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ABSTRACT

The paper aims at proposing a solution for designing and developing a seamless automation and
integration of machine learning capabilities for Big Data with the following requirements: 1) the ability to
seamlessly handle and scale very large amount of unstructured and structured data from diversified and
heterogeneous sources; 2) the ability to systematically determine the steps and procedures needed for
analyzing Big Data datasets based on data characteristics, domain expert inputs, and data pre-processing
component; 3) the ability to automatically select the most appropriate libraries and tools to compute and
accelerate the machine learning computations; and 4) the ability to perform Big Data analytics with high
learning performance, but with minimal human intervention and supervision. The whole focus is to provide
a seamless automated and integrated solution which can be effectively used to analyze Big Data with high-
frequency and high-dimensional features from different types of data characteristics and different
application problem domains, with high accuracy, robustness, and scalability. This paper highlights the
research methodologies and research activities that we propose to be conducted by the Big Data
researchers and practitioners in order to develop and support seamless automation and integration of
machine learning capabilities for Big Data analytics.
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1. INTRODUCTION

We are entering the era of Big Data — a term that refers to the explosion of available
information. Such a Big Data movement is driven by the fact that massive amounts of very high-
dimensional or unstructured data are continuously produced and stored with much cheaper cost
than they used to be. For example, in analysis of surveillance videos, it is effectively possible to
capture images from fifty to over one hundreds video cameras and store them for conducting
analysis. This is also true in other areas such as high-frequency financial market data analysis,
social media analysis, biomedical imaging, and retail sales. Existing trend that data can be
produced and stored more massively and cheaply is likely to maintain or even accelerate in the
future. This trend will have deep impact on science, engineering and business.

While the potential benefits of Big Data are real and significant, there remain many technical
challenges that must be addressed to fully realize this potential. First, the massive samples in big
data are typically aggregated from multiple sources at different time points using different
technologies. Nowadays, data is not collected in batch and then processed offline. Instead, data
arrives continuously and must be processed online and in real-time to gain useful insight. For
example, financial market data need to be continuously streamed and synchronized during the
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opening market session until the market closes. As new data arrives, the data must synchronize
and combine with past historical market data before it can be processed. In some financial market
use-case scenarios, multiple analysis must be done simultaneously in different investment period
(e.g., minutes, hours, daily, monthly, etc.) and the results must be synchronized to compute the
final aggregated output. Hence, there is a need for efficient data-storage methods in storing and
managing a dynamic and massive amount of datasets to support such complexity of online data-
processing.

Second, handling and managing the sheer size and the characteristics of the data is a major
computational challenge. Big Data are often characterized by large sample size and/or high
dimensionality. For example, financial market data generates at a high frequency ‒ the data
arrival velocity for S&P stock market may generate more than 5,760,000 data instances for only
one stock symbol. In another example, a typical imaging dataset is highly dimensional since each
image frame of 1024x1024 dimension can be structured into 1,048,576 data attributes and each
image is typically sampled at 6 frames per second. In terms of computational efficiency, Big Data
motivates the development of new computational infrastructure that can provide high-
performance distributed and parallel processing, and fast learning algorithms that are scalable to
massive data with high dimensionality.

Third, the challenge relates to the algorithmic instability of current machine learning algorithms
in handling large-scale datasets and/or high data dimensionality. Many traditional methods that
perform well for moderate sample size do not scale to massive data. Similarly, many algorithms
that perform well for low-dimensional data incur low accuracy performance under large volumes
and/or high-dimensional data. In particular, when large-scale data is involved, experimental
variations and statistical biases emerge and this leads to the need of developing more scalable and
robust methods. An efficient mechanism is needed to conduct all the required data pre-processing
tasks such as data sampling, data formatting, data cleaning, data transformation, noise
elimination, and feature selection. Such tasks are crucial to obtain high accuracy and robustness
of the machine learning performance when analyzing large volumes and/or high-dimensional
data.

Finally, building a machine learning model for a given dataset involves a series of phases such as
data sampling, treating missing value, data transformation, feature selection, machine learning
algorithm selection and others. The algorithms and methods that are available in every phase are
well described individually by various literatures. However, not every algorithm is best suited for
every type of dataset and it is a general consensus that there is no single algorithm in each phase
can consistently yield best result when applying to different dataset. It is a crucial task to select
the most suitable algorithm to be used in every phase based on the characteristics of the dataset so
that the machine learning model being build has the optimum accuracy and robustness for the
specific problem. Unfortunately, there is currently no standard framework which is able to act as
guidance for choosing the best algorithm in each phase for a given dataset. Current practice for
most practitioners to tackle this problem is to test the performance of several algorithms that are
well known to them in each phase and select the one which happen to give the best results among
the few that are tested. This approach usually leads to suboptimal performance and is very
inefficient since only selective algorithms were tested for a given dataset. It is advocated that the
machine learning selection to be systematically built by analyzing the problem domain and the
given dataset. This phase should be automated and the most appropriate and optimal solution
should be determined for the given problem and dataset with minimal intervention from the end
user.
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Given the sheer complications of developing machine learning capabilities for Big Data, this
paper aims to provide research methodologies with a number of proposed research activities that
could potentially realize the development of a seamless automation and integration of machine
learning capabilities for Big Data mining and analytics.

