently compute every chunk of the data.  In task 

decomposition, the process is partitioned into a set of independent tasks that threads can execute in 

any order.  Besides, concerning task decomposition, there are several ways to handle tasks.  

 
It is important to note that task decomposition is classified into functional decomposition. The 

opposite of data parallelism is functional decomposition, an approach that runs different program 

functions in parallel. At best, functional decomposition improves performance by a constant factor. 
For example, if a program has functions f, g, and h, running them in parallel at best triples 

performance, but only if all three functions take the same amount of time to execute and do not 

depend on each other, and there is no overhead. Otherwise, the improvement will be more minor. 
  

4.2. Dynamic Scheduling  
 
We can allocate tasks to threads in two different ways: static scheduling and dynamic scheduling. 

Static scheduling of which the cost is known at the outset of computation is not appropriate in daily 

processing of session data. Although some daily patterns could be observed, traffic of academic 
backbone networks is changing daily. Besides, drastic traffic increase occurs, particularly on 

ingoing traffic. In dynamic scheduling, tasks must be assigned to threads for execution. Perhaps 

the more correct way to say this is that threads must know which tasks to execute.  

 
In either case, you always want to assure that the amount of computation done by threads is roughly 

equivalent. That is, a load of computation is balanced in each thread.  

 

5. IMPLEMENTATION  
 

5.1. Task Queue  
 
The popular dynamic scheduling method involves setting up a shared container (typically a queue) 

which can hold tasks and allow threads to pull out a new task once the previous task is complete. 

Tasks (or adequate descriptions of tasks) must be encapsulated into some structure that can be 
pushed into the queue. Access the queue must be mutually exclusive between threads to ensure 

which threads get unique tasks and no tasks are lost through some corruption of the shared 

container. The task queue design's main purpose is to ensure that each chunk of work is processed 

within a certain amount of time.  
 

5.2. Merge Scatter Pattern  
 

The merge scatters pattern, associative and commutative operators are provided for merging 

elements in case of a collision. With the nature of this pattern, scatter could occur in any order. 

Therefore, both associative and commutative properties are required. An example that uses addition 
as the merge operator is shown in Figure 5. It is straightforward to adopt a merge scatter pattern to 

implement histograms with the adding operation. 

 

 
 

Figure 5.  Merge scatter pattern 
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5.3. Deep Learning for Time-series Analysis  
 

Deep learning for time-series analysis is a new endeavour and promising field. Deep learning is 

advantageous because deep learning is a highly flexible technique. Specifically, it deep learning 
provides the capability of modelling highly complex behaviour. Besides, it offers the possibility 

for nonlinear temporal behaviour without estimating at function forms – which could potentially 

great change for nonstatistical forecasting techniques. Many of the trouble of preprocessing data to 
a fit the assumptions can be evaded when deep learning model is applied. The potential advantages 

of deep learning are as follows: 

  

[1] No requirement of stationarity necessary.  
[2] There is no need to develop the art and skill of picking parameters, such as assessing 

seasonality and order of a seasonal ARIMA model. The art and kill of selecting parameters 

are not required. For example, assessing seasonality and sequence of a seasonal ARIMA 
model.  

[3] With deep learning, we do not need to develop a hypothesis concerning a dynamics of s 

system.   
 

However, it is important to notice that deep learning is not a silver bullet. Although there is no 

requirement or assumption of stationarity for deep learning applied to time series, in practice, deep 

learning does not work excellently for fitting data with a trend unless the basic architectures are 
embedded. So still we need to preprocess our data or our technique.  

 

In this paper, we apply Long Short Term Memory (LSTM) for anomaly detection. Long Short 
Term Memory networks - usually just called LSTMs - are a special kind of RNN, capable of 

learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber [9], and 

were refined and popularized by many people in the following work.1 They work tremendously 
well on a large variety of problems, and are now widely used.  

 

6. EXPERIMENTAL RESULT  
 

We report the observation and prediction about SINET traffic during 2/27 - 3/8. In the observation, 
we use a rack server of Dell(TM) PowerEdge(TM) PE C4140 with 96 core CPUs and 4 GPUs. 

CPU is Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz. Our PE C4140 has 1.5TB memory. 

GPU is Tesla V100 PCIe 32GB (NVIDIA Corporation GV100GL). Data stream is forwarded to 

our pipeline from PA-7000. The PA-7000 Series is powered by a scalable architecture for the 
purpose of applying the appropriate type and volume of processing power to the key functional 

tasks of networking, security, and management.  

 
Figures 6 and 7 show the traffic volume of session data. Session data is grouped into one-hour 

frame bins. In ingoing traffic, we observe a clear diurnal pattern from 01/25/2021 to 01/29/2012. 

This period is the weekday of the academic campus. On the other hand, 01/30/2021 and 01/31/2021 
are weekends, which results in the decrease in traffic and plateau. Concerning outgoing traffic, we 

observed more clear diurnal patterns during 03/02-03/06. The key findings are that in outgoing 

traffic, there is no drastic spike compared with ongoing traffic. 
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Figure 6.  Anomaly detection of SINET outgoing traffic 

 

 
 

Figure 7.  Anomaly detection of SINET ingoing traffic 

 

In summary, our multi-GPU-driven pipeline has succeeded in processing huge workloads of about 

1.2 to 1.6 billion of session stream (500GB-650GB) within 24 hours during 03/02-03/06.   

 
Our key observations are as follows:  

 

[1] We observed some drastic spikes in ingoing sessions.   
[2] There have been no extreme spikes in outgoing sessions.   

[3] We have succeeded in detecting anomaly (several spikes in ingoing sessions) using MSE.  
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7. DISCUSSION  
 
In this paper, we give priority to handle huge session data over any other matter. In 2009 researchers 

from Google wrote a paper entitled The Unreasonable Effectiveness of Data [10]. According to 

this paper, if machine learning algorithm A using a messy dataset with a trillion lines can be highly 

effective in tasks, algorithm A is downright useless in coping with a clean dataset with a mere 
million lines. If algorithm A does not work with a dataset comprising a million examples, our 

intuitive conclusion is that it does not work at all. Our pipeline system is based on the concept of 

this paper. However, at the same time, simple time-series analysis algorithm is deployed on 
currently our system. This point could be the limitations or deficiencies of our system.  

 

8. CONCLUSION  
 

Science Information Network (SINET) is the Japanese academic backbone network for more than 
800 research institutions and universities.  In our operational experience, SINET suffers the drastic 

traffic increase by about five times larger than average. This paper presents the methodology and 

system implementation for handling massive and high-volatility session data streams. We adopt 
two technologies: dynamic scheduling and LTSM based anomaly detection. Besides, three main 

features are discussed: Tash scheduling, Traffic discrimination, and Histogramming. We adopt a 

task-decomposition based dynamic scheduling method to handle the massive session data stream 

of SINET. In the experiment, we have analysed SINET traffic from 2/27 to 3/8 and detect some 
anomalies by LSTM based time-series data processing. We can conclude that we have succeeded 

in handling rapid session increase during 2/27-3/08. For further work, we are building more 

sophisticated algorithm for time-series analysis. For example, more finegrained tuning of hyper 
parameters and bi-directional RNN could be applied for our system.  
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