2. LITERATURE REVIEW

Due to high number of big data producers and high frequency of data generation, the gap between
data available to organization and data an organization can process is getting wider all the time as
illustrated in Figure 1. It can be observed that the amount of data from an organization will
continue to increase across time but there is huge disparity between the amounts of data that the
organization can process versus the data generated. As the data volume continues to increase,
there is a sudden need for a technology update to keep up with the momentum of data processing
and analysis.

Figure 1: Gap increases due to lack of data processing and analysis technology.

The challenge in automating large-scale machine learning and data analysis for big data lies in the
assimilation of data from different sources and processing the data in real-time to derive valuable
information. The lack of a common and standardized platform to meet this challenge severely
restricts the ability for the domain experts including sensor scientists, security officers, and
quantitative financial analysts.

There are many steps involved in building a machine learning model. The first step in building a
machine learning model is to define the problem, assumptions and attributes that build logical
inferences from the assumptions. This step will determine whether a particular problem is suitable
to be addressed using machine learning approach. If the answer is affirmative, a list of
assumptions about the problem is specified. They could be rules or domain specific information
that needs to be incorporated into the data structure for machine learning model construction.
Based on the assumptions, a set of attributes that form logical inferences and class label will be
defined. This information will be used in the later stage of the machine learning model
construction phases. Typically, domain experts/researchers/practitioners will need to map their
problem onto one of the existing machine algorithms, often influenced by their familiarity with
specific algorithms and by the availability of corresponding software implementations. This
strategy is inefficient and leads to suboptimal performance. There is a strong need to automate the
mapping tasks by integrating the various machine learning capabilities.
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To our knowledge, there are very few solutions that have been proposed to solve this issue. [1]
provide the methodology for analyzing the problem domain and the corresponding data sets for
software testing of machine learning applications. They try to determine equivalence classes
based on the properties of real-world data sets looking for traits that may not have been
considered by the algorithm designers, such as data set size, the potential ranges of attribute and
label values, and the sort of precision is expected when dealing with floating point numbers.
Alternatively, [2] propose probabilistic graphical models and efficient inference algorithms that
offer uniform programming APIs that the domain experts/researchers can use to create highly
tailored machine learning models for specific scenarios, as well as rapid prototyping and
comparison of a range of alternative learning models. In such way, the practitioners do not have
to learn about the huge range of traditional methods, but instead can focus their attention on
understanding a single programming. Nonetheless, both solutions do not resolve the issues of
determining the correct problem category for a particular problem domain. In particular, it does
not determine whether a problem domain belongs to clustering, classification, and/or regression
problem. Further, the practitioners are not given the flexibility to provide useful inputs to assist in
determining such category.

The machine learning research community has arrived to a consensus that there is no single
algorithm that is better than all the others on all the application problem domains [3]. The
accuracy of the algorithms is largely influenced by the type of data characteristics. However, it is
impossible to support all possible machine learning algorithms due to the vast amount of machine
learning algorithms in the literature. For example, it was reported that there are more than 179
implementation of supervised algorithms alone in 2006 [4]. Hence, there is a need for unified and
coherent machine learning framework that can analyze Big Data of different data characteristics
and different application problem domains. Moreover, machine learning algorithms are heavily
influenced by data quality, number of features, weight of features and the amount of pre-
processing involved. Since this is the case, given a supervised problem like classification problem
and a dataset, fundamental machine learning algorithms like decision trees, semi-supervised
learning and ensemble learning algorithms need to be experimentally trained and evaluated in
order to find the algorithm which give highest accuracy for the given problem. During the testing
phase of the learning algorithm, the parameters of the learning algorithm also need to be tuned so
as to get the best results out of the learning algorithms. Several studies have been conducted to
make empirical comparison of many of the machine learning algorithms. [5] present a study that
compares several learning algorithms (including SVMs) on a handwriting recognition problem
using three performance criteria: accuracy, rejection rate, and computational cost. [4] present
results from a study that evaluates nearly a dozen learning methods on a real medical data set
using both accuracy and an ROC-like metric. However, such tasks require extensive manual
intervention and human supervision. Hence, current machine-learning libraries will need to focus
on automation of these tasks.

Currently, traditional machine learning software such R [6] and Weka [7] do not provide
automated large machine learning capabilities. They only have direct capability to handle small
volume and high-dimensional data. Several extensions have been developed by external
researchers to provide parallel implementations. Such tools can be categorized into 1) Parallel
API bindings method (e.g., rJava [8], pbdR [9], Rmpi [10], and pbdMPI [11]), 2) Parallel
Interpreters (i.e., Renjin [12], and Oracle R [13]), and 3) distributed framework (e.g., Storm [14],
Spark [15], Mahout [16], etc.). The Parallel API binding’s method offers an interface that allows
R/Weka code to distribute parallel processes into distributed programming paradigm such as MPI
and RPC. On the other hand, parallel interpreters offer a compiler that compile R/Weka code into
specific application-specific parallel code in Java, SQL query or others. Further, distributed
framework enables R/Weka code to be spawned into multiple processes onto distributed servers.
Since the choices are varied, it is not obvious to researchers and practitioners on how to make
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good use of such tools. None of the current machine learning tools provide automated and
integrated machine learning capabilities.

Therefore, there is a strong need for researchers and practitioners to explore mechanisms of
providing a seamless automated and integrated machine learning framework that allows the
integration of many of the existing application-specific customized APIs, binding APIs,
application interpreters, parallel and distributed libraries. Various mechanisms will need to be
explored to examine how such automation and integration can be realized.

3. REQUIREMENT ANALYSIS FOR BIG DATA FRAMEWORK

In order to realize the development of seamless integration of Big Data framework, there are a
number of activities and research actions that we propose researchers/practitioners should
conduct. Figure 2 demonstrates an overview of our proposed components required for supporting
big data analytics. The research challenges involve in automating and integrating the processes
between many of the components: Big Data Sources (Repositories), Preprocessing, Problem
Domain and Data Understanding, and Machine Learning Algorithm Selection. The components
will be described in detail in the following subsections.

Figure 2: An overview of Proposed Components for Automated Machine Learning Capabilities.

3.1. Big Data Sources: Data Collection and Preparation

Researchers and practitioners will need to employ many different types of datasets when
evaluating the Big Data machine learning framework. In particular, they will need to use real
datasets to evaluate the effectiveness of their framework implementation. For example, the UCI
Machine Learning Repository [17] provides a collection of databases and data generators that are
used by the machine learning community for the empirical analysis of machine learning
algorithms. It is currently the world’s primary source of machine learning data sets. The
repository currently maintains up to 307 data sets with different data characteristics for the
machine learning community. Most of the datasets provided by the repository are not considered
as Big Datasets since each data set collection comprises not more than 1 million data instances.
There are also many sources for image and video datasets. For example, Kaggle provides large
files of text, images and videos datasets for research use.
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3.2. Big Data Sources: Big Data Extraction, Integration, and Retrieval

First, in the extraction process, big data are sampled and recorded from various data sources. For
example, in the case of sensor networks, big data maybe be streamed in real-time from devices,
sensors and actuators used in different smart city applications such as transport planning, energy
conservation, water and waste management, environmental monitoring, public safety, and health
care. In financial domain use-case, big data may be streamed from data providers such as banks,
stock exchange, and other financial data providers. In video analysis domain, the images maybe
captured via security video camera at the highway, airports, government buildings, military
facilities etc. Due to the diversity of the data collected, it is therefore necessary to automatically
extract and organize the data for archival, regardless of whether it is real-time data from sensors
and other inputs, or data from external systems. Organizing data is also referred to as data
integration. Due to the high volume of big data, it is also essential to manage the data effectively
to ensure that it can be manipulated in the most flexible way and it should be able to facilitate
manipulation of raw data into a large variety of data formats (e.g., unstructured and structured
etc.) for the analysis phase. However, there are several research issues and challenges in
achieving these.

First, the images from streamed video must be captured and process immediately for the pattern
detection and recognition. The actual video cameras are often located at different locations and
data volumes may continuously grow. Since typical data mining algorithms require all data to be
loaded into the main memory, this is becoming a clear technical barrier because moving data
across different locations is expensive (e.g., subject to intensive network communication and
other IO costs). Therefore, such communication overhead, data synchronization, and data
management should be taken into account. Second, big data acquired directly from the sources
are often not readily available for machine learning algorithm to analyze. The big datasets are
often sparse, heterogeneous, uncertain, incomplete, missing and derive in multi-source data. Data
pre-processing task is required to process the data in an accepted form for machine learning
algorithms. However, data pre-processing tasks on big data can take enormous time. Finally, the
main challenges on big data mining is on the machine algorithm execution. The execution time
can be very time consuming due to the Big Data volumes, large data transfer overheads, and by
high-dimensional, high frequency, complex and dynamic data characteristics.

It is important for researchers and practitioners should explore the most effective methods for the
collection, integration, and the distribution of real-time high-frequency and high-dimensional data
that come from various disparate data sources. Data sources should be varied to include different
types of forms such as text, images, and videos (e.g., financial market data and video streaming
images).

Figure 3: An overview of big data extraction, integration, and retrieval architectural.
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Figure 3 demonstrates an overview of the proposed architecture for big data extraction,
integration, and retrieval. The most widely-used technology to handle big data is Hadoop [18], an
open source project based on Google’s MapReduce and Google File System. Hadoop is a
distributed batch processing infrastructure which consists of the Hadoop kernel, Hadoop
Distributed File System (HDFS), and MapReduce programming framework. There are also
alternative technologies such as Spark [15], Vertica [19], and MemSQL [20] databases to acquire,
store, and retrieve big data. Notably, it is very important for researchers and practitioners to
conduct evaluation of the different alternative middleware available for data extraction,
integration, and retrieval. For example, the use of specific software libraries should be evaluated
whether they are optimized for exceedingly fast data collection and query execution.

3.3. Data Preprocessing

Based on the input provided by the domain expert, a substantial amount of the computational
effort is spent mostly on preprocessing. Incorrect data preprocessing steps will significantly affect
the machine algorithm performance.

Figure 4 shows an example of how R and Weka data mining libraries are linked together with the
Data Preprocessing component of the framework. The data preprocessing component is
highlighted in gray whereas existing data mining software libraries that provide big data support
for R and Weka are highlighted in blue. Researchers and practitioners should explore many of the
existing libraries and tools that can be used to extend both R and Weka to handle big data. For
example, R currently offers a number of methods including Parallel API bindings (i.e., rJava [8],
pbdR [9], Rmpi [10], and pbdMPI [11]), Parallel Interpreters (i.e., Renjin [12] and Oracle R [13]),
and MapReduce framework (e.g., HadoopStreaming [18] and Rhipe [21]). On the other hand,
Weka provides a number methods including Weka direct memory management APIs (i.e., CLI,
Knowledge Flow), Java bindings (i.e., Jython [22] and Groovy [23]), MapReduce (i.e.,
distributedWekaBase [24] and distributedWekaHadoop [25]), and data sampling tool (i.e.,
Reservoir [26]). Researchers and practitioners should conduct complete evaluation on many of
these components to determine the most effective methods to handle big data in both R and
Weka. Based on their research findings, various tools, components, and software libraries should
be selected to perform the required data pre-processing such as data sampling, data formatting,
data cleaning, data transformation, and feature selection.

Figure 4: Software stacks of the data preprocessing component in relation to R and Weka libraries.

3.3.1 Data Sampling

Data sampling may be required for three reasons. First, data sampling is able to reduce the
computational time for running the algorithm by selecting a subset of data. The selected subset of
data must be balance and of suitable size for fast prototyping but is still representative to the
original population. More data can result in much longer running times for algorithms since they
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require larger computational and memory requirements. Therefore, a smaller representative
sample of data can be selected to run the algorithms with fast response. Second, it has been
discovered that data sampling can improve the performance accuracy for some algorithms [27,
28, 29]. For example, the data category type of either balance and imbalance dataset can have
huge influence on what sampling method should be selected. However, very little known on what
sampling method is the most suitable for specific data characteristics. Currently, the machine
learning expert is required to conduct full evaluation of the many different type of sampling
methods e.g., random sampling, selective sampling, stratified sampling etc. and apply the
resulting sampled output to many different type of machine learning algorithms. Such manual
process is very time consuming task and error-prone.  Therefore, researchers and practitioners
should aim to develop a generic framework that should intelligently and automatically determines
the type of sampling method required for each different machine learning algorithm. They should
explore mechanisms in selecting the appropriate sampling method for different type of machine
learning algorithms and different data characteristics. Finally, data sampling can be useful to
validate the algorithm using smaller dataset before considering running the whole big dataset on
the algorithm, which will take much longer computation time. Hence, researchers and
practitioners should also explore the behaviors of a set of machine algorithms under different data
scale, ranging from small and large. They should validate through experiments with real datasets
on how the machine algorithms behave under different size of datasets.

3.3.2 Data Formatting

The first step of data preprocessing involves data formatting/data conversion. Data formatting is
the process of formatting the datasets obtained from various sources to a format which can be
used directly by the data mining software e.g., R, Weka, Matlab, C etc. The selected data should
be in a format in accordance to: (1) data structure (i.e., data specification) format that the data
mining software use, and (2) the data format that the specific algorithm can accept.

Researchers and practitioners should aim to automate the above two requirements. Such
automation is a daunting task due to a number reasons. First, data are streamed from multiple
sources of many different formats. Since the data can be derived in different formats, how can
one ensure that raw data format from many data format can be converted in a standard and
uniform way for further processing? Furthermore, every data mining application demands
different data structure as its input. For example, Weka format is based on arff data structure, R
format is based on object-type structure, and Matlab format is based on matrix structure etc.

Second, each data mining software tool comprises different algorithms and not every data mining
tool provides every algorithm. For example, Weka does not have fuzzy c-means implementation
whereas R provides a generic implementation of the algorithm. Further, even if the same
algorithm is provided, each data mining software offers a different variation of algorithm
implementations and employ different parameters. Therefore, in the current way, the human
expert will need to comprehend the different implementation of each software in order to input
the correct parameters. This requires knowledge of the many of the different algorithms available.
Instead, this process should be automated based on choices of data mining software. The
proposed framework should be able to convert raw data to any of the data specification required
by any of the software. Finally, the framework should be sufficiently intelligent to discover what
data format each specific algorithm requires, and perform the data conversion appropriately
without any manual intervention from the human experts.
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3.3.3 Data Cleaning

Data cleaning is the removal or fixing of missing data. Real world data are generally suffer from
missing values, outliers and discrepancies in class name. There may be data instances that are
incomplete and may affect the resulting accuracy of the algorithm. For example, some
classification algorithms are very sensitive to missing values in the data [30, 31]. This could
impede the algorithm accuracy. In order to ensure that the algorithm gives the maximum
accuracy, the appropriate incomplete instances will need to be removed or fixed.  However,
automation of data cleaning is not a trivial task. First, different methods of treating missing values
can cause the treated dataset to work best on one learning algorithm but not the others. It is not
clear what cleaning methods are suitable for specific machine learning algorithm. Hence, this
research will explore the literature review on finding the best strategies and algorithms to treat the
missing values, identify outliers, smooth out noisy data, detecting and making correction on
inconsistent data so that the dataset will be suited for the selected learning algorithms.
Researchers and practitioners should also further conduct experiments with real data to validate
their findings. The goal of this step is to produce a clean dataset which will enable the machine
learning model to attain the highest accuracy and robustness.

3.3.4 Data Transformation

The data transformation process involves several course of action like normalization, creating
derived attributes, data discretization and others. Researchers and practitioners should focus on
summarizing the available ways of performing data transformation, the pros and cons of the
available algorithms, and formulating a framework to detect the needs of conducting
transformation to the dataset and the best algorithms to perform the task. The goal is to produce a
new dataset which consists of original and/or derived attributes with the attributes value being
scaled to fall within a specified range. The new dataset will enjoy the advantages of being able to
converge faster during the training phase and allow the model to achieve higher accuracy and
robustness.

3.3.5 Noise Elimination

Real world data is not perfect. It is often subject to errors and irregularities that are usually
referred to as noise. Noise may be introduced to a dataset due to reasons like data-entry errors,
equipment’s malfunction during the data collection, transmission and storage phase, inadequacy
of information used to label each instance and others. The presence of noise in a dataset will
generally reduce the accuracy of the classification algorithms. However different machine
learning algorithms have different sensitivity towards the presence of noise in the dataset. Several
strategies have been suggested to handle noise data. One strategy is to remove instances that
contain class noise [32]. Second strategy is to apply inductive learning algorithms which handle
noise implicitly during the machine learning model construction stage [33, 34]. Third approach is
to use filtering techniques to detect and eliminate noisy instances before the construction of
machine learning model [35]. These filtering methods handle noise explicitly and have the
advantage that noisy instances will not negatively affect the structure of the induced model.
Researchers and practitioners will need to experimentally test and validate many of these
approaches to determine which approaches will actually improve the learning accuracy.

3.3.6 Feature Selection

The feature selection process involves selecting a subset of relevant features from the dataset for
use in building the machine learning model. The central conjecture of performing this step is that
the original datasets contains many redundant or irrelevant features. This assumption is
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reasonable as the dataset being given might come from different sources which originally being
collected for some purposes other than the one which is trying to answer by the machine learning
model. By performing feature selection when building the machine learning model, the accuracy
and robustness of the model can be improved through reducing over fitting. Besides that, the
training time can be shortened since there are fewer features in the new dataset. However, for
given dataset, different learning algorithms will attain the highest accuracy for different set of
features. Researchers and practitioners should aim at formulating a framework that are able to
point out the best feature selection algorithms to be used by taking into consideration the
characteristics of the dataset and the learning algorithms that will be selected for evaluation in the
later stage of machine learning model construction.

The complexity in providing automation feature for the data preprocessing is due to many of
intermediary output involved from data formatting, data cleaning, data sampling, data
transformation, and feature selection. Several research questions include: what is the appropriate
order to conduct the whole data preprocessing process? Should data sampling be conducted after
data transformation and feature selection? Should feature selection be conducted without data
sampling for increase accuracy and robustness? What is the impact of final machine learning
algorithm accuracy when using a specific feature selection algorithm?  Despite decade of research
in machine learning algorithms, very little known in the literature on the impact of conducting
one sub-process of data preprocessing after another. Such evaluation should be experimentally
evaluated with real use-case application domains to fully understand its effectiveness.
Researchers and practitioners should aim to fill this gap.

3.4. Problem Domain and Data Understanding

The purpose of domain understanding is to gain useful knowledge from the domain expert in
order to get a better understanding of the learning task. This will help to reduce the risk and
increases the possibility to mine knowledge that is useful, interesting and relevant.

The proposed framework should be automated as much, but domain experts should have the
flexibility to intervene the processes if necessary. Domain experts should provide the following
input to improve the machine learning capabilities:

 Should one use clustering, classification, and/or regression problem to solve the problem?
What is the expected output by the practitioners?

 Which data source(s) and what data parameter(s) to be used? In particular, what data is
needed to improve performance? What data can be excluded, which is not important?
Removing redundant data can improve accuracy for some algorithms.

 What data that is consider crucial but is not available from the data source. If such data is
crucial, are one able to simulate the missing data instead? Is there any alternative
parameter that can be used?

 What is the class label? Has it been provided? Even if the class label is provided, is there
a need to use class label for machine learning?

There are many factors and issues that need to be considered as can be seen above. First, the
domain expert will need to specify the type of problem domain that the algorithms are trying to
solve. The problem domain could either belong to clustering, classification, and/or regression
problem. The clustering problem domain generally indicates that there is no label data involves,
and that the user wishes the algorithms to discover unseen patterns. On the other hand, the
classification problem domain generally indicates that historical data are provided as labels, and
the user wishes the algorithms to classify future data based on historical labels. Alternatively, the
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regression problem domain requires the algorithms to make forecasting of future data value based
on historical data. A problem domain may belong to one, some, or all of these categories.

Second, the domain expert should specify data source(s) and the data parameter(s) which are
considered to be appropriate to apply the algorithms. Options and flexibility should be provided
to select or remove parameters that are not considered suitable from the datasets. Third, the
domain expert should have the ability to add new parameter(s) with simulated and/or external
data if necessary. Finally, the expert domain should be able to specify the class label for any of
the parameters from the dataset.

The biggest challenge is to provide the platform that connects, inter-links and integrates the
problem domain category with existing data mining software. For example, Weka has a good
range of classification algorithms but is lacking in clustering algorithms. The proposed
framework must systematically determine the appropriate data mining software with the most
machine learning algorithms to solve a particular problem domain. This requires explorations and
experimentation of the many available machine learning algorithms from existing data mining
software. Therefore, researchers and practitioners should aim to explore the pros and cons of the
widely known data mining and data analysis software (such as R, Weka, Matlab, and possibly C,
etc.) with regards to solving different problem domains. The goal is to offer a systematic
automation of these tasks as a single platform in a seamless integrated Big Data framework.

Based on the parameters including the label selected, the data can be divided into different
categories. For example, it has been reported in the literature that the accuracy of some machine
learning algorithms such as Support Vector Machine (SVM) is very sensitive to imbalance dataset
[36, 37, 38]. Hence, the dataset can be categorized into the category of either balance or
imbalance dataset. Researchers and practitioners should therefore develop a framework with the
capability to analyze the characteristic of each algorithm to determine whether it is suitable to run
for a particular dataset based on its category. In particular, it should focus on proposing suitable
methods that can be used to validate and categorized the datasets. By categorizing the dataset into
different category, appropriate algorithms and methods can be selected with ease in the
construction of machine learning model and conclusion can also be achieved in a shorter time
frame.

Figure 5: The framework employs a systematic approach to capture useful information on the problem
domain and the dataset characteristics.

Figure 5 demonstrates how the framework employs a systematic approach in capture useful
information on the problem domain and the dataset characteristics from the domain expert.
Researchers and practitioners should aim to offer a generic framework implementation with the
following features: (1) the ability for domain experts/users to input additional knowledge the
system either by specifying problem category, data source, data parameters, class label etc. (2) to
determine which data mining software is best suited for specific problem domain based on their
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research exploration of many of the data mining and data analysis software conducted (3) to
provide automation of data categorization based on the characteristics of the datasets (4) to
expose the framework as a web interface calls and/or generic Application Programming
Interfaces(APIs) that can be invoked directly by external applications.

The end goal is for researchers and practitioners to develop a functioning prototype of a
customizable and extensible API enabling the above described features in a systematic manner.
To our knowledge, software libraries with such features (either commercial and/or open-source)
are not currently available.

3.5. Machine Learning Tools and Algorithm Selection

After the data has been prepared and preprocessed, it is now ready to run on the machine learning
algorithms for solving problem. The research community has come to the consensus that there is
no single learning algorithm that is suitable for all types of dataset. The accuracy of the
algorithms is largely influenced by the type of data characteristics. However, it is impossible to
support all possible machine due to the vast amount of machine learning algorithms in the
literature. For example, [4] reported that there are more than 179 different variations of
supervised algorithms implementations. This number continues to grow. Therefore, to begin with,
researchers and practitioners should conduct literature reviews on the type of problem domains
and the dataset characteristics associated with image data and financial data. There have been
several research studies on the evaluation of the most suitable machine learning algorithms for
specific application domains and/or data characteristics. Researchers and practitioners should aim
to conduct a survey of all such studies. Based on their research findings, they should then explore
implementations of such algorithms on well-known data mining software tools primarily, Weka
and R. If such algorithms are not supported in Weka and R, researchers and practitioners will also
need to consider implementations from other data analysis software such as Matlab, Scikit-learn,
and possibly pure C code implementations.

Next, researchers and practitioners should explore various methods for supporting such software
to handle big data. Not all of the software can work on large data sets (tera-petabytes of data) due
to scalability limitations since they are limited by the non-distributed nature of the
implementations. Researchers and practitioners should investigate the various mechanisms for
enabling Big Data support for Weka, R, and others. Moreover, researchers and practitioners
should explore other recent parallel and distributed machine learning tools such as Mahout [16],
RapidMiner [39] and Pentaho [40]. These tools provide parallel machine learning execution
support on multi-core physical machines. More recent Big Data libraries and tools also include
Spark [15], Twister [41], HaLoop [18], Hama [42], GraphLab [43], Jubatus [44], and many
others. They all provide the capability to perform distributed machine learning execution on
multiple heterogeneous machines. There is a wide variety of choices but these tools offer
overlapping features, which make the conventional framework overly complex. Figure 6
demonstrates existing machine learning software libraries and tools that can be used to support
big data machine learning analysis in the framework. The end goal of the Big Data framework is
to simplify the usage of such tools, and to provide a coherent and uniform interface that allows
the integration of many of the existing application-specific customized APIs, binding APIs,
application interpreters, parallel and distributed libraries for supporting fast execution of the
machine learning algorithms. There is a strong need to develop a framework with clearly defined
separation of concerns, with flexible bindings between each component.
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Figure 6: Standard and Parallel & Distributed Data Mining Software.

4.DESIGN & IMPLEMENTATION: SEAMLESS AUTOMATED AND INTEGRATED

FRAMEWORK

Having all the components in place, it is therefore crucial to integrate all these components in
seamless manner. For the design & implementation state, efforts should be made to design and
implement the process execution flow for each component. The design should aim to support the
following features: (1) systematically selects the most suitable machine learning algorithm(s) to
perform analytics for a given problem domain (based on the information from data
characteristics, domain expert input, and data pre-processing component), (2) systematically
selects the most suitable machine learning software tools to execute such algorithm(s), and (3)
accelerates machine learning computations that scale with large datasets.

Figure 7 demonstrates an example of how Big Data machine learning framework can be
integrated seamlessly, which comprises various existing machine learning software libraries and
tools that interconnect together. For example, the Data Sampling component may select the
algorithm to use based on the data mining algorithm (e.g., Decision Tree/SVM, EM/K-Mean).
Based on the Data Sampling rule, either a Random or Spatial sampling method might be selected
if the algorithm chosen for the problem domain is either EM or K-Mean. Further, the data mining
task (i.e., classification, regression, clustering) will be selected based on the chosen data sampling
algorithm. Next, the proposed framework should determine the most appropriate method to use
for handling missing value treatment. In an example given in Figure 7, an EM imputation
algorithm may be used or other available algorithms such as Mean/Mode imputation may also be
applied. These choices must be conducted automatically by the framework based on the problem
domain.
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Figure 7: Process Execution Flows between Framework Components.

Moreover, the choices of software tools also play crucial role in ensuring a seamless integration
of the design and implementation. Figure 8 further demonstrates an example of how various
existing machine learning software libraries and tools can be integrated to support seamless
integration of machine learning capabilities for Big Data in our framework. It can be observed
that there are many different categories of software tools. In this example, Solr [45] and SpagoBI
[46] are used as the visualization platforms. For the analysis part, the Storm, Mahout and Spark
can be integrated together to support different types of analysis problem domains such as
clustering, classification, and regressions. Furthermore, Management components can be used to
control the information flows between other components using Oozie [47], Sentry [48],
Zookeeper [49] and Cloudera Manager [50]. To support Big Data extraction and retrieval, the
framework may employ both RDD and conventional RDBMS as storage solutions, which can be
integrated with Sqoop [51] and YARN/HDFS [52]. The connections of various RDD and
RDBMS storage solutions can be handled by Hbase [53], Pig [54], Hive [55], Impala [50] and
MongoDB [56]. The framework could also support both CPU and GPU (Graphics Processing
Unit) to provide accelerated computations for high-frequency and high-dimensional datasets. The
CPU and GPU can be utilized by High Performance Computing libraries such as TensorFlow [57]
(for deep learning), HPCC clusters, and parallel libraries of Spark.

Figure 8: Our Proposed Seamless Integration of Machine Learning Capabilities for Big Data.
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5. EVALUATION

In final phase, researchers and practitioners should aim to test and validate many of the different
ways to integrate the data extraction, and data pre-processing, and machine learning algorithm
selection tasks. The goal of the final integration validation is to construct the most effective
information flow between each component and task.

Researchers and practitioners should conduct a set of experiments to evaluate that the framework
based on three important metrics: (1) accuracy, (2) robustness, and (3) scalability. The accuracy
refers to how well the final output is able to perform based on the problem domain. For example,
the accuracy performance of supervised algorithms can be analyzed based on the correct
predictions on the test data.

However, the accuracy of unsupervised algorithms is not straight forward to measure. It requires
inspection on how well the output of data instances were partitioned into a number of clusters,
and evaluation on the output is required to determine the effectiveness of the algorithm.
Therefore, to provide automation on the performance measurements for the framework, this will
require some further research explorations.

Robustness test is also crucial to validate that accuracy of the algorithm can continue to sustain
with other similar data characteristics and different data size. However, validating the robustness
of the algorithm would require extensive experimental run with many different datasets that will
need to be automated. The scalability refers to the ability for the framework to maintain high
accuracy for a given problem domain regardless of the dataset size. It is possible that high
accuracy can be achieved for a smaller dataset but fails completely on Big Datasets. Hence, the
selected machine learning algorithm should be tested and validated on real datasets to validate its
effectiveness and scalability.

6. CONCLUSION

In this paper, we have proposed research methodologies with a number of suggested research
activities that researchers and practitioners should focus on in developing a novel framework that
offer automated machine learning capabilities to systematically determine the steps and
procedures needed to arrive at the best learning and/or prediction performance for a given
problem domain and dataset. The specific objectives are as follows: (1) design and implement a
framework for supporting big data extraction, big data integration, big data retrieval, and big data
machine learning analytics tasks, (2) propose solutions for the essential phases of data pre-
processing including data sampling, data formatting, data cleaning, data transformation, noise
elimination and feature selection, and evaluate the proposed solutions in terms of accuracy,
robustness, scalability and computational performance, and (3) evaluate the performance of the
proposed automated big data mining and machine-learning framework and assess the benefit and
applicability of the proposed framework for generic problem domains and specific
application/problem domains.

Some merits of the above are as follows: (1) domain experts, researchers and practitioners do not
have to learn about the huge range of traditional machine learning methods and algorithms, but
instead can focus their attention on understanding a problem domain. This avoids the need for
them to explore and experiment with many machine learning algorithms for every new
application/problem domain, which is a time-consuming process and very ineffective, (2) such
framework can be employed to perform automated analysis on a wide variety of application and
problem domains, and (3) such framework provides the flexibility to handle different types of big



International Journal of Distributed and Parallel Systems (IJDPS) Vol.8, No.3, May 2017

16

data characteristics from variety of application domains thus allowing domain experts,
researchers, and practitioners to focus on other important tasks, and finally (4) such framework
provides the ability to mine data automatically, discover problem domains, determines the most
optimal machine learning algorithm systematically, and tunes the best parameters to give the best
accuracy and robustness, which can save considerable expense from the trial-and-error machine
learning experimentations.
